
AllPix2 User Manual

Koen Wolters (koen.wolters@cern.ch)
Simon Spannagel (simon.spannagel@cern.ch)

July 6, 2022

Version v0.2

1

mailto:koen.wolters@cern.ch
mailto:simon.spannagel@cern.ch

Contents

1. Quick Start 4

2. Introduction 5
2.1. History . 6
2.2. Scope of this manual . 6
2.3. Support and reporting issues . 6

3. Installation 7
3.1. Prerequisites . 7
3.2. Downloading the source code . 8
3.3. Initializing the dependencies . 8
3.4. Configuration via CMake . 8
3.5. Compilation and installation . 9

4. Getting Started 11
4.1. Configuration Files . 11

4.1.1. Supported types and units . 11
4.1.2. Detector configuration . 13
4.1.3. Main configuration . 14

4.2. Framework parameters . 16
4.3. Setting up the Simulation Chain . 17

4.3.1. Adding new modules . 20
4.3.2. Advanced configuration . 21

4.4. Logging and Verbosity Levels . 23
4.5. Storing Output Data . 24

5. The AllPix2 Framework 26
5.1. Architecture of the Core . 26
5.2. Configuration and Parameters . 27

5.2.1. File format . 28
5.2.2. Accessing parameters . 29

5.3. Modules and the Module Manager . 29
5.3.1. Files of a Module . 30
5.3.2. Module structure . 32
5.3.3. Module instantiation . 33

5.4. Geometry and Detectors . 34
5.4.1. Coordinate systems . 35
5.4.2. Detector models . 35

5.5. Passing Objects using Messages . 36
5.5.1. Methods to process messages . 37
5.5.2. Message flags . 39

2

5.5.3. Object types . 39
5.6. Logging and other Utilities . 40

5.6.1. Logging system . 40
5.6.2. Unit system . 41
5.6.3. Internal utilities . 41

5.7. Error Reporting and Exceptions . 42

6. Modules 44

7. Module & Detector Development 45
7.1. Implementing a New Module . 45
7.2. Adding a New Detector Model . 46

8. Frequently Asked Questions 47

9. Additional Tools & Resources 48
9.1. ROOT and Geant4 utilities . 48
9.2. Runge-Kutta solver . 48
9.3. TCAD Electric Field Converter . 48
9.4. Simple Usage Examples . 48

10.Acknowledgments 49

A. Output of Example Simulation 50

References 54

3

1. Quick Start

This chapter serves as a very quick introduction to AllPix2 for users who prefer to start
quickly and learn the details while simulating. The typical user should skip the next
paragraphs and continue to the next Section 2 instead.

AllPix2 is a generic simulation framework for tracker and vertex detectors. It provides a
modular, flexible and user-friendly framework for the simulation of independent detectors.
The framework currently relies on the Geant4 [1], ROOT [2] and Eigen3 [3] libraries, that
need to be installed and loaded before using AllPix2.

The minimal, default installation can be done by executing the commands below. More
detailed installation instructions are found in Section 3.

$ git clone https://gitlab.cern.ch/simonspa/allpix-squared
$ cd allpix-squared
$ mkdir build && cd build/
$ cmake ..
$ make install
$ cd ..

The binary can then be executed with the example configuration file as follows:

$ bin/allpix -c etc/example.conf

Hereafter, the example configuration can be copied and adjusted to your own needs. This
example contains a simple setup of two test detector. It simulates the whole process from
the passage of the beam, the deposition of charges in the detectors, the particle propagation
and the conversion of the collected charges to digitized pixel hits. All the generated data is
finally stored on disk for later analysis.

After this quick start it is very much recommended to read the other sections in more detail
as well. For quickly solving common issues the Frequently Asked Questions in Section 8
may be particularly useful.

4

2. Introduction

AllPix2 is a generic simulation framework for silicon tracker and vertex detectors written in
modern C++. It is the successor of a previously developed simulation framework called
AllPix [4, 5]. The goal of the AllPix2 framework is to provide a complete and easy-to-use
package for simulating the performance of detectors from a general source of particles until
the digitization of hits in the detector chip.

The framework builds upon other packages to perform tasks in the simulation chain, most
notably Geant4 [1] for the deposition of charge carriers in the sensor and ROOT [2] for
producing histograms and saving the produced data to storage. The core of the framework
focuses on the simulation of charge transport in semiconductor detectors and the digitization
to hits in the frontend electronics. The framework does not perform a reconstruction of the
particle tracks.

AllPix2 is designed as a modular framework, allowing for an easy extension to more complex
and specialized detector simulations. A modular setup also allows to separate the core of
the framework from the implementation of the algorithms in the modules, leading to a
framework which is both easier to understand and to maintain. Besides modularity, the
AllPix2 framework was designed with the following main design goals in mind (listed from
most to least important):

1. Reflects the physics

• A run consists of several sequential events. A single event here refers to an
independent passage of one or multiple particles through the setup

• Detectors are treated as separate objects for particles to pass through

• All of the information must be contained at the very end of processing every
single event (sequential events)

2. Ease of use (user-friendly)

• Simple, intuitive configuration and execution ("does what you expect")

• Clear and extensive logging and error reporting

• Implementing a new module should be feasible without knowing all details of
the framework

3. Flexibility

• Event loop runs sequence of modules, allowing for both simple and advanced
user configurations

• Possibility to run multiple different modules on different detectors

• Limit flexibility for the sake of simplicity and ease of use

5

2.1. History

Development of AllPix (the original version) started around 2012 as a generic simulation
framework for pixel detectors. It has been succesfully used for simulating a variety of
different detector setups through the years. Originally written as a Geant4 user application
the framework has grown ‘organically‘ after new features continued to be added. Around
2016 discussions between collaborators started to discuss a rewrite of the software from
scratch. Primary possibilities for improvements included better modularity, more extensive
configuration options and an easier geometry setup.

Early development of AllPix2 started in end of 2016, but most of the initial rework in
modern C++ has been carried out in the framework of a technical student project in the
beginning of 2017. The core of the framework starts to mature and initial versions of various
generic core modules have been created at the time of writing.

2.2. Scope of this manual

This document is the primary User’s Guide for AllPix2. It presents all of the required to
start using the framework. In more detail this manual is designed to:

• guide all new users through the installation

• introduce new users to the toolkit for the purpose of running their own simulations

• explain the structure of the core framework and the components it provides to the
modules

• provide detailed information about all modules and how-to use and configure them

• describe the required steps for adding a new detector model and implementing a new
module

In the manual an overview of the framework is given, more detailed information on the
code itself can be found in the Doxygen reference manual. The reader does not need any
programming experience to get started, but knowledge of (modern) C++ will be useful in
the later chapters.

2.3. Support and reporting issues

We are happy to receive feedback on any problem that might arise. Reports for issues,
questions about unclear parts, as well as suggestions for improvements, are very much
appreciated. These should preferably be brought up on the issues page of the repository,
which can be found at https://gitlab.cern.ch/simonspa/allpix-squared/issues.

6

https://gitlab.cern.ch/simonspa/allpix-squared/issues

3. Installation

After installing and loading the required dependencies, there are various options to customize
the installation of AllPix2. This chapter contains details on the standard installation process
and information about custom installations.

3.1. Prerequisites

AllPix2 should be able to run without problems on Mac as well as any recent Linux
distribution. Windows is not officially supported and will likely never be. It could however
be theoretically possible to install AllPix2 using MinGW or Cygwin, but this has not been
tested.

The core framework is separated from the individual modules and AllPix2 has therefore
only one required dependency: ROOT 6 (versions below 6 are not supported!) [2]. If the
framework is run on a CERN cluster the default dependencies can be loaded from CVMFS
as explained in Section 3.3. Otherwise all required dependencies need to be installed before
building AllPix2. Please refer to [6] for instructions on how to install ROOT. ROOT has
several extra components and the GenVector package is required to run AllPix2. This
package is included in the default build.

For various modules additional dependencies are necessary. For details about the depen-
dencies and their installation visit the module documentation in Section 6. The following
dependencies are needed to compile the standard installation:

• Geant4 [1]: Used to simulate the geometry and deposit charges in the detector. See
the instructions in [7] for details on how to install the software. All the Geant4
datasets are required to run the modules succesfully. Also GDML support could
be enabled to save the Geant4 geometry for later review. Finally it is very much
recommended to enable Qt visualization. A good set of CMake build flags to start
with is the following:

-DGEANT4_INSTALL_DATA=ON
-DGEANT4_BUILD_MULTITHREADED=ON
-DGEANT4_USE_GDML=ON
-DGEANT4_USE_QT=ON
-DGEANT4_USE_XM=ON
-DGEANT4_USE_OPENGL_X11=ON
-DGEANT4_USE_SYSTEM_CLHEP=OFF

• Eigen3 [3]: Used vector package to do Runge-Kutta integration in the generic charge
propagation module. Eigen is available in almost all Linux distributions through the
package manager. Otherwise it can be easily installed, because it is a header-only
library.

7

Extra flags needs to be set for building an AllPix2 installation without these dependencies.
Details about these configuration options are given in Section 3.4.

3.2. Downloading the source code

The latest version of AllPix2 can be fetched from the Gitlab repository at https://gitlab.
cern.ch/simonspa/allpix-squared. This version is under heavy development, but should
work out-of-the-box. The software can be cloned and accessed as follows:

$ git clone https://gitlab.cern.ch/simonspa/allpix-squared
$ cd allpix-squared

3.3. Initializing the dependencies

Before continuing with the build, the necessary setup scripts for ROOT and Geant4 (unless
a build without Geant4 modules is attempted) should be run. In Bash on Linux this means
executing the following two commands from the respective installation directories (replacing
<root_install_dir> with the local ROOT installation directory and similar for Geant):

$ source <root_install_dir>/bin/thisroot.sh
$ source <geant4_install_dir>/bin/geant4.sh

On the CERN LXPLUS service a standard initialization script is available to load all
dependencies from the CVMFS infrastructure. This script should be run as follows (from
the main repository directory):

$ source etc/scripts/setup_lxplus.sh

3.4. Configuration via CMake

AllPix2 uses the CMake build system to build and install the core framework and the
modules. An out-of-source build is recommended: this means CMake should not be directly
executed in the source folder. Instead a build folder should be created inside the source
folder from which CMake should be run. For a standard build without any flags this implies
executing:

$ mkdir build
$ cd build
$ cmake ..

8

https://gitlab.cern.ch/simonspa/allpix-squared
https://gitlab.cern.ch/simonspa/allpix-squared

CMake can be run with several extra arguments to change the type of installation. These
options can be set with -Doption (see the end of this section for an example). Currently
the following options are supported:

• CMAKE_INSTALL_PREFIX: The directory to use as a prefix for installing
the binaries, libraries and data. Defaults to the source directory (where the folders
bin/ and lib/ are added).

• CMAKE_BUILD_TYPE: Type of build to install, defaults to RelWithDebInfo
(compiles with optimizations and debug symbols). Other possible options are Debug
(for compiling with no optimizations, but with debug symbols and extended tracing
using the Clang Address Sanitizer library) and Release (for compiling with full
optimizations and no debug symbols).

• MODEL_DIRECTORY: Directory to install the internal models to. Defaults
to not installing if the CMAKE_INSTALL_PREFIX is set to the directory
containing the sources (the default). Otherwise the default value is equal to the
directory CMAKE_INSTALL_PREFIX/share/allpix/. The install directory is
automatically added to the model search path used by the geometry model parsers to
find all the detector models.

• BUILD_module_name : If the specific module_name should be installed or not.
Defaults to ON, thus all modules are installed by default. This set of parameters have
to be set appropriately for a build without extra dependencies as specified in 3.1.

• BUILD_ALL_MODULES: Build all included modules, defaulting to OFF. This
overwrites any selection using the parameters described above.

An example of a custom installation with debugging, without the GeometryBuilderGeant4
module and installed to a custom directory, is shown below:

$ mkdir build
$ cd build
$ cmake -DCMAKE_INSTALL_PREFIX=../install/ \

-DCMAKE_BUILD_TYPE=DEBUG \
-DBUILD_GeometryBuilderGeant4=OFF ..

3.5. Compilation and installation

Compiling the framework is now a single command in the build folder created earlier
(replacing <number_of_cores> > with the number of cores to use for compilation):

$ make -j<number_of_cores>

9

The compiled (non-installed) version of the executable can be found at src/exec/allpix in
the build folder. Running AllPix2 directly without installing can be useful for developers,
but is not recommended for normal users.

To install the library to the selected install location (defaulting to the source directory)
requires the following command:

$ make install

The binary is now available as bin/allpix in the installation directory. The example configu-
ration files are not installed as they should only be used as a starting point for your own
configuration. They can however be used to check if the installation was succesful. Running
the allpix binary with the example configuration (like bin/allpix -c etc/example.conf)
should run without problems when a standard installation is used.

10

4. Getting Started

After finishing the installation the first simulations can be runned. This Getting Started
guide is written with a default installation in mind, meaning that some parts may not
work if a custom installation was used. When the allpix binary is used, this refers to the
executable installed in bin/allpix in your installation path. Remember that before running
any AllPix2 simulation, ROOT and likely Geant4 should be initialized. Refer to Section
3.3 on instructions how to load those libraries.

4.1. Configuration Files

The framework has to be configured with simple human-readable configuration files. The
configuration format is described in detail in Section 5.2.1. The configuration consists of
several section headers within [and] brackets and a section without header at the start.
Every section contain a set of key/value pairs separated by the = character. The # is used
to indicate comments.

The framework has the following three required layers of configuration files:

• The main configuration: The most important configuration file and the file that is
passed directly to the binary. Contains both the global framework configuration and
the list of modules to instantiate together with their configuration. More details and
an example are found in Section 4.1.3.

• The detector configuration passed to the framework to determine the geometry.
Describes the detector setup, containing the position, orientation and model type of
all detectors. Introduced in Section 4.1.2.

• The detector models configuration. Contain the parameters describing a particular
type of detector. Several models are already shipped by the framework, but new types
of detectors can be easily added. Please refer to Section 7.2 for more details about
adding new models.

Before going into depth on defining the required configuration files, first more detailed
information about the configuration values is provided in the next paragraphs.

4.1.1. Supported types and units

The AllPix2 framework supports the use of a variety of types for all configuration values.
The module specifies how the value type should be interpreted. An error will be raised if
either the key is not specified in the configuration file, the conversion to the desired type is
not possible, or if the given value is outside the domain of possible options. Please refer to
the module documentation in Section 6 for the list of module parameters and their types.

11

Parsing the value roughly follows common-sense (more details can be found in Section
5.2.2). A few special rules do apply:

• If the value is a string it may be enclosed by a single pair of double quotation marks
("), which are stripped before passing the value to the modules. If the string is not
enclosed by the quotation marks all whitespace before and after the value is erased.
If the value is an array of strings, the value is split at every whitespace or comma (’)
that is not enclosed in quotation marks.

• If the value is a relative path that path will be made absolute by adding the absolute
path of the directory that contains the configuration file where the key is defined.

• If the value is an arithmetic type, it may have a suffix indicating the unit. The list
of base units is shown in Table 1.

Table 1: List of units supported by AllPix2

Quantity Default unit Auxiliary units

Length mm (millimeter)

nm (nanometer)
um (micrometer)
cm (centimeter)
dm (decimeter)
m (meter)
km (kilometer)

Time ns (nanosecond)

ps (picosecond)
us (microsecond)
ms (millisecond)
s (second)

Energy MeV (megaelectronvolt)

eV (electronvolt)
keV (kiloelectronvolt)
GeV (gigaelectronvolt)

Temperature K (kelvin)
Charge e (elementary charge) C (coulomb)

Voltage MV (megavolt) V (volt)
kV (kilovolt)

Angle rad (radian) deg (degree)

Combinations of base units can be specified by using the multiplication sign * and the
division sign / that are parsed in linear order (thus V m

s2
should be specified as V ∗m/s/s).

The framework assumes the default units (as given in Table 1) if the unit is not explicitly
specified. It is recommended to always specify the unit explicitly for all parameters that
are not dimensionless as well as for angles.

Examples of specifying key/values pairs of various types are given below

12

1 # All whitespace at the front and back is removed
2 first_string = string_without_quotation
3 # All whitespace within the quotation marks is kept
4 second_string = " string with quotation marks "
5 # Keys are split on whitespace and commas
6 string_array = "first element" "second element","third element"
7 # Integer and floats can be given in standard formats
8 int_value = 42
9 float_value = 123.456e9

10 # Units can be passed to arithmetic type
11 energy_value = 1.23MeV
12 time_value = 42ns
13 # Units are combined in linear order
14 acceleration_value = 1.0m/s/s
15 # Thus the quantity below is the same as 1.0deg*kV*K/m/s
16 random_quantity = 1.0deg*kV/m/s*K
17 # Relative paths are expanded to absolute
18 # Path below will be /home/user/test if the config file is in /home/user
19 output_path = "test"

4.1.2. Detector configuration

The detector configuration consist of a set of section headers describing the detectors in the
setup. The section header describes the names used to identify the detectors. All names
should be unique, thus using the same name multiple times is not possible. Every detector
should contain all of the following parameters:

• A string referring to the type of the detector model. The model should exist in the
search path described in Section 5.4.2.

• The 3D position in the world frame in the order x, y, z. See Section 5.4 for details.

• The orientation specified as Z-X-Z Euler angle relative to the world axis. See Section
5.4 for details.

An example configuration file of one test detector and two Timepix [8] models is given
below.

1 # name the first detector ‘telescope1‘
2 [telescope1]
3 # set the type to the test detector
4 type = "test"
5 # place it at the origin of the world frame

13

6 position = 0 0 0mm
7 # use the default orientation
8 orientation = 0 0 0
9

10 # name the second detector ‘telescope2‘
11 [telescope2]
12 # set the type again to Timepix
13 type = "timepix"
14 # place it 0.5 mm down on the z-axis from the origin
15 position = 0 0 -50mm
16 # use the default orientation
17 orientation = 0 0 0
18

19 # name the third detector ‘dut‘ (device under test)
20 [dut]
21 # set the type again to Timepix
22 type = "timepix"
23 # set the position in the world frame
24 position = 100um 100um -10mm
25 # rotate 20 degrees around the world x-axis
26 orientation = 0 20deg 0

This configuration file is used in the rest of this chapter for explaining concepts.

4.1.3. Main configuration

The main configuration consists of a set of section header that specify the modules used. All
modules are executed in the linear order in which they are defined. There are a few section
names that have a special meaning in the main configuration, which are the following:

• The global (framework) header sections: These are all the zero-length section headers
(including the one at the start) and all with the header AllPix (case-sensitive). These
are combined and accessed together as the global configuration, which contain all the
parameters of the framework (see Section 4.2 for details). All key-value pairs defined
in this section are also inherited by all individual configurations as long the key is not
defined in the module configuration itself.

• The ignore header sections: All sections with name Ignore are ignored. Key-value
pairs defined in the section as well as the section itself are redundant. These sections
are useful for quickly enabling and disabling for debugging.

All other section headers are used to instantiate the modules. Installed modules are loaded
automatically. If problems arise please review the loading rules described in Section 5.3.3.

14

Modules can be specified multiple times in the configuration files, but it depends on their
type and configuration if this allowed. The type of the module determines how the module
is instantiated:

• If the module is unique, it is instantiated only a single time irrespective of the
amount of detectors. These kind of modules should only appear once in the whole
configuration file unless a different inputs and outputs are used as explained in Section
4.3.2.

• If the module is detector-specific, it is run on every detector it is configured to run
on. By default an instantiation is created for all detectors defined in the detector
configuration file (see Section 4.1.2) unless one or both of the following parameters
are specified.

– name: An array of detector names where the module should run on. Replaces
all global and type-specific modules of the same kind.

– type: An array of detector type where the module should run on. Instantiated
after considering all detectors specified by the name parameter above. Replaces
all global modules of the same kind.

A valid example configuration using the detector configuration above could be:

1 # Key is part of the empty section and therefore the global sections
2 string_value = "example1"
3 # The location of the detector configuration should be a global parameter
4 detectors_file = "manual_detector.conf"
5 # The AllPix section is also considered global and merged with the above
6 [AllPix]
7 another_random_string = "example2"
8

9 # First run a unique module
10 [MyUniqueModule]
11 # This module takes no parameters
12 # [MyUniqueModule] cannot be instantiated another time
13

14 # Then run some detector modules on different detectors
15 # First run a module on the detector of type Timepix
16 [MyDetectorModule]
17 type = "timepix"
18 int_value = 1
19 # Replace the module above for ‘dut‘ with a specialized version
20 # this does not inherit any parameters from earlier modules
21 [MyDetectorModule]
22 name = "dut"

15

23 int_value = 2
24 # Runs the module on the remaining unspecified detector ‘telescope1‘
25 [MyDetectorModule]
26 # int_value is not specified, so it uses the default value

This configuration can however not be executed in practice because MyUniqueModule
and MyDetectorModule do not exist. In the next paragraphs an useful configuration file
with valid configuration is presented. Before turning to the module parameters the global
framework parameters are introduced first.

4.2. Framework parameters

The framework has a variety of global parameters that allow to configure AllPix2 for different
kind of simulations:

• detectors_file: Location of the file describing the detector configuration (introduced
in Section 4.1.2). The only required global parameter: the framework will fail if it is
not specified.

• number_of_events: Determines the total number of events the framework should
simulate. Equivalent to the amount of times the modules are run. Defaults to one
(simulating a single event).

• log_level: Specifies the minimum log level which should be written. Possible values
include FATAL, STATUS, ERROR, WARNING, INFO and DEBUG, where all options are case-
insensitive. Defaults to the INFO level. More details and information about the log
levels and changing it for a particular module can be found in Section 4.4. Can be
overwritten by the -v parameter on the command line.

• log_format: Determines the format to display. Possible options include SHORT,
DEFAULT and LONG, where all options are case-insensitive. More information again in
Section 4.4.

• log_file: File where output should be written to besides standard output (usually
the terminal). Only writes to standard output used if option is not given. Another
(additional) location to write to can be specified on the command line using the -l
parameter.

• output_directory: Directory to write all output files into. Extra directories are
created for all the module instantiations. This directory also contains the root_file
parameter described below. Defaults to the current working directory with the
subdirectory output/ attached.

16

• root_file: Location relative to the output_directory, where the ROOT output
data of all modules will be written to. Default value is modules.root. The directories
will be created automatically for all the module instantiations in this ROOT file.

• random_seed: Seed to use for the random seed generator (see Section 5.6.3). A
random seed from multiple entropy sources will be generated if the parameter is not
specified. Can be used to reproduce an earlier simulation run.

• library_directories: Additional directories to search for libraries, before searching
the default paths. See Section 5.3.3 for details.

• model_path: Additional files or directories from which detector models should be
read besides the standard search locations. Refer to Section 5.4.2 for more information.

With this information in mind it is time to setup a real simulation. Module parameters are
shortly introduced when they are first used. For more details about these parameters the
module documentation in Section 6 should be consulted.

4.3. Setting up the Simulation Chain

Below a simple, but complete simulation is described. A typical simulation in AllPix2

contains at least the following components.

• A model reader, which reads the model paths and creates the detector models it
can parse (should be all models specified in the detector configuration)

• The geometry builder, responsible for creating the external geometry (Geant4)
from the internal geometry.

• The deposition module that deposits charge carriers in the detectors using the
provided physics list and the geometry created above.

• A propagation module that propagates the charges through the sensor and assigns
them to a pixel.

• A digitizermodule which converts the charges in the pixel to a detector hit, simulating
the frontend electronics response.

• An output module, saving the data of the simulation to the requested format.

In the example charges will be deposited in the three sensors from the detector configuration
file in Section 4.1.2. Only the charges in the Timepix models are going to be propagated
and digitized. The final results of hits in the device under test (dut) will be written to a
ROOT histogram. A configuration file that implements this description is as follows:

17

1 # Initialize the global configuration
2 [AllPix]
3 # Run a total of 10 events
4 number_of_events = 10
5 # Use the short logging format
6 log_format = "SHORT"
7 # Location of the detector configuration
8 detectors_file = "manual_detector.conf"
9

10 # Read the default models
11 [DefaultModelReader]
12

13 # Read and instantiate the detectors and construct the Geant4 geometry
14 [GeometryBuilderGeant4]
15 # Size of the world
16 # TODO: this will be optional
17 world_size = 50mm 50mm 100mm
18

19 # initialize physics list, setup the particle source and deposit the
charges↪→

20 [DepositionGeant4]
21 # Use one of the standard Geant4 physics lists
22 physics_list = QGSP_BERT
23 # Use a charged pion as particle
24 particle_type = "pi+"
25 # Use a single particle in a single ’event’
26 particle_amount = 1
27 # Set the energy of the particle
28 particle_energy = 120GeV
29 # The position of the point source
30 particle_position = 0 0 1mm
31 # The direction of the source
32 particle_direction = 0 0 -1
33

34 # Specify a linear electric field for all detectors
35 # NOTE: This will be explained in more detail later in the manual
36 [ElectricFieldInputLinear]
37 # Voltage to calculate the electric field from
38 voltage = 50V
39

40 # Propagate the charges in the sensor
41 [SimplePropagation]

18

42 # Only propagate charges in the Timepix sensors
43 type = "timepix"
44 # Set the temperature of the sensor
45 temperature = 293K
46 # Propagate multiple charges together in one step for faster simulation
47 charge_per_step = 50
48

49 # Transfer the propagated charges to the pixels
50 # TODO: this module is going to be deleted
51 [SimpleTransfer]
52 max_depth_distance = 10um
53

54 # Digitize the propagated charges
55 [DefaultDigitizer]
56 # Noise added by the electronics
57 electronics_noise = 110e
58 # Threshold for a hit to be detected
59 threshold = 600e
60 # Noise of the threshold level
61 threshold_smearing = 30e
62 # Uncertainty added by the digitization
63 adc_smearing = 300e
64

65 # Save histogram to an output file
66 [DetectorHistogrammer]
67 # Save the histogram only for the dut
68 name = "dut"

The configuration above is available as etc/manual.conf. The detector configuration file in
Section 4.1.2 can be found in etc/manual_detector.conf. The total simulation can then be
executed by passing the configuration to the allpix binary as follows:

$ allpix -c etc/manual.conf

The simulation should then start. It should output similar output as the example found
in Appendix A. The final histogram of the hits will then be availabe in the ROOT file
output/modules.root as the local file DetectorHistogrammer/histogram.

If problems occur, please make sure you have an up-to-date and properly installed version
of AllPix2 (see the installation instructions in Section 3). If modules and models fail to
load, more information about loading problems can be found in the detailed framework
description in Section 5.

19

4.3.1. Adding new modules

Before going to more advanced configurations, a few simple modules are discussed which a
user might want to add.

Visualization Displaying the geometry and the particle tracks helps a lot in both checking
and interpreting the results. Visualization is fully supported through Geant4, supporting
all the options provided by Geant4 [9]. Using the Qt viewer with the OpenGL driver is
however the recommended option as long as the installed version of Geant4 supports it.

To start using the Qt viewer the simple_view = 1 parameter should first be added to the
GeometryBuilderGeant4 section. This simplifies the visualization output and makes it
several order of magnitude faster. Finally the example section below should be added at
the end of the configuration file before running the simulation again:

1 [VisualizationGeant4]
2 # Setup to use the Qt gui
3 use_gui = 1
4 # Use the OpenGL driver
5 driver = "OGL"
6 # Point those macro files to the etc/ directory in the allpix source

folder↪→

7 # TODO: these macros should be optional
8 macro_init = "geant4_init.in"
9 macro_run = "geant4_run.in"

If it gives an error about Qt not being available the VRML viewer can be used as a
replacement, but it is recommended to reinstall Geant4 with the Qt viewer included. To
use the VRML viewer instead, follow the steps below:

• The simple_view = 1 parameter should be added to theGeometryBuilderGeant4
section.

• Then the viewer should be installed on your operating system. Good options are for
example FreeWRL and OpenVRML.

• Subsequently two environmental parameters should be exported to inform Geant4
of the configuration. These include G4VRMLFILE_VIEWER which should point to the
location of the viewer and G4VRMLFILE_MAX_FILE_NUM which should typically be set
to 1 to prevent too many files from being created.

• Finally the example section below should be added at the end of the configuration
file before running the simulation again:

20

1 [VisualizationGeant4]
2 # Use the VRML driver
3 driver = "VRML2FILE"
4 # Point those macro files to the etc/ directory in the allpix source

folder↪→

5 # TODO: these macros should be optional
6 macro_init = "geant4_init.in"
7 macro_run = "geant4_run.in"

Linear Electric Field The example configuration before already contained a module for
adding a linear electric field to the sensitive detector. All detectors by default do not have
any electric field. This will make the SimplePropagation module slow, because it will wait
for the propagated charges to reach the end of the sensor, which can take a long time with
diffusion solely. Therefore a simple linear electric field have been added to the sensors. The
section below sets the electric field on every point in the pixel grid to the voltage divided
by the thickness of the sensor.

1 # Add a linear electric field
2 [ElectricFieldInputLinear]
3 # Bias voltage used to create the linear electric field
4 voltage = 50V

More complex electric fields from TCAD can also be added as explained in more detail in
Section 4.3.2.

4.3.2. Advanced configuration

Redirect Module Inputs and Outputs By default it is not allowed to have the same
type of module (linked to the same detector), but in several cases it may be useful to run
the same module with different settings. The AllPix2 framework support this by allowing
to redirect the input and output data of every module. A module sends it output by default
to all modules listening to the type of object it dispatches. It is however possible to specify
a certain name in addition to the type of the data.

The output name of a module can be changed by setting the output parameter of the
module to a unique value. The output of this module is than not send anymore to modules
without a configured input, because the default input listens only to data without a name.
The input parameter of a particular receiving module should therefore be set to match the
value of the output parameter. In addition it is allowed to set the input parameter to the
special value * to indicate that it should listen to all messages irrespective of their name.

21

An example of a configuration with two settings for digitization is shown below:

1 # Digitize the propagated charges with low noise levels
2 [DefaultDigitizer]
3 # Specify an output identifier
4 output = "low_noise"
5 # Low amount of noise added by the electronics
6 electronics_noise = 100e
7 # Default values are used for the other parameters
8

9 # Digitize the propagated charges with high noise levels
10 [DefaultDigitizer]
11 # Specify an output identifier
12 output = "high_noise"
13 # High amount of noise added by the electronics
14 electronics_noise = 500e
15 # Default values are used for the other parameters
16

17 # Save histogram for ’low_noise’ digitized charges
18 [DetectorHistogrammer]
19 # Specify input identifier
20 input = "low_noise"
21

22 # Save histogram for ’high_noise’ digitized charges
23 [DetectorHistogrammer]
24 # Specify input identifier
25 input = "high_noise"

Using TCAD Electric Field Simulations An electric field in the detectors can be
specified using the .init format by using the ElectricFieldReaderInit module. The init
format is format used by the PixelAV software [10, 11] after conversions from internal
TCAD formats. These fields can be attached to specific detectors using the standard syntax
for detector binding. An example would be:

1 [ElectricFieldReaderInit]
2 # Bind the electric field to the timepix sensor
3 name = "tpx"
4 # Name of the file containing the electric field
5 file_name = "example_electric_field.init"

An example electric field (which the name used above) can be found in the etc directory of
the AllPix2 repository.

22

Choosing the Propagation Modules This section is not written yet.

4.4. Logging and Verbosity Levels

AllPix2 is designed to identify mistakes and implementation errors as early as possible and
tries to give the user a clear indication about the problem. The amount of feedback can
be controlled using different log levels. The global log level can be set using the global
parameter log_level. The log level can be overridden for a specific module by adding the
log_level parameter to that module. The following log levels are currently supported:

• FATAL: Indicates a fatal error that should and will lead to direct termination of the
application. Typically only emitted in the main executable after catching exceptions,
because exceptions are the preferred way of error handling as discussed in Section 5.7.
An example of a fatal error is an invalid configuration parameter.

• STATUS: Important informational messages about the status of the simulation.
Should only be used for informational messages that have to be logged in every run
(unless the user wants to only fetch fatal errors)

• ERROR: Severe error that should never happen during a normal well-configured
simulation run. Frequently leads to a fatal error and can be used to provide extra
information that may help in finding the reason of the problem. For example used to
indicate the reason a dynamic library cannot be loaded.

• WARNING: Indicate conditions that should not happen normally and possibly
lead to unexpected results. The framework can however typically continue without
problems after a warning. Can for example indicate that a output message is not
used and that a module may therefore do unnecessary work.

• INFO: Informatic messages about the physics process of the simulation. Contains
summaries about the simulation details of every event and for the overall simulation.
Should typically produce maximum one line of output per event.

• DEBUG: In-depth details about the progress of the framework and all the physical
details of the simulation. Produces large volumes of output per event usually and
this level is therefore normally only used for debugging the physics simulation of the
modules.

• TRACE: Messages to trace what the framework or a module is currently doing.
Does not contain any direct information unlike the DEBUG level above, but only
indicates which part of the module or framework is currently running. Mostly used
for software debugging or determining the speed bottleneck in simulations.

23

It is not recommended to set the log_level higher thanWARNING in a typical simulation
as important messages could be missed.

The logging system does also support a few different formats to display the log messages.
The following formats are supported for the global parameter log_format and for the
module parameter with the same name that overwrites it:

• SHORT: Displays the data in a short form. Includes only the first character of the
log level followed by the section header and the message.

• DEFAULT: The default format. Displays the date, log level, section header and the
message itself.

• LONG: Detailed logging format. Besides the information above, it also shows the file
and line where the log message was produced. This can help in debugging modules.

More details about the logging system and the procedure for reporting errors in the code
can be found in Section 5.6.1 and 5.7.

4.5. Storing Output Data

Saving the output to persistent storage is of primary importance for later review and
analysis. AllPix2 primarily uses ROOT for storing output data, because it supports writing
arbitrary objects and is a standard tool in High-Energy Physics. The ROOTObjectWriter
automatically saves all the data objects written by the modules to a TTree [12] for more
information about TTrees). The module stores all different object types to a separate tree,
creating a branch for every combination of detector and the name given to the output as
explained in Section 4.3.2. For each event, values are added to the leafs of the branches
containing the data of the objects. This allows for easy histogramming of the acquired data
over the total run using the ROOT utilities.

To save the output of all objects an ROOTObjectWriter has to be added with a file_name
parameter (without the root suffix) to specify the file location of the created ROOT file in
the global output directory. The default file name is data which means that data.root is
created in the output directory. To replicate the default behaviour the following configuration
can be used:

1 # The object writer listens to all output data
2 [ROOTObjectWriter]
3 # specify the output path (can be omitted as it the default)
4 file_name = "data.root"

Besides using the generated tree for analysis it is also possible to read all the object data
back in, to propagate it to further modules. This can be used to split the execution of several
parts of the simulation in multiple independent steps, which can be executed after each

24

order. The tree data can be read using a ROOTObjectReader module, that automatically
dispatches all objects to the right detector with the correct name in the same event, using
the internal name of the stored data. An example of using this module is the following:

1 # The object reader dispatches all objects in the tree
2 [ROOTObjectReader]
3 # path to the output data relative to the configuration file
4 file_name = "../output/data.root"

25

5. The AllPix2 Framework

The framework is split up in the following four main components that together form
AllPix2:

1. Core: The core contains the internal logic to initiate the modules, provide the
geometry, facilitate module communication and run the event sequence. The core
keeps its dependencies to a minimum (it only relies on ROOT) and remains separated
from the other components as far as possibble. It is the main component discussed in
this section.

2. Modules: A set of methods that execute a part of the simulation chain. These are
build as separate libraries, loaded dynamically by the core. The available modules
and their parameters are discussed in more detail in Section 6.

3. Objects: Objects are the data passed around between modules using the message
framework provided by the core. Modules can listen and bind to messages with objects
they wish to receive. Messages are identified by the object type they are carrying, but
they can also be named to allow redirecting data to specific modules facilitating more
sophisticated simulations. Messages are meant to be read-only and a copy of the data
should be made if a module wishes to change the data. All objects are contained into
a separate library, automatically linked to every module. More information about the
messaging system and the supported objects can be found in Section 5.5.

4. Tools: AllPix2 provides a set of header-only ’tools’ that provide access to common
logic shared by various modules. An example is a Eigen Runge-Kutta solver and a set
of template specializations for ROOT and Geant4 configuration. More information
about these can be found in Section 9. This set of tools is different from the set of core
utilities the framework provides by itself, which are part of the core and explained in
5.6

Finally AllPix2 provides an executable which instantiates the core, passes the configuration
and runs the simulation chain.

In this chapter, first an overview of the architectural setup of the core is given and how it
interacts with the total AllPix2 framework. Afterwards, the different subcomponents are
discussed and explained in more detail. Some C++ code will be provided in the text, but
readers not interested may skip the technical details.

5.1. Architecture of the Core

The core is constructed as a light-weight framework that provides various subsystems to the
modules. It also contains the part responsible for instantiating and running the modules
from the supplied configuration file. The core is structured around five subsystems of which

26

four are centered around managers and the fifth contain a set of simple general utilities.
The systems provided are:

1. Configuration: Provides a general configuration object from which data can be
retrieved or stored, together with a TOML-like [13] file parser to instantiate the
configurations. Also provides a general AllPix2 configuration manager providing
access to the main configuration file and its sections. It is used by the module
manager system to find the required instantiations and access the global configuration.
More information is given in Section 5.2.

2. Module: Contain the base class of all the AllPix2 modules and the manager respon-
sible for loading and running the modules (using the configuration system). This
component is discussed in more detail in Section 5.3.

3. Geometry: Supplies helpers for the simulation geometry. The manager contains
all registered detectors. A detector has a certain position and orientation linked
to an instantiation of a particular detector model. The detector model contains all
parameters describing the geometry of the detector. More details about the geometry
and detector models is provided in Section 5.4.

4. Messenger: The messenger is responsible for sending objects from one module to
another. The messenger object is passed to every module and can be used to bind
to messages to listen for. Messages with objects are also dispatched through the
messenger to send data to the modules listening. Please refer to Section 5.5 for more
details.

5. Utilities: The framework provides a set of simple utilities for logging, file and
directory access, random number seeding and unit conversion. An explanation how
to use of these utilities can be found in Section 5.6. A set of C++ exceptions is also
provided in the utilities, which are inherited and extended by the other components.
Proper use of exceptions, together with logging informational messages and reporting
errors, make the framework easier to use and debug. A few notes about the use and
structure of exceptions are given in Section 5.7.

5.2. Configuration and Parameters

Modules and the framework are configured through configuration files. An explanation how
to use the various configuration files together with several examples are provided in Section
4.1. All configuration files follow the same format, but the way their input is interpreted
differs per configuration file.

27

5.2.1. File format

Throughout the framework a standard format is used for the configuration files, a simplified
version of TOML [13]. The rules for this format are as follows:

1. All whitespace at the beginning or end of a line should be stripped by the parser.
Empty lines should be ignored.

2. Every non-empty line should start with either #, [or an alphanumeric character.
Every other character should lead to an immediate parse error.

3. If the line starts with #, it is interpreted as comment and all other content on the
same line is ignored

4. If the line starts with [, the line indicates a section header (also known as configuration
header). The line should contain an alphanumeric string indicating the header name
followed by] to end the header (a missing] should raise an exception). Multiple
section header with the same name are allowed. All key-value pairs following this
section header are part of this section until a new section header is started. After any
number of ignored whitespace characters there may be a # character. If that is the
case, the rest of the line is handled as specified in point 3.

5. If the line starts with an alphanumeric character, the line should indicate a key-value
pair. The beginning of the line should contain an string of alphabetic characters,
numbers and underscores, but note that it may not start with an underscore). This
string indicates the ’key’. After a optional number of ignored whitespace, the key
should be followed by an =. Any text between the = and the first # character not
enclosed within a pair of " characters is known as the non-stripped ’value’. Any
character from the # is handled as specified in point 3. If the line does not contain
any non-enclosed # character the value ends at the end of the line instead. The ’value’
of the key-value pair is the non-stripped ’value’ with all whitespace in front and the
end stripped.

6. The value can either be accessed as a single value or an array. If the value is accessed
as an array, the string is split at every whitespace or , character not enclosed in a
pair of " characters. All empty entities are not considered. All other entities are
treated as single values in the array.

7. All single values are stored as a string containing at least one character. The conversion
to the actual type is executed when accessing the value.

8. All key-value pairs defined before the first section header are part of a zero-length
empty section header

28

5.2.2. Accessing parameters

All values are accessed via the configuration object. In the following example the key is a
string called key, the object is named config and the type TYPE is a valid C++ type
that the value should represent. The values can be accessed via the following methods:

1 // Returns true if the key exists and false otherwise
2 config.has("key")
3 // Returns the value in the given type, throws an exception if not

existing↪→

4 config.get<TYPE>("key")
5 // Returns the value in the given type or the provided default value if

it does not exist↪→

6 config.get<TYPE>("key", default_value)
7 // Returns an array of single values of the given type; throws if the key

does not exist↪→

8 config.getArray<TYPE>("key")
9 // Returns an absolute (canonical if it should exist) path to a file

10 config.getPath("key", true /* check if path exists */)
11 // Return an array of absolute paths
12 config.getPathArray("key", false /* check if paths exists */)
13 // Returns the key as literal text including possible quotation marks
14 config.getText("key")
15 // Set the value of key to the default value if the key is not defined
16 config.setDefault("key", default_value)
17 // Set the value of the key to the defaults array if key is not defined
18 config.setDefaultArray<TYPE>("key", vector_of_default_values)

The conversions to the type are using the from_string and to_string methods provided
by the string utility library described in Section 5.6.3. These conversions largely follows the
standard C++ parsing, with one important exception. If (and only if) the value is retrieved
as any C/C++ string type and the string is fully enclosed by a pair of " characters, they are
stripped before returning the value (and strings can thus also be given without quotation
marks).

5.3. Modules and the Module Manager

AllPix2 is a modular framework, the core idea is to separate functionality in various
independent modules. The modules are defined in the subdirectory src/modules/ in the
repository. The name of the directory is the unique name of the module. The suggested
naming scheme is CamelCase, thus an example module would be GenericPropagation.
There are two different kind of modules which can be defined:

29

• Unique: Modules for which always a single instance runs irrespective of the number
of detectors.

• Detector: Modules that are specific to a single detector. They are replicated for all
required detectors.

The type of module determines the kind of constructor used, the internal unique name and
the supported configuration parameters. More details about the instantiation logic for the
different kind of modules can be found in 5.3.3.

5.3.1. Files of a Module

Every module directory should at the minimum contain the following documents (with
ModuleName replaced by the name of the module):

• CMakeLists.txt: The build script to load the dependencies and define the source
files

• README.md: Short documentation of the module

• ModuleName.tex: Full documentation of the module for this Users Manual

• ModuleNameModule.hpp: The header file of the module (note that another name
can be used for this source file, but that is deprecated)

• ModuleNameModule.cpp: The implementation file of the module

The files are discussed in more detail below. All modules that are added to the src/modules/
directory will be build automatically by CMake. This also means that all subdirectories
in this module directory should contain a module with a CMakeLists.txt to build the
module.

More information about constructing new modules can be found in Section 7.1.

CMakeLists.txt Contains the build description of the module with the following compo-
nents:

1. On the first line either ALLPIX_DETECTOR_MODULE(MODULE_NAME) or
ALLPIX_UNIQUE_MODULE(MODULE_NAME) depending on the type of the
module defined. The internal name of the module is saved to the ${MODULE_NAME}
variable which should be used as argument to the other functions. Another name can
be used as well, but below we exclusively use ${MODULE_NAME}

2. The next lines should contain the logic to load the dependencies of the module (below
is an example to load Geant4). Only ROOT is automatically included and linked to
the module.

30

3. A line with ALLPIX_MODULE_SOURCES(${MODULE_NAME} sources) where
sources should be replaced by all the source files of this module

4. Possibly lines to include the directories and link the libraries for all the dependencies
loaded earlier as explained in point 2. See below for an example.

5. A line containing ALLPIX_MODULE_INSTALL(${MODULE_NAME}) to setup
the required target for the module to be installed to.

An example of a simple CMakeLists.txt of a module named Test which requires Geant4 is
the following

1 # Define module and save name to MODULE_NAME
2 # Replace by ALLPIX_DETECTOR_MODULE(MODULE_NAME) to define a detector

module↪→

3 ALLPIX_UNIQUE_MODULE(MODULE_NAME)
4

5 # Load Geant4
6 FIND_PACKAGE(Geant4)
7 IF(NOT Geant4_FOUND)
8 MESSAGE(FATAL_ERROR "Could not find Geant4, make sure to source the

Geant4 environment\n$ source YOUR_GEANT4_DIR/bin/geant4.sh")↪→

9 ENDIF()
10

11 # Add the sources for this module
12 ALLPIX_MODULE_SOURCES(${MODULE_NAME}
13 TestModule.cpp
14)
15

16 # Add Geant4 to the include directories
17 TARGET_INCLUDE_DIRECTORIES(${MODULE_NAME} SYSTEM PRIVATE

${Geant4_INCLUDE_DIRS})↪→

18

19 # Link the Geant4 libraries to the library
20 TARGET_LINK_LIBRARIES(${MODULE_NAME} ${Geant4_LIBRARIES})
21

22 # Provide standard install target
23 ALLPIX_MODULE_INSTALL(${MODULE_NAME})

README.md This section is not written yet.

ModuleName.tex This section is not written yet.

31

ModuleNameModule.hpp and ModuleNameModule.cpp All modules should have both a
header file and a source file. In the header file the module is defined together with all its
method. Brief Doxygen documentation should be added to explain what every method
does. The source file should provide the implementation of every method and also its more
detailed Doxygen documentation. Not a single method should be defined in the header to
keep the interface clean.

5.3.2. Module structure

All modules should inherit from the Module base class which can be found in src/core/mod-
ule/Module.hpp. The module base class provides two base constructors, a few convenient
methods and several methods to override. Every module should provide a constructor
taking a fixed set of arguments defined by the framework. This particular constructor is
always called during construction by the module instantiation logic. The arguments for the
constructor differs for unique and detector modules. For unique modules the constructor
for a TestModule should be:

TestModule(Configuration config, Messenger* messenger, GeometryManager*
geo_manager): Module(config) {}↪→

It is clear that the configuration object should be forwarded to the base module.

For unique modules the first two arguments are the same, but the last argument is a
std::shared_ptr to the linked detector instead. It should always forward this provided
detector to the base class, besides the configuration. Thus a constructor of a detector
module should be:

TestModule(Configuration config, Messenger* messenger,
std::shared_ptr<Detector> detector): Module(config, detector) {}↪→

All modules receive the Configuration object holding the config parameters for that specific
object, which can be accessed as explained in Section 5.2.2. Furthermore, a pointer to
the Messenger is passed which can be used to both bind variables to receive and dispatch
messages as explained in 5.5. Finally either a pointer to the GeometryManager is passed,
which can be used to fetch all detectors, or a instance of the specifically linked detector. The
constructor should normally be used to bind the required messages and set configuration
defaults. In case of failure an exception can be thrown from the constructor.

In addition to the constructor every module can override the following methods:

• init(): Called after loading and constructing all modules and before starting the
event loop. This method can for example be used to initialize histograms.

32

• run(unsigned int event_number): Called for every event in the simulation run
with the event number (starting from one). An exception should be thrown for every
serious error, otherwise an warning should be logged.

• finalize(): Called after processing all events in the run and before destructing the
module. Typically used to save the output data (like histograms). Any exceptions
should be thrown from here instead of the destructor.

5.3.3. Module instantiation

The modules are dynamically loaded and instantiated by the Module Manager. Modules
are constructed, initialized, executed and finalized in the linear order they are defined
in the configuration file. Thus the configuration file should follow the order of the real
process. For every non-special section in the main configuration file (see 5.2 for more
details) a corresponding library is searched which contains the module. A module has the
name libAllPixModuleModuleName reflecting the ModuleName of a defined module. The
module search order is as follows:

1. The modules already loaded before from an earlier section header

2. All directories in the global configuration parameter library_directories in the provided
order if this parameter exists

3. The internal RPATH of the executable, that should automatically point to the libraries
that are build and installed together with the executable.

4. The other standard locations to search for libraries depending on the operating system.
Details about the procedure Linux follows are found in [14].

If the module definition is successful it is checked if the module is an unique or a detector
module. The instantiation logic determines an unique name and priority, where a lower
number indicates a higher priority, for every instantiation. The name and priority for the
instantation are determined differently for the two types of modules:

• Unique: Combination of the name of the module and the input and output
parameter (both defaulting to an empty string). The priority is always zero.

• Detector: Combination of the name of the module, the input and output parameter
(both defaulting to an empty string) and the name of detector this module runs on.
If the name of the detector is specified directly by the name parameter the priority
is zero. If the detector is only matched by the type parameter the priority is one.
If the name and type are both not specified and the module is instantiated for all
detectors there priority is two.

33

The instantiation logic only allows a single instance for every unique name. If there are
multiple instantiations with the same unique name the instantiation with the highest
priority is kept (thus the one with the lowest number). Otherwise if there are multiple
instantiations with the same name and the same priority an exception is raised.

5.4. Geometry and Detectors

Simulations are frequently run on a set of different detectors (such as as a beam telescope
and a device under test). All these individual detectors together is what AllPix2 defines as
the geometry. Every detector has a set of properties attached to it:

• A unique name to refer to the detector in the configuration.

• The position in the world frame. This is the position of the geometric center of the
sensitive device (sensor) given in world coordinates as X, Y and Z (note that any
additional components like the chip or the PCB are ignored when determining the
geometric center).

• The orientation given as Euler angles using the extrinsic Z-X-Z convention relative
to the world frame (also known as the 1-3-1 or the "x-convention" and the most
widely used definition of Euler angles [15]).

• A type of a detector model. The model defines the geometry and parameters of
the detector. Multiple detectors can share the same model (and this is in fact very
common). Several ready-to-use models are shipped with the framework.

• An optional electric field in the sensitive device. An electric field can be added to a
detector by a special module as shown in Section 4.3.1.

The detector configuration is provided in the special detector configuration which is explained
in Section 4.1.2.

The detectors can be accessed by name through the GeometryManager. If the module is a
detector-specific module its related Detector can be accessed through the getDetector()
method (returns a null pointer for unique modules) as follows:

void run(unsigned int event_id) {
// Returns the linked detector
std::shared_ptr<Detector> detector = this->getDetector();

}

34

5.4.1. Coordinate systems

All detectors have a fixed position in the world frame which has an arbitrary origin. Every
detector also has a local coordinate system attached to it. The origin of this local coordinate
system does not necessarily correspond with the geometric center of the sensitive device,
which is the center of orientation of the detector in the global frame. The origin of the local
coordinate system is instead based on the pixel grid in the sensor. This allows for simpler
calculations that are also easier to read.

While the origin of the local coordinate system depends on the type of the model, there
are fixed rules for the orientation of the coordinate system. The positive z-axis should
point from the side of the sensor where collection takes place upwards (normal to the
collection plane) to the other side of the sensitive device. The x-axis should point in one
of the arbitrary two directions in the plane of the pixel grid. The y-axis should then be
normal to both the x and the z-axis in such a way that a right-handed coordinate system is
constructed. The 2D pixel grid is therefore in the XY-plane.

5.4.2. Detector models

Different types of detector models are already available and shipped with the framework.
Every models extends from the DetectorModel base class which defines the minimum
parameter of a detector model in the framework:

• The coordinate of the rotation center in the local frame. This is the location of the
local point which is defined as position in the global frame.

• The position of the bottom-left (minimum) of the sensor (thus the sensitive device)
in the local frame. This determines the excess of the sensor and the size of the guard
rings around the pixel grid.

• The total size of the sensor (thus the top-right corner offset from the bottom-left
minimum position).

• The number of pixels in the sensor. Every pixel is an independent block replicated
over the XY plane of the sensor. The number of pixel defaults to one if it is not
overridden, which means the default sensor has no replicated blocks.

• The size of an individual pixel. The multiplication of the pixel size and the number
of pixels should not exceed the sensor.

This standard detector model can be extended to provide a more detailed geometry as
required by certain modules. Currently the only included advanced detector model is the
PixelDetectorModel , which apart from the sensor also includes guards rings, bump bonds,
a readout ASIC chip, a PCB and a cover layer.

35

To fetch a detector model as PixelDetectorModel, the base class should be downcasted as
follows (the downcast return a null pointer if it is not a PixelDetectorModel).

// Detector is a pointer to a Detector object
std::shared_ptr<PixelDetectorModel> model =

std::dynamic_pointer_cast<PixelDetectorModel>(detector->getModel());↪→

if(model != nullptr) {
// The model of this Detector is a PixelDetectorModel

}

For more details about the different types of supported models and how to add your own
new model, Section 7.2 should be consulted.

Many detector models are shipped with the framework in the configuration format introduced
in Section 5.2.1. Other models can however be used in addition. To support different
detector models and configuration formats the framework supports different types of model
readers. These model readers search the directories in the following order:

1. If defined, the paths in the models_path parameter provided to the model reader
module (for example the DefaultModelReader) or the global models_path parameter
if no module-specific one is defined. Files are read and parsed directly. If the path is
a directory, all files in the directory are added (not recursing into subdirectories).

2. The location where the models are installed to (see the MODEL_DIRECTORY
variable in Section 3.4).

3. The standard data paths on the system as given by the environmental variable
$XDG_DATA_DIRS with the allpix-directory appended. The $XDG_DATA_DIRS
variable defaults to /usr/local/share/ (thus effectively /usr/local/share/allpix) fol-
lowed by /usr/share/ (effectively /usr/share/allpix).

The framework provides a DefaultModelReader module to read all the default models
in the framework. Every simulation should include this module at the beginning of the
configuration file, unless another detector model reader is used.

5.5. Passing Objects using Messages

Communication between modules happens through messages (only some internal information
is shared through external detector objects and the dependencies like Geant4). Messages
are templated instantiations of the Message class carrying a vector of objects. A typedef
is typically added by the object to provide an alternative name for the message directly
linking to the carried object. The message system has a dispatching part and a receiving
part.

36

The dispatching module can specify an optional name, but most modules should not specify
this directly. If the name is not directly given (or equal to -) the output parameter of
the module is used to determine the name of the message, defaulting to an empty string.
Dispatching the message to their receivers then goes by the following rules:

1. The receiving module the will only receive a message if it has the exact same type
as the message dispatched (thus carrying the exact same object). If the receiver is
however listening to the BaseMessage type it will receive all dispatched messages
instead.

2. The receiving module will only receive messages with the exact same name as it is
listening for. The module uses the input parameter to determine to which message
names the module should listen. If the input parameter is equal to * the module
should listen to all messages. Every module listens by default to messages with no
name specified (thus receiving the messages of default dispatching modules).

3. If the receiving module is a detector module it will only receive messages that are
bound to that specific detector or messages that are not bound to any detector.

An example how to dispatch, in the run() function of a module, a message containing an
array of Object types bound to a detector named dut is provided here:

void run(unsigned int event_id) {
std::vector<Object> data;
// .. fill the data vector with objects ...

// The message is dispatched only for ’dut’ detector
std::shared_ptr<Message<Object>> message =
std::make_shared<Message<Object>>(data, "dut");↪→

// Send the message using the Messenger object
messenger->dispatchMessage(message);

}

5.5.1. Methods to process messages

The message system has multiple methods to process received messages. The first two are
the most common methods and the third should only be used if necessary. The options
are:

1. Bind a single message to a variable. This should usually be the preferred method
as most modules only expect one message to arrive per event (as a module should
typically send only one message containing the list of all the objects it should send).

37

An example of how to bind a message containing an array of Object types in the
constructor of a detector TestModule would be:

TestModule(Configuration, Messenger* messenger,
std::shared_ptr<Detector>) {↪→

messenger->bindSingle(this,
/* Pointer to the message variable */
&TestModule::message,
/* No special messenger flags */
MsgFlags::NONE);

}
std::shared_ptr<Message<Object>> message;

2. Bind a set of messages to an vector variable. This method should be used it
the module can (and expects to) receive the same message multiple times (possibly
because it wants to receive the same type of message for all detectors). An example
to bind multiple messages containing an array of Object types in the constructor of
a detector TestModule would be:

TestModule(Configuration, Messenger* messenger,
std::shared_ptr<Detector>) {↪→

messenger->bindMulti(this,
/* Pointer to the message vector */
&TestModule::messages,
/* No special messenger flags */
MsgFlags::NONE);

}
std::vector<std::shared_ptr<Message<Object>>> messages;

3. Listen to a particular message type and execute a listening function as soon as an
object is received. Should be used for more advanced strategies for fetching messages.
The listening module should not do any heavy work in the listening function as this
is supposed to take place in the run() method instead. An example of using this to
listen to a message containing an array of Object types in a detector TestModule
would be:

TestModule(Configuration, Messenger* messenger,
std::shared_ptr<Detector>) {↪→

messenger->registerListener(this,
/* Pointer to the listener method */
&TestModule::listener,
/* No special message flags */
MsgFlags::NONE);

}

38

void listener(std::shared_ptr<Message<Object>> message) {
// Do something with received message ...

}

5.5.2. Message flags

Various flags can be added to the bind function and listening functions. The flags enable
a particular behaviour of the framework (if the particular type of method supports the
flag).

• REQUIRED: Specify that this message is required to be received. If the particular
type of message is not received before it is time to execute the run function, the run
is automatically skipped by the framework. This can be used to ignore modules that
cannot do any action without received messages, for example propagation without
any deposited charges.

• NO_RESET: Messages are by default automatically reset after the run() function
executes to prevent older messages from previous runs to appear again. This behaviour
can be disabled by setting this flag (this does not have any effect for listening functions).
Setting this flag for single bound messages (without ALLOW_OVERWRITE) would
cause an exception to be raised if the message is overwritten in a later event.

• ALLOW_OVERWRITE: By default an exception is automatically raised if a
single bound message is overwritten (thus setting it multiple times instead of once).
This flag prevents this behaviour. It is only used for variables to a single message.

• IGNORE_NAME: If this flag is specified, the name of the dispatched message is
not considered. Thus the input parameter is ignored and forced to the value *.

5.5.3. Object types

All supported objects that can be transferred between modules are shipped with the
framework in the Objects library. This list of objects currently consists of the following:

• DepositedCharge: Set of charges at a specific position in the sensor of a detector.
Deposited by an ionizing particle crossing the active material of the sensor.

• PropagatedCharge: Charge at a specific position after propagation.

• PixelCharge: Set of charges at a particular pixel in the pixel grid.

39

5.6. Logging and other Utilities

The AllPix2 framework provides a set of utilities that can be attributed to two types:

• Two utilities to improve the usability of the framework. One of these is a flexible
and easy-to-use logging system, introduced below in Section 5.6.1. The other is
an easy-to-use framework for units that supports converting arbitrary combinations
of units to an independent number which can be used transparently through the
framework. It will be discussed in more detail in Section 5.6.2.

• A few utilities to extend the functionality provided by the C++ Standard Template
Library (STL). These are provided either to simplify access to the STL (like the
random seed generator utility) or to provide functionality the C++14 standard lacks
(like filesystem support). The utilities are used internally in the framework and are
only shortly discussed here. The utilities falling in this category are the random seed
generator (see Section 5.6.3), the filesystem functions (see Section 5.6.3) and the
string utilies (see Section 5.6.3).

5.6.1. Logging system

The logging system is build to handle input/output in the same way as std::cin and
std::cout. This approach is both very flexible and easy to read. The system is globally
configured, thus there exists only one logger, and no special local versions. To send a
message to the logging system at a level of LEVEL, the following can be used:

1 LOG(LEVEL) << "this is an example message with an integer and a double "
<< 1 << 2.0;↪→

A newline is added at the end of every log message. Multi-line log messages can also be
used: the logging system will automatically align every new line under the previous message
and will leave the header space empty on the new lines.

The system also allows for producing a message which is updated on the same line for simple
progress bar like functionality. It is enabled using the LOG_PROCESS(LEVEL, IDENTIFIER)
macro (where the IDENTIFIER is a special string to determine if the output should be
written to the same line or not). If the output is a terminal screen the logging output will
be colored to make it prettier to read. This will be disabled automatically for all devices
that are not terminals.

More details about the various logging levels can be found in Section 4.4.

40

5.6.2. Unit system

Correctly handling units and conversions is of paramount importance. Having a separate
C++ type for all different kind of units would however be too cumbersome for a lot of
operations. Therefore the units are stored in standard C++ floating point types in a default
unit which all the code in the framework uses for calculations. In configuration files as well
as for logging it is however very useful to provide quantities in a different unit.

The unit system allows adding, retrieving, converting and displaying units. It is a global
system transparently used throughout the framework. Examples of using the unit system
are given below:

1 // Define the standard length unit and an auxiliary unit
2 Units::add("mm", 1);
3 Units::add("m", 1e3);
4 // Define the standard time unit
5 Units::add("ns", 1);
6 // Get the units given in m/ns in the defined framework unit mm/ns
7 Units::get(1, "m/ns");
8 // Get the framework unit of mm/ns in m/ns
9 Units::convert(1, "m/ns");

10 // Give the unit in the best type as string (lowest number higher than
one)↪→

11 // input is default unit 2000mm/ns and ’best’ output is 2m/ns (string)
12 Units::display(2e3, {"mm/ns", "m/ns"});

More details about how the unit system is used within AllPix can be found in Section
4.1.1.

5.6.3. Internal utilities

Filesystem Provides functions to convert relative to absolute canonical paths, to iterate
through all files in a directory and to create new directories. These functions should be
replaced by the C++17 filesystem API [16] as soon as the framework minimum standard is
updated to C++17.

String utilities The STL only provides string conversions for standard types using
std::stringstream and std::to_string. It does not allow to parse strings encapsulated
in pairs of " characters and neither does it allow to integrate different units. Furthermore it
does not provide wide flexibility to add custom conversions for other external types in either
way. The AllPix2 to_string and from_string do allow for these flexible conversions and
it it extensively used in the configuration system. Conversions of numeric types with a

41

unit attached are automatically resolved using the unit system discussed in Section 5.6.2.
The AllPix2 tools system contain extensions to allow automatic conversions for ROOT and
Geant4 types as explained in Section 9.1. The string utilities also include trim and split
strings functions as they are missing in the STL.

Random seed generator Generating random number with a high level of entropy is
very important for running Monte-Carlo processes in high-energy physics. Good random
generators are already included in both the standard library and various external libraries.
Seeding those random generators with enough entropy or seeding them with a predefined
seed instead (to allow for reproducing a certain simulation) should however be a framework
task to ensure that seeds are transferred in a well-defined way. This small utility library
provides the required method to provide a seed to all random generators. With the STL
random libraries it can be used as shown in the following example init() method:

1 void init() {
2 // Create a standard 64 bit Mersene Twister 19937 generator
3 std::mt19937_64 random_generator;
4

5 // Get a seed from the framework
6 uint64_t seed = get_random_seed();
7

8 // Seed the generator with the random seed provided by the framework
9 random_generator.seed(seed);

10

11 // Use the random generator to produce a gaussian distribution
12 std::normal_distribution<double> gauss_distribution(0, 1);
13 double gauss_number = gauss_distribution(random_generator);
14 }

5.7. Error Reporting and Exceptions

AllPix2 generally follows the principle to throw exceptions in all cases where something
is definitely wrong, it should never try to circumvent problems. Also error codes are not
supposed to be returned, only exceptions should be used to report fatal errors. Exceptions
are also thrown to signal for errors in the user configuration. The asset of this method is
that configuration and code is more likely to do what they are supposed to do.

For warnings and informational messages the logging should be used extensively. This helps
in both following the progress of the simulation as well as for debugging problems. Care
should however be taken to limit the amount of messages outside of the DEBUG and TRACE
levels. More details about the log levels and their usage is given in Section 4.4.

42

The base exceptions in AllPix are available in the utilities. The most important exception
base classes are the following:

• ConfigurationError: All errors related to incorrect user configuration. Could be a
non-existing configuration file, a missing key or an invalid parameter value.

• RuntimeError: All other errors arising at run-time. Could be related to incorrect
configuration if messages are not correctly passed or non-existing detectors are specified.
Could also be raised if errors arise while loading a library or running a module.

• LogicError: Problems related to modules that do not properly follow the specifica-
tions, for example if a detector module fails to pass the detector to the constructor.
These methods should never be raised for a well-behaving module and should therefore
not be triggerable by users. Reporting these type of errors can help developers during
their development of new modules.

Outside of the core framework, exceptions can also be used directly by the modules. There
are only two exceptions which should be used by typical modules to indicate errors:

• InvalidValueError: Available under the subset of configuration exceptions. Signals
any problem with the value of a configuration parameter that is not related to either
the parsing or the conversion to the required type. Can for example be used for
parameters where the possible valid values are limited, like the set of logging levels,
or for paths that do not exist. An example is shown below:

1 void run(unsigned int event_id) {
2 // Fetch a key from the configuration
3 std::string value = config.get("key");
4

5 // Check if it is a ’valid’ value
6 if(value != ’A’ && value != "B") {
7 // Raise an error if it the value is not valid
8 // provide configuration object, key and an explanation
9 throw InvalidValueError(config, "key", "A and B are the only

allowed values");↪→

10 }
11 }

• ModuleError: Available under the subset of module exceptions. Should be used
to indicate any runtime error in a module that is not directly caused by an invalid
configuration value. For example if it is not possible to write an output. A reason
should be given to indicate what the problem is.

43

6. Modules

This section is not written yet.

44

7. Module & Detector Development

7.1. Implementing a New Module

Before creating a module it is essential to read through the framework module manager
documentation in Section 5.3, the information about the directory structure in Section 5.3.1
and the details of the module structure in Section 5.3.2. Thereafter the steps below should
provide enough details for starting with a new module ModuleName (constantly replacing
ModuleName with the real name of the new module):

1. The whole directory contents of src/modules/DummyModule/ should copied to src/-
modules/ModuleName/.

2. The DummyModule.hpp should be renamed to ModuleNameModule.hpp and the
DummyModule.cpp to ModuleNameModule.cpp.

3. The CMakeLists.txt has to be modified depending on the module type. Depending on
the type of the module the first line is different. If the new module is a unique module
it should be ALLPIX_UNIQUE_MODULE(MODULE_NAME), if it is a detector-
specific module it should be ALLPIX_DETECTOR_MODULE(MODULE_NAME).
Next, the source file created in the previous step has to replace the original dummy
source file.

4. The header and source files have to be implemented following the constructor conven-
tions for the specific type of module.

5. The initial documentation in the README.md and the LATEX-file ModuleName.tex
can already be started with before the module is implemented.

6. Now the the initial parts of the constructor, and possible the init, run and/or
finalize methods can be written, depending on what the new module is supposed
to do.

After this, it is up to the developer to implement all the required functionality in the module.
Keep considering however that at some point it may be beneficial to split up modules to
support the modular design of AllPix2. Various sources which may be primarily useful
during the development of the module include:

• The framework documentation in Section 5 for an introduction to the different parts
of the framework.

• The module documentation in Section 6 for a description of functionality other
modules already provide and to look for similar modules which can help during
development.

• The Doxygen (core) reference documentation included in the framework .

45

• The latest version of the source code of all the modules (and the core itself). Freely
available to copy and modify under the MIT license at https://gitlab.cern.ch/
simonspa/allpix-squared/tree/master.

Any module that may be useful for other people can be contributed back to the main
reposity. It is very much encouraged to send a merge-request at https://gitlab.cern.
ch/simonspa/allpix-squared/merge_requests.

7.2. Adding a New Detector Model

This section is not written yet.

46

https://gitlab.cern.ch/simonspa/allpix-squared/tree/master
https://gitlab.cern.ch/simonspa/allpix-squared/tree/master
https://gitlab.cern.ch/simonspa/allpix-squared/merge_requests
https://gitlab.cern.ch/simonspa/allpix-squared/merge_requests

8. Frequently Asked Questions

How do I run a module only for one detector?
This is only possible for detector modules (which are constructed to work on individual
detectors). To run it on a single detector one should add a parameter name specifying
the name of the detector (as given in the detector configuration file).

How do I run a module only for a specific detector type?
This is only possible for detector modules (which are constructed to work on individual
detectors). To run it for a specific type of detectors one should add a parameter type
with the type of the detector model (as given in the detector configuration file by the
model parameter).

How can I run the exact same type of module with different settings?
This is possible by using the input and output parameters of a module that specialize
the location where the messages from the modules are send to and received from. By
default both the input and the output of module defaults to the message without a
name.

How can I temporarily ignore a module during development?
The section header of a particular module in the configuration file can be replaced by
the string Ignore. The section and all of its key/value pairs are then ignored.

Can I get a high verbosity level only for a specific module?
Yes, it is possible to specify verbosity levels and log formats per module. This can be
done by adding a log_level and/or log_format key to a specific module to replace
the parameter in the global configuration sections.

47

9. Additional Tools & Resources

9.1. ROOT and Geant4 utilities

This section is not written yet.

9.2. Runge-Kutta solver

This section is not written yet.

9.3. TCAD Electric Field Converter

This section is not written yet.

9.4. Simple Usage Examples

This section is not written yet.

48

10. Acknowledgments

• Mathieu Benoit, John Idarraga, Samir Arfaoui and all other contributors to
the first version of AllPix, for their earlier work that inspired AllPix2.

• Neal Gauvin for interesting discussion, his experiments with TGeo and his help
implementing a visualization module.

• Paul Schütze for contributing his earlier work on simulating charge propagation
and providing help on simulations with electric fields.

• Marko Petric for his help setting up several software tools like continous integration
and automatic static-code analysis.

We would also like to thank all others not listed here, that have contributed to the source
code, provided input or suggested improvements.

49

A. Output of Example Simulation

Possible output for the example simulation in Section 4.3 is given below:

(S) Welcome to Al lPix v0 . 2 beta1+5^gf61a69d
(S) I n i t i a l i z e d PRNG with seed 7964691284681267564
(S) Loaded 8 modules
(S) I n i t i a l i z i n g 14 module i n s t a n t i a t i o n s
(I) [I : Deposit ionGeant4] Not depo s i t i ng charges in t e l e s c op e2

because the re i s no l i s t e n e r f o r i t s output
(I) [I : Deposit ionGeant4] Not depo s i t i ng charges in dut because

the re i s no l i s t e n e r f o r i t s output
(S) I n i t i a l i z e d 14 module i n s t a n t i a t i o n s
(S) Running event 1 o f 10
(I) [R: Deposit ionGeant4] Deposited 29995 charges in s enso r o f

d e t e c t o r t e l e s c op e1
(I) [R: SimplePropagation : t e l e s c op e1] Propagated 29995 charges in

600 s t ep s in average time o f 11 .3608 ns
(I) [R: S impleTrans fer : t e l e s c op e1] Trans f e r red 29995 charges to 1

p i x e l s
(I) [R: De f a u l tD i g i t i z e r : t e l e s c op e1] D i g i t i z e d 1 p i x e l h i t s
(W) [R: De f a u l tD i g i t i z e r : t e l e s c op e1] Dispatched message Message<

a l l p i x : : P ixe lHit> from De f au l tD i g i t i z e r : t e l e s c op e1 has no
r e c e i v e r s !

(S) Running event 2 o f 10
(I) [R: Deposit ionGeant4] Deposited 84794 charges in s enso r o f

d e t e c t o r t e l e s c op e1
(I) [R: SimplePropagation : t e l e s c op e1] Propagated 84794 charges in

1696 s t ep s in average time o f 11 .3571 ns
(I) [R: S impleTrans fer : t e l e s c op e1] Trans f e r red 84794 charges to 1

p i x e l s
(I) [R: De f a u l tD i g i t i z e r : t e l e s c op e1] D i g i t i z e d 1 p i x e l h i t s
(W) [R: De f a u l tD i g i t i z e r : t e l e s c op e1] Dispatched message Message<

a l l p i x : : P ixe lHit> from De f au l tD i g i t i z e r : t e l e s c op e1 has no
r e c e i v e r s !

(S) Running event 3 o f 10
(I) [R: Deposit ionGeant4] Deposited 27363 charges in s enso r o f

d e t e c t o r t e l e s c op e1
(I) [R: SimplePropagation : t e l e s c op e1] Propagated 27363 charges in

548 s t ep s in average time o f 11 .387 ns
(I) [R: S impleTrans fer : t e l e s c op e1] Trans f e r red 27363 charges to 1

p i x e l s
(I) [R: De f a u l tD i g i t i z e r : t e l e s c op e1] D i g i t i z e d 1 p i x e l h i t s

50

(W) [R: De f a u l tD i g i t i z e r : t e l e s c op e1] Dispatched message Message<
a l l p i x : : P ixe lHit> from De f au l tD i g i t i z e r : t e l e s c op e1 has no
r e c e i v e r s !

(S) Running event 4 o f 10
(I) [R: Deposit ionGeant4] Deposited 32071 charges in s enso r o f

d e t e c t o r t e l e s c op e1
(I) [R: SimplePropagation : t e l e s c op e1] Propagated 32071 charges in

642 s t ep s in average time o f 11 .3811 ns
(I) [R: S impleTrans fer : t e l e s c op e1] Trans f e r red 32071 charges to 1

p i x e l s
(I) [R: De f a u l tD i g i t i z e r : t e l e s c op e1] D i g i t i z e d 1 p i x e l h i t s
(W) [R: De f a u l tD i g i t i z e r : t e l e s c op e1] Dispatched message Message<

a l l p i x : : P ixe lHit> from De f au l tD i g i t i z e r : t e l e s c op e1 has no
r e c e i v e r s !

(S) Running event 5 o f 10
(I) [R: Deposit ionGeant4] Deposited 45021 charges in s enso r o f

d e t e c t o r t e l e s c op e1
(I) [R: SimplePropagation : t e l e s c op e1] Propagated 45021 charges in

901 s t ep s in average time o f 11 .3894 ns
(I) [R: S impleTrans fer : t e l e s c op e1] Trans f e r red 45021 charges to 1

p i x e l s
(I) [R: De f a u l tD i g i t i z e r : t e l e s c op e1] D i g i t i z e d 1 p i x e l h i t s
(W) [R: De f a u l tD i g i t i z e r : t e l e s c op e1] Dispatched message Message<

a l l p i x : : P ixe lHit> from De f au l tD i g i t i z e r : t e l e s c op e1 has no
r e c e i v e r s !

(S) Running event 6 o f 10
(I) [R: Deposit ionGeant4] Deposited 33678 charges in s enso r o f

d e t e c t o r t e l e s c op e1
(I) [R: SimplePropagation : t e l e s c op e1] Propagated 33678 charges in

674 s t ep s in average time o f 11 .3607 ns
(I) [R: S impleTrans fer : t e l e s c op e1] Trans f e r red 33678 charges to 1

p i x e l s
(I) [R: De f a u l tD i g i t i z e r : t e l e s c op e1] D i g i t i z e d 1 p i x e l h i t s
(W) [R: De f a u l tD i g i t i z e r : t e l e s c op e1] Dispatched message Message<

a l l p i x : : P ixe lHit> from De f au l tD i g i t i z e r : t e l e s c op e1 has no
r e c e i v e r s !

(S) Running event 7 o f 10
(I) [R: Deposit ionGeant4] Deposited 40388 charges in s enso r o f

d e t e c t o r t e l e s c op e1
(I) [R: SimplePropagation : t e l e s c op e1] Propagated 40388 charges in

808 s t ep s in average time o f 11 .3542 ns
(I) [R: S impleTrans fer : t e l e s c op e1] Trans f e r red 40388 charges to 1

p i x e l s

51

(I) [R: De f a u l tD i g i t i z e r : t e l e s c op e1] D i g i t i z e d 1 p i x e l h i t s
(W) [R: De f a u l tD i g i t i z e r : t e l e s c op e1] Dispatched message Message<

a l l p i x : : P ixe lHit> from De f au l tD i g i t i z e r : t e l e s c op e1 has no
r e c e i v e r s !

(S) Running event 8 o f 10
(I) [R: Deposit ionGeant4] Deposited 26686 charges in s enso r o f

d e t e c t o r t e l e s c op e1
(I) [R: SimplePropagation : t e l e s c op e1] Propagated 26686 charges in

534 s t ep s in average time o f 11 .3863 ns
(I) [R: S impleTrans fer : t e l e s c op e1] Trans f e r red 26686 charges to 1

p i x e l s
(I) [R: De f a u l tD i g i t i z e r : t e l e s c op e1] D i g i t i z e d 1 p i x e l h i t s
(W) [R: De f a u l tD i g i t i z e r : t e l e s c op e1] Dispatched message Message<

a l l p i x : : P ixe lHit> from De f au l tD i g i t i z e r : t e l e s c op e1 has no
r e c e i v e r s !

(S) Running event 9 o f 10
(I) [R: Deposit ionGeant4] Deposited 32342 charges in s enso r o f

d e t e c t o r t e l e s c op e1
(I) [R: SimplePropagation : t e l e s c op e1] Propagated 32342 charges in

647 s t ep s in average time o f 11 .3717 ns
(I) [R: S impleTrans fer : t e l e s c op e1] Trans f e r red 32342 charges to 1

p i x e l s
(I) [R: De f a u l tD i g i t i z e r : t e l e s c op e1] D i g i t i z e d 1 p i x e l h i t s
(W) [R: De f a u l tD i g i t i z e r : t e l e s c op e1] Dispatched message Message<

a l l p i x : : P ixe lHit> from De f au l tD i g i t i z e r : t e l e s c op e1 has no
r e c e i v e r s !

(S) Running event 10 o f 10
(I) [R: Deposit ionGeant4] Deposited 34287 charges in s enso r o f

d e t e c t o r t e l e s c op e1
(I) [R: SimplePropagation : t e l e s c op e1] Propagated 34287 charges in

686 s t ep s in average time o f 11 .376 ns
(I) [R: S impleTrans fer : t e l e s c op e1] Trans f e r red 34287 charges to 1

p i x e l s
(I) [R: De f a u l tD i g i t i z e r : t e l e s c op e1] D i g i t i z e d 1 p i x e l h i t s
(W) [R: De f a u l tD i g i t i z e r : t e l e s c op e1] Dispatched message Message<

a l l p i x : : P ixe lHit> from De f au l tD i g i t i z e r : t e l e s c op e1 has no
r e c e i v e r s !

(S) Fin i shed run o f 10 events
(I) [F : Deposit ionGeant4] Deposited t o t a l o f 386625 charges in 1

senso r (s) (average o f 38662 per s enso r f o r every event)
(I) [F : SimplePropagation : t e l e s c op e1] Propagated t o t a l o f 386625

charges in 7736 s t ep s in average time o f 11 .3702 ns

52

(I) [F : S impleTrans fer : t e l e s c op e1] Trans f e r r ed t o t a l o f 386625
charges to 1 d i f f e r e n t p i x e l s

(I) [F : S impleTrans fer : t e l e s c op e2] Trans f e r r ed t o t a l o f 0 charges
to 0 d i f f e r e n t p i x e l s

(I) [F : S impleTrans fer : dut] Trans f e r r ed t o t a l o f 0 charges to 0
d i f f e r e n t p i x e l s

(I) [F : D e f a u l tD i g i t i z e r : t e l e s c op e1] D i g i t i z e d 10 p i x e l h i t s in
t o t a l

(I) [F : D e f a u l tD i g i t i z e r : t e l e s c op e2] D i g i t i z e d 0 p i x e l h i t s in
t o t a l

(I) [F : D e f a u l tD i g i t i z e r : dut] D i g i t i z e d 0 p i x e l h i t s in t o t a l
(S) F i n a l i z a t i o n completed
(S) Executed 14 i n s t a n t i a t i o n s in 11 seconds , spending 92% of

time in s l owes t i n s t a n t i a t i o n SimplePropagation : t e l e s c op e1

53

References

[1] S. Agostinelli et al. “Geant4 - a simulation toolkit”. In: Nuclear Instruments and
Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment 506.3 (2003), pp. 250–303. issn: 0168-9002. doi: https://doi.
org/10.1016/S0168-9002(03)01368-8.

[2] ROOT - An Object Oriented Data Analysis Framework. Vol. 389. Sept. 1996, pp. 81–
86.

[3] Gaël Guennebaud, Benoît Jacob, et al. Eigen v3. 2010. url: http : / / eigen .
tuxfamily.org.

[4] Mathieu Benoit et al. The AllPix Simulation Framework. Mar. 21, 2017. url: https:
//twiki.cern.ch/twiki/bin/view/Main/AllPix.

[5] Mathieu Benoit, John Idarraga, and Samir Arfaoui. AllPix. Generic simulation for
pixel detectors. url: https://github.com/ALLPix/allpix.

[6] Rene Brun and Fons Rademakers. Building ROOT. url: https://root.cern.ch/
building-root.

[7] Geant4 Collaboration. Geant4 Installation Guide. Building and Installing Geant4
for Users and Developers. 2016. url: http://geant4.web.cern.ch/geant4/
UserDocumentation/UsersGuides/InstallationGuide/html/.

[8] X. Llopart et al. “Timepix, a 65k programmable pixel readout chip for arrival time,
energy and/or photon counting measurements”. In: Nuclear Instruments and Methods
in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment 581.1 (2007). VCI 2007, pp. 485–494. issn: 0168-9002. doi: http://dx.
doi.org/10.1016/j.nima.2007.08.079.

[9] Geant4 Collaboration. Geant4 User’s Guide for Application Developers. Visualiza-
tion. 2016. url: https://geant4.web.cern.ch/geant4/UserDocumentation/
UsersGuides/ForApplicationDeveloper/html/ch08.html.

[10] Morris Swartz. A detailed simulation of the CMS pixel sensor. Tech. rep. 2002.

[11] Morris Swartz. “CMS pixel simulations”. In: Nuclear Instruments and Methods in
Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment 511.1 (2003), pp. 88–91.

[12] Rene Brun and Fons Rademakers. ROOT User’s Guide. Trees. url: https://root.
cern.ch/root/htmldoc/guides/users-guide/Trees.html.

[13] Tom Preston-Werner. TOML. Tom’s Obvious, Minimal Language. url: https://
github.com/toml-lang/toml.

[14] Michael Kerrisk. Linux Programmer’s Manual. ld.so, ld-linux.so - dynamic link-
er/loader. url: http://man7.org/linux/man-pages/man8/ld.so.8.html.

54

http://dx.doi.org/https://doi.org/10.1016/S0168-9002(03)01368-8
http://dx.doi.org/https://doi.org/10.1016/S0168-9002(03)01368-8
http://eigen.tuxfamily.org
http://eigen.tuxfamily.org
https://twiki.cern.ch/twiki/bin/view/Main/AllPix
https://twiki.cern.ch/twiki/bin/view/Main/AllPix
https://github.com/ALLPix/allpix
https://root.cern.ch/building-root
https://root.cern.ch/building-root
http://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/InstallationGuide/html/
http://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/InstallationGuide/html/
http://dx.doi.org/http://dx.doi.org/10.1016/j.nima.2007.08.079
http://dx.doi.org/http://dx.doi.org/10.1016/j.nima.2007.08.079
https://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/ForApplicationDeveloper/html/ch08.html
https://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/ForApplicationDeveloper/html/ch08.html
https://root.cern.ch/root/htmldoc/guides/users-guide/Trees.html
https://root.cern.ch/root/htmldoc/guides/users-guide/Trees.html
https://github.com/toml-lang/toml
https://github.com/toml-lang/toml
http://man7.org/linux/man-pages/man8/ld.so.8.html

[15] Eric W. Weisstein. Euler Angles. From MathWorld – A Wolfram Web Resource. url:
http://mathworld.wolfram.com/EulerAngles.html.

[16] Beman Dawes. Adopt the File System TS for C++17. Feb. 2016. url: http://www.
open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0218r0.html.

55

http://mathworld.wolfram.com/EulerAngles.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0218r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0218r0.html

	Quick Start
	Introduction
	History
	Scope of this manual
	Support and reporting issues

	Installation
	Prerequisites
	Downloading the source code
	Initializing the dependencies
	Configuration via CMake
	Compilation and installation

	Getting Started
	Configuration Files
	Supported types and units
	Detector configuration
	Main configuration

	Framework parameters
	Setting up the Simulation Chain
	Adding new modules
	Advanced configuration

	Logging and Verbosity Levels
	Storing Output Data

	The AllPix^2 Framework
	Architecture of the Core
	Configuration and Parameters
	File format
	Accessing parameters

	Modules and the Module Manager
	Files of a Module
	Module structure
	Module instantiation

	Geometry and Detectors
	Coordinate systems
	Detector models

	Passing Objects using Messages
	Methods to process messages
	Message flags
	Object types

	Logging and other Utilities
	Logging system
	Unit system
	Internal utilities

	Error Reporting and Exceptions

	Modules
	Module & Detector Development
	Implementing a New Module
	Adding a New Detector Model

	Frequently Asked Questions
	Additional Tools & Resources
	ROOT and Geant4 utilities
	Runge-Kutta solver
	TCAD Electric Field Converter
	Simple Usage Examples

	Acknowledgments
	Output of Example Simulation
	References

