
Allpix2 User Manual
Koen Wolters (koen.wolters@cern.ch)

Simon Spannagel (simon.spannagel@cern.ch)

July 6, 2022

Version v0.3

1

mailto:koen.wolters@cern.ch
mailto:simon.spannagel@cern.ch

Contents

1. Quick Start 5

2. Introduction 6
2.1. Historical Summary . 7
2.2. Scope of this Manual . 7
2.3. Support and Reporting Issues . 8
2.4. Contributing Code . 8

3. Installation 9
3.1. Supported Operating Systems . 9
3.2. Prerequisites . 9
3.3. Downloading the source code . 10
3.4. Initializing the dependencies . 10
3.5. Configuration via CMake . 11
3.6. Compilation and installation . 12
3.7. Testing . 12

4. Getting Started 13
4.1. Configuration Files . 13

4.1.1. Parsing types and units . 13
4.1.2. Main configuration . 16
4.1.3. Detector configuration . 17

4.2. Framework parameters . 19
4.3. Setting up the Simulation Chain . 20
4.4. Adding More Modules . 23
4.5. Redirect Module Inputs and Outputs . 25
4.6. Logging and Verbosity Levels . 26
4.7. Storing Output Data . 28

5. The Allpix2 Framework 30
5.1. Architecture of the Core . 31
5.2. Configuration and Parameters . 31

5.2.1. File format . 32
5.2.2. Accessing parameters . 33

5.3. Modules and the Module Manager . 34
5.3.1. Files of a Module . 34
5.3.2. Module structure . 37
5.3.3. Module instantiation . 38

5.4. Geometry and Detectors . 39
5.4.1. Changing and accessing the geometry 39
5.4.2. Coordinate systems . 40

2

5.4.3. Detector models . 40
5.5. Passing Objects using Messages . 44

5.5.1. Methods to process messages . 45
5.5.2. Message flags . 47

5.6. Logging and other Utilities . 47
5.6.1. Logging system . 48
5.6.2. Unit system . 48
5.6.3. Internal utilities . 49

5.7. Error Reporting and Exceptions . 49

6. Objects 52

7. Modules 54
7.1. DefaultDigitizer . 54
7.2. DepositionGeant4 . 55
7.3. DetectorHistogrammer . 56
7.4. ElectricFieldReader . 57
7.5. GenericPropagation . 58
7.6. GeometryBuilderGeant4 . 61
7.7. GeometryBuilderTGeo . 62
7.8. LCIOWriter . 63
7.9. RCEWriter . 63
7.10. ROOTObjectReader . 64
7.11. ROOTObjectWriter . 65
7.12. SimpleTransfer . 66
7.13. VisualizationGeant4 . 66

8. Module & Detector Development 69
8.1. Implementing a New Module . 69
8.2. Adding a New Detector Model . 70

9. Frequently Asked Questions 71

10.Additional Tools & Resources 73
10.1. Framework Tools . 73

10.1.1. ROOT and Geant4 utilities . 73
10.1.2. Runge-Kutta integrator . 73

10.2. TCAD DF-ISE mesh converter . 73
10.3. ROOT Analysis Macros . 75

10.3.1. Remake project . 75

11.Acknowledgments 76

A. Output of Example Simulation 77

3

References 81

4

1. Quick Start

This chapter serves as a swift introduction to Allpix2 for users who prefer to start quickly
and learn the details while simulating. The typical user should skip the next paragraphs
and continue reading Section 2 instead.

Allpix2 is a generic simulation framework for pixel detectors. It provides a modular, flexible
and user-friendly structure for the simulation of independent detectors in the geometry.
The framework currently relies on the Geant4 [1], ROOT [2] and Eigen3 [3] libraries which
need to be installed and loaded before using Allpix2.

The minimal, default installation can be installed by executing the commands below. More
detailed installation instructions can be found in Section 3.

$ git clone https://gitlab.cern.ch/simonspa/allpix-squared
$ cd allpix-squared
$ mkdir build && cd build/
$ cmake ..
$ make install
$ cd ..

The binary can then be executed with the provided example configuration file as follows:

$ bin/allpix -c etc/example.conf

Hereafter, the example configuration can be copied and adjusted to the needs of the user.
This example contains a simple setup of two test detectors. It simulates the whole process,
starting from the passage of the beam, the deposition of charges in the detectors, the
particle propagation and the conversion of the collected charges to digitized pixel hits. All
generated data is finally stored on disk on ROOT TTrees for later analysis.

After this quick start it is very much recommended to proceed to the other sections of
this user manual. For quickly resolving common issues, the Frequently Asked Questions in
Section 9 may be particularly useful.

5

2. Introduction

Allpix2 is a generic simulation framework for silicon tracker and vertex detectors written in
modern C++. It is the successor of a previously developed simulation framework called
AllPix [4, 5]. The goal of the Allpix2 framework is to provide and easy-to-use package
for simulating the performance of Silicon detectors, starting with the passage of ionizing
radiation through the sensor and finishing with the the digitization of hits in the readout
chip.

The framework builds upon other packages to perform tasks in the simulation chain, most
notably Geant4 [1] for the deposition of charge carriers in the sensor and ROOT [2] for
producing histograms and storing the produced data. The core of the framework focuses
on the simulation of charge transport in semiconductor detectors and the digitization to
hits in the frontend electronics. The framework does not perform a reconstruction of the
particle tracks.

Allpix2 is designed as a modular framework, allowing for an easy extension to more complex
and specialized detector simulations. The modular setup also allows to separate the core
of the framework from the implementation of the algorithms in the modules, leading to a
framework which is both easier to understand and to maintain. Besides modularity, the
Allpix2 framework was designed with the following main design goals in mind (listed from
most to least important):

1. Reflects the physics

• A run consists of several sequential events. A single event here refers to an
independent passage of one or multiple particles through the setup

• Detectors are treated as separate objects for particles to pass through

• All relevant information must be contained at the very end of processing every
single event (sequential events)

2. Ease of use (user-friendly)

• Simple, intuitive configuration and execution ("does what you expect")

• Clear and extensive logging and error reporting capabilities

• Implementing a new module should be feasible without knowing all details of
the framework

3. Flexibility

• Event loop runs sequence of modules, allowing for both simple and complex user
configurations

• Possibility to run multiple different modules on different detectors

6

• Limit flexibility for the sake of simplicity and ease of use

2.1. Historical Summary

Development of AllPix (the original version) started around 2012 as a generic simulation
framework for pixel detectors. It has been succesfully used for simulating a variety of
different detector setups through the years. Originally written as a Geant4 user application,
the framework has grown ‘organically‘ as new features continued to be added. Around 2016,
discussions between collaborators started, favoring a rewrite of the software from scratch.
The envisaged improvements included better modularity, more extensive configuration
options and an easier geometry setup.

Early development of Allpix2 started in end of 2016, but most of the initial rework in
modern C++ has been carried out in the framework of a technical student project between
January and July 2017. The core of the framework, its utilities and functions as well as
an intial set of simulation modules have been implemented and are available in the first
published release.

2.2. Scope of this Manual

This document is meant to be the primary User’s Guide for Allpix2. It contains both
an extensive description of the user inteface and configuration possiblities and a detailed
indtroduction to the code base for potential developers. This manual is designed to:

• Guide all new users through the installation

• Introduce new users to the toolkit for the purpose of running their own simulations

• Explain the structure of the core framework and the components it provides to the
simulation modules

• Provide detailed information about all modules and how to use and configure them

• Describe the required steps for adding new detector models and implementing new
simulation modules

Within the scope of this document, only an overview of the framework can be provided
and more detailed information on the code itself can be found in the Doxygen reference
manual [doxygen] available online. No programming experience is required from novice
users, but knowledge of (modern) C++ will be useful in the later chapters and might
contribute to the overall understanding of the mechanisms.

7

2.3. Support and Reporting Issues

As for most of the software used within the high-energy particle physics community, no
professional support for this software can be offered. The authors are, however, happy to
receive feedback on potential improvements or problem arising. Reports on issues, questions
concerning the software as well as the documentation and suggestions for improvements are
very much appreciated. These should preferably be brought up on the issues tracker of the
project which can be found in the repository [6].

2.4. Contributing Code

Allpix2 is a community project that lives from active participation in the development and
code contributions from users. We encourage users to discuss their needs either via the issue
tracker of the repository [6] or the developer’s mailing list to receive ideas and guidance
on how to implement a specific feature. Getting in touch with other developers early in
the development cycle prevents from spending time on features which already exist or are
currently developed by someone else.

The repository contains a few tools to facilitate contributions.

8

3. Installation

This section aims at providing details and instructions on how to build and install Allpix2.
An overview of possible build configurations is given. After installing and loading the
required dependencies, there are various options to customize the installation of Allpix2.
This chapter contains details on the standard installation process and information about
custom build configurations.

3.1. Supported Operating Systems

Allpix2 is designed to run without issues on either a recent Linux distribution or Mac OSX.
The continuous integration of the project ensures correct building and functioning of the
software framework on CentOS 7 (with GCC and LLVM), SLC6 (with GCC and LLVM)
and Mac OS Sierra (OS X 10.12, with AppleClang). Microsoft Windows is not supported.

3.2. Prerequisites

If the framework is to be compiled and executed on CERN’s LXPLUS service, all build
dependencies can be loaded automatically from the CVMFS file system as described in
Section 3.4.

The core framework is compiled separately from the individual modules and Allpix2 has
therefore only one required dependency: ROOT 6 (versions below 6 are not supported!) [2].
Otherwise all required dependencies need to be installed before building Allpix2. Please
refer to [7] for instructions on how to install ROOT. ROOT has several components of
which the GenVector package is required to run Allpix2. This package is included in the
default build.

For some modules, additional dependencies are necessary. For details about the depen-
dencies and their installation visit the module documentation in Section 7. The following
dependencies are needed to compile the standard installation:

• Geant4 [1]: Simulates the particle beam, depositing charges in the detectors with the
help of the constructed geometry. See the instructions in [8] for details on how to
install the software. All Geant4 data sets are required to run the modules successfully.
It is recommended to enable the Geant4 Qt extensions to allow visualization of the
detector setup and the simulated particle tracks. A useful set of CMake flags to build
a functional Geant4 package would be:

-DGEANT4_INSTALL_DATA=ON
-DGEANT4_BUILD_MULTITHREADED=ON
-DGEANT4_USE_GDML=ON

9

-DGEANT4_USE_QT=ON
-DGEANT4_USE_XM=ON
-DGEANT4_USE_OPENGL_X11=ON
-DGEANT4_USE_SYSTEM_CLHEP=OFF

• Eigen3 [3]: Vector package to do Runge-Kutta integration in the generic charge
propagation module. Eigen is available in almost all Linux distributions through the
package manager. Otherwise it can be easily installed since it is a header-only library.

Extra flags needs to be set for building an Allpix2 installation without these dependencies.
Details about these configuration options are given in Section 3.5.

3.3. Downloading the source code

The latest version of Allpix2 can be downloaded from the CERN Gitlab repository [9]. For
production environments it is recommended to only download and use tagged software
versions since the versions available from the git branches are considered development
versions and might exhibit unexpected behavior.

However, for developers it is recommended to always use the latest available version from
the git master branch. The software repository can be cloned as follows:

$ git clone https://gitlab.cern.ch/simonspa/allpix-squared
$ cd allpix-squared

3.4. Initializing the dependencies

Before continuing with the build, the necessary setup scripts for ROOT and Geant4 (unless
a build without Geant4 modules is attempted) should be executed. In a Bash terminal
on a private Linux machine this means executing the following two commands from their
respective installation directories (replacing <root_install_dir> with the local ROOT
installation directory and likewise for Geant):

$ source <root_install_dir>/bin/thisroot.sh
$ source <geant4_install_dir>/bin/geant4.sh

On the CERN LXPLUS service, a standard initialization script is available to load all
dependencies from the CVMFS infrastructure. This script should be run as follows (from
the main repository directory):

$ source etc/scripts/setup_lxplus.sh

10

3.5. Configuration via CMake

Allpix2 uses the CMake build system to configure, build and install the core framework
as well as its modules. An out-of-source build is recommended: this means CMake should
not be directly executed in the source folder. Instead a build folder should be created,
from which CMake should be run. For a standard build without any flags this implies
executing:

$ mkdir build
$ cd build
$ cmake ..

CMake can be run with several extra arguments to change the type of installation. These
options can be set with -Doption (see the end of this section for an example). Currently
the following options are supported:

• CMAKE_INSTALL_PREFIX: The directory to use as a prefix for installing the
binaries, libraries and data. Defaults to the source directory (where the folders bin/
and lib/ are added).

• CMAKE_BUILD_TYPE: Type of build to install, defaults to RelWithDebInfo
(compiles with optimizations and debug symbols). Other possible options are Debug
(for compiling with no optimizations, but with debug symbols and extended tracing
using the Clang Address Sanitizer library) and Release (for compiling with full
optimizations and no debug symbols).

• MODEL_DIRECTORY: Directory to install the internal models to. Defaults
to not installing if the CMAKE_INSTALL_PREFIX is set to the directory
containing the sources (the default). Otherwise the default value is equal to the
directory <CMAKE_INSTALL_PREFIX>/share/allpix/. The install directory is
automatically added to the model search path used by the geometry model parsers to
find all the detector models.

• BUILD_ModuleName: If the specific module ModuleName should be installed or
not. Defaults to ON for most modules, however some modules with large additional
dependencies such as LCIO [10] are disabled by default. This set of parameters allows
to configure the build for minimal requirements as detailed in Section 3.2.

• BUILD_ALL_MODULES: Build all included modules, defaulting to OFF. This
overwrites any selection using the parameters described above.

An example of a custom debug build, without the GeometryBuilderGeant4 module and
with installation to a custom directory is shown below:

11

$ mkdir build
$ cd build
$ cmake -DCMAKE_INSTALL_PREFIX=../install/ \

-DCMAKE_BUILD_TYPE=DEBUG \
-DBUILD_GeometryBuilderGeant4=OFF ..

3.6. Compilation and installation

Compiling the framework is now a single command in the build folder created earlier
(replacing <number_of_cores> > with the number of cores to use for compilation):

$ make -j<number_of_cores>

The compiled (non-installed) version of the executable can be found at src/exec/allpix in
the build folder. Running Allpix2 directly without installing can be useful for developers.
It is not recommended for normal users, because the correct library and model paths are
only fully configured during installation.

To install the library to the selected installation location (defaulting to the source directory)
requires the following command:

$ make install

The binary is now available as bin/allpix in the installation directory. The example configu-
ration files are not installed as they should only be used as a starting point for your own
configuration. They can however be used to check if the installation was successful. Running
the allpix binary with the example configuration (bin/allpix -c etc/example.conf)
should pass the test without problems if a standard installation is used.

3.7. Testing

The build system of the framework is configured such, that it provides a set of automated
tests which can be executed to ensure a correct compilation and functionality of the
framework.

The tests use the example configuration delivered with the source code and can be started
from the build directory of Allpix2 by invoking

$ make test

All tests are expected to pass.

12

4. Getting Started

This Getting Started guide is written with a default installation in mind, meaning that
some parts may not apply if a custom installation was used. When the allpix binary is used,
this refers to the executable installed in bin/allpix in your installation path. Remember
that before running any Allpix2 simulation, ROOT and likely Geant4 should be initialized.
Refer to Section 3.4 on instructions how to load these libraries.

4.1. Configuration Files

The framework is configured with simple human-readable configuration files. The con-
figuration format is described in detail in Section 5.2.1. The configuration consists of
several section headers within [and] brackets and a section without header at the start.
Every section contain a set of key/value pairs separated by the = character. Comments are
indicated using the has symbol (#).

The framework has the following three required layers of configuration files:

• The main configuration: The most important configuration file and the file that is
passed directly to the binary. Contains both the global framework configuration and
the list of modules to instantiate together with their configuration. An example can
be found in the repository at etc/example.conf. More details and a more thorough
example are found in Section 4.1.2.

• The detector configuration passed to the framework to determine the geometry.
Describes the detector setup, containing the position, orientation and model type of
all detectors. An example is available in the repository at etc/example_detector.conf.
Introduced in Section 4.1.3.

• The detector models configuration. Contain the parameters describing a particular
type of detector. Several models are already provided by the framework, but new
types of detectors can easily be added. See models/test.conf in the repository for an
example. Please refer to Section 8.2 for more details about adding new models.

In the following paragraphs, the available types and the unit system are explained and an
introduction to the different configuration files is given.

4.1.1. Parsing types and units

The Allpix2 framework supports the use of a variety of types for all configuration values.
The module specifies how the value type should be interpreted. An error will be raised if
either the key is not specified in the configuration file, the conversion to the desired type is
not possible, or if the given value is outside the domain of possible options. Please refer to

13

the module documentation in Section 7 for the list of module parameters and their types.
Parsing the value roughly follows common-sense (more details can be found in Section 5.2.2).
A few special rules do apply:

• If the value is a string, it may be enclosed by a single pair of double quotation marks
("), which are stripped before passing the value to the modules. If the string is not
enclosed by quotation marks, all whitespace before and after the value is erased. If
the value is an array of strings, the value is split at every whitespace or comma (’)
that is not enclosed in quotation marks.

• If the value is a boolean, either numerical (0, 1) or textual (false, true) represen-
tations are accepted.

• If the value is a relative path, that path will be made absolute by adding the
absolute path of the directory that contains the configuration file where the key is
defined.

• If the value is an arithmetic type, it may have a suffix indicating the unit. The list
of base units is shown in Table 1.

If no units are specified, values will always be interpreted in the base units of the
framework. In some cases this can lead to unexpected results. E.g. specifying a bias
voltage as bias_voltage = 50 results in an applied voltage of 50 MV. Therefore it is
strongly recommended to always specify units in the configuration files.

The internal base units of the framework are not chosen for user convenience but for
maximum precision of the calculations and in order to avoid the necessity of conversions in
the code.

Combinations of base units can be specified by using the multiplication sign * and the
division sign / that are parsed in linear order (thus V m

s2 should be specified as V ∗ m/s/s).
The framework assumes the default units (as given in Table 1) if the unit is not explicitly
specified. It is recommended to always specify the unit explicitly for all parameters that
are not dimensionless as well as for angles.

Examples of specifying key/values pairs of various types are given below:

1 # All whitespace at the front and back is removed
2 first_string = string_without_quotation
3 # All whitespace within the quotation marks is preserved
4 second_string = " string with quotation marks "
5 # Keys are split on whitespace and commas
6 string_array = "first element" "second element","third element"
7 # Integer and floats can be specified in standard formats
8 int_value = 42

14

Table 1: List of units supported by Allpix2

Quantity Default unit Auxiliary units

Length mm (millimeter)

nm (nanometer)
um (micrometer)
cm (centimeter)
dm (decimeter)
m (meter)
km (kilometer)

Time ns (nanosecond)

ps (picosecond)
us (microsecond)
ms (millisecond)
s (second)

Energy MeV (megaelectronvolt)

eV (electronvolt)
keV (kiloelectronvolt)
GeV (gigaelectronvolt)

Temperature K (kelvin)
Charge e (elementary charge) C (coulomb)

Voltage MV (megavolt) V (volt)
kV (kilovolt)

Angle rad (radian) deg (degree)

9 float_value = 123.456e9
10 # Units can be passed to arithmetic type
11 energy_value = 1.23MeV
12 time_value = 42ns
13 # Units are combined in linear order
14 acceleration_value = 1.0m/s/s
15 # Thus the quantity below is the same as 1.0deg*kV*K/m/s
16 random_quantity = 1.0deg*kV/m/s*K
17 # Relative paths are expanded to absolute
18 # Path below will be /home/user/test if the config file is in

/home/user↪→

19 output_path = "test"
20 # Booleans can be represented in numerical or textual style
21 my_switch = true
22 my_other_switch = 0

15

4.1.2. Main configuration

The main configuration consists of a set of sections specifying the modules used. All modules
are executed in the linear order in which they are defined. There are a few section names
which have a special meaning in the main configuration, namely the following:

• The global (framework) header sections: These are all zero-length section headers
(including the one at the beginning of the file) and all sections marked with the header
[AllPix] (case-sensitive). These are combined and accessed together as the global
configuration, which contain all parameters of the framework itself (see Section 4.2 for
details). All key-value pairs defined in this section are also inherited by all individual
configurations as long the key is not defined in the module configuration itself.

• The ignore header sections: All sections with name [Ignore] are ignored. Key-value
pairs defined in the section as well as the section itself are being discarded by the
parser. These section headers are useful for quickly enabling and disabling individual
modules by replaing their actual name by an ignore section header.

All other section headers are used to instantiate modules. Installed modules are loaded
automatically. If problems arise please review the loading rules described in Section 5.3.3.

Modules can be specified multiple times in the configuration files, but it depends on their
type and configuration if this allowed. The type of the module determines how the module
is instantiated:

• If the module is unique, it is instantiated only a single time irrespective of the amount
of detectors. These kind of modules should only appear once in the whole configuration
file unless a different inputs and outputs are used as explained in Section 4.5.

• If the module is detector-specific, it is instantiated once for every detector it is
configured to run on. By default, an instantiation is created for all detectors defined
in the detector configuration file (see Section 4.1.3, lowest priority) unless one or both
of the following parameters are specified:

– name: An array of detector names the module should be executed for. Replaces
all global and type-specific modules of the same kind (highest priority).

– type: An array of detector type the module should be executed for. Instantiated
after considering all detectors specified by the name parameter above. Replaces
all global modules of the same kind (medium priority).

Within the same module, the order of the individual instances in the configuration
file is irrelevant.

A valid example configuration using the detector configuration above could be:

16

1 # Key is part of the empty section and therefore the global
configuration↪→

2 string_value = "example1"
3 # The location of the detector configuration is a global parameter
4 detectors_file = "manual_detector.conf"
5 # The AllPix section is also considered global and merged with the

above↪→

6 [AllPix]
7 another_random_string = "example2"
8

9 # First run a unique module
10 [MyUniqueModule]
11 # This module takes no parameters
12 # [MyUniqueModule] cannot be instantiated another time
13

14 # Then run detector modules on different detectors
15 # First run a module on the detector of type Timepix
16 [MyDetectorModule]
17 type = "timepix"
18 int_value = 1
19 # Replace the module above for ‘dut‘ with a specialized version
20 # this does not inherit any parameters from earlier modules
21 [MyDetectorModule]
22 name = "dut"
23 int_value = 2
24 # Run the module on the remaining unspecified detector (‘telescope1‘)
25 [MyDetectorModule]
26 # int_value is not specified, so it uses the default value

This configuration can however not be executed in practice because MyUniqueModule and
MyDetectorModule do not exist. In the following paragraphs, a fully functional albeit simple
configuration file with valid configuration including a detector configuration is presented.

4.1.3. Detector configuration

The detector configuration consist of a set of sections describing the detectors in the setup.
Each section starts with a header describing the name used to identify the detector. All
names have to be unique, thus using the same detector name multiple times is not possible.
Every detector should contain all of the following parameters:

17

Figure 1: Visualization of a particle passing through the telescope setup defined in the
detector configuration file

• A string referring to the type of the detector model. The model should exist in the
search path described in Section 5.4.3.

• The 3D position in the world frame in the order x, y, z. See Section 5.4 for details.

• The orientation specified as Z-X-Z extrinsic Euler angle. This means the detector
is rotated first around the world’s Z-axis, then around the world’s X-axis and then
again around the global Z-axis. See Section 5.4 for details.

Furthermore it is possible to specialize certain parameters of the detector models, which
is explained in more detail in Section 5.4.3. This allows to quickly adapt e.g. the sensor
thickness of a certain detector without altering the actual detector model file.

An example configuration file of one test detector and two Timepix [11] models is:

1 # name the first detector ‘telescope1‘
2 [telescope1]
3 # set the type to the "test" detector model
4 type = "test"

18

5 # place it at the origin of the world frame
6 position = 0 0 0mm
7 # use the default orientation
8 orientation = 0 0 0
9

10 # name the second detector ‘dut‘ (device under test)
11 [dut]
12 # set the type to the "timepix" detector model
13 type = "timepix"
14 # set the position in the world frame
15 position = 100um 100um 10mm
16 # rotate 20 degrees around the world x-axis
17 orientation = 0 20deg 0
18

19 # name the third detector ‘telescope2‘
20 [telescope2]
21 # set the type to the "timepix" detector model
22 type = "timepix"
23 # place it 50 mm up in the z-axis direction from the origin
24 position = 0 0 50mm
25 # use the default orientation
26 orientation = 0 0 0

Figure 1 shows a visualization of the setup described in the file. This configuration is used
in the rest of this chapter for explaining concepts.

4.2. Framework parameters

The Allpix2 framework provides a set of global parameters which control and alter its
behavior:

• detectors_file: Location of the file describing the detector configuration (intro-
duced in Section 4.1.3). The only required global parameter: the framework will fail
if it is not specified.

• number_of_events: Determines the total number of events the framework should
simulate. Equivalent to the amount of times the modules are run. Defaults to one
(simulating a single event).

• root_file: Location relative to the output_directory where the ROOT output
data of all modules will be written to. Default value is modules.root. Directories
within the ROOT file will be created automatically for all module instantiations.

19

• log_level: Specifies the lowest log level which should be reported. Possible values
are FATAL, STATUS, ERROR, WARNING, INFO and DEBUG, where all options are case-
insensitive. Defaults to the INFO level. More details and information about the log
levels and how to change them for a particular module can be found in Section 4.6.
Can be overwritten by the -v parameter on the command line.

• log_format: Determines the format to display. Possible options are SHORT, DEFAULT
and LONG, where all options are case-insensitive. More information can be found in
Section 4.6.

• log_file: File where the log output should be written to in addition to printing to
the standard output (usually the terminal). Only writes to standard output if this
option is not provided. Another (additional) location to write to can be specified on
the command line using the -l parameter.

• output_directory: Directory to write all output files into. Subdirectories are
created automatically for all module instantiations. This directory will also contain
the root_file specified via the parameter described above. Defaults to the current
working directory with the subdirectory output/ attached.

• random_seed: Seed for the global random seed generator used to initialize seeds for
module instantiations. A random seed from multiple entropy sources will be generated
if the parameter is not specified. Can be used to reproduce an earlier simulation run.

• library_directories: Additional directories to search for module libraries, before
searching the default paths. See Section 5.3.3 for details.

• model_path: Additional files or directories from which detector models should be read
besides the standard search locations. Refer to Section 5.4.3 for more information.

4.3. Setting up the Simulation Chain

In the following, the framework parameters are used to set up a fully functional simulation.
Module parameters are shortly introduced when they are first used. For more details about
these parameters, the respective module documentation in Section 7 should be consulted.
A typical simulation in Allpix2 contains at least the following components.

• The geometry builder, responsible for creating the external Geant4 geometry from
the internal geometry. In this document, internal geometry refers to the detector
parameters used by Allpix2 for coordinate transformations and conversions throughout
the simulation, while external geometry refers to the constructed Geant4 geometry
used for charge carrier deposition (and possibly visualization) only.

• The deposition module that simulates the particle beam that deposits charge carriers
in the detectors using the provided physics list (containing a description of the
simulated interactions) and the geometry created above.

20

• A propagation module that propagates the charges through the sensor.

• A transfer module that transfers the charges from the sensor and assigns them to a
pixel of the readout electronics.

• A digitizermodule which converts the charges in the pixel to a detector hit, simulating
the front-end electronics response.

• An output module, saving the data of the simulation. The Allpix2 standard file
format is a ROOT TTree as will be detailed in Section 4.7.

In this example, charge carriers will be deposited in the three sensors defined in the detector
configuration file in Section 4.1.3. Only the charge carriers deposited in the sensors of the
Timepix detector models are going to be propagated and digitized. Finally, some detector
histograms for the device under test (DUT) will be recorded as ROOT histograms and all
simulated objects (including the Monte Carlo truth) are stored to the Allpix2 ROOT file.
A configuration file implementing this could look like this:

1 # Initialize the global configuration
2 [Allpix]
3 # Run a total of 5 events
4 number_of_events = 5
5 # Use the short logging format
6 log_format = "SHORT"
7 # Location of the detector configuration
8 detectors_file = "manual_detector.conf"
9

10 # Read and instantiate the detectors and construct the Geant4 geometry
11 [GeometryBuilderGeant4]
12

13 # initialize physics list, setup the particle source and deposit the
charges↪→

14 [DepositionGeant4]
15 # Use one of the standard Geant4 physics lists
16 physics_list = QGSP_BERT
17 # Use a charged pion as particle
18 particle_type = "pi+"
19 # Set the energy of the particle
20 particle_energy = 120GeV
21 # The position of the point source
22 particle_position = 0 0 -1mm
23 # The direction of the source
24 particle_direction = 0 0 1
25 # Use a single particle in a single ’event’
26 number_of_particles = 1

21

27

28 # Specify a linear electric field for all detectors
29 # NOTE: This will be explained in more detail later in the manual
30 [ElectricFieldReader]
31 # Use a linear field
32 model = "linear"
33 # Applied bias voltage to calculate the electric field from
34 bias_voltage = -100V
35 # Depletion voltage at which the given sensor is fully depleted
36 depletion_voltage = -50V
37

38 # Propagate the charges in the sensor
39 [GenericPropagation]
40 # Only propagate charges in the Timepix sensors
41 type = "timepix"
42 # Set the temperature of the sensor
43 temperature = 293K
44 # Propagate multiple charges together in one step for faster simulation
45 charge_per_step = 50
46

47 # Transfer the propagated charges to the pixels
48 [SimpleTransfer]
49 max_depth_distance = 10um
50

51 # Digitize the propagated charges
52 [DefaultDigitizer]
53 # Input noise added by the electronics
54 electronics_noise = 110e
55 # Threshold for a hit to be detected
56 threshold = 600e
57 # Noise of the threshold level
58 threshold_smearing = 30e
59 # Uncertainty added by the digitization
60 adc_smearing = 100e
61

62 # Save histograms to the ROOT output file
63 [DetectorHistogrammer]
64 # Save histograms only for the dut
65 name = "dut"
66

67 # Store all simulated objects to a ROOT file containing TTrees
68 [ROOTObjectWriter]
69 # File name of the output file

22

70 file_name = "allpix-squared_output"

This configuration is available in the repository at etc/manual.conf. The detector configura-
tion file from Section 4.1.3 can be found at etc/manual_detector.conf.

The simulation can be executed by passing the main configuration to the allpix binary as
follows:

$ allpix -c etc/manual.conf

The output should look similar to the sample log provided in Appendix A. The detector
histograms such as the hit map are stored in the ROOT file output/modules.root in the
TDirectory DetectorHistogrammer/.

If problems occur when exercising this example, it should be made sure that an up-to-
date and properly installed version of Allpix2 is used (see the installation instructions in
Section 3). If modules and models fail to load, more information about potential issues
with the library loading can be found in the detailed framework description in Section 5.

4.4. Adding More Modules

In the following, a few basic modules are discussed which might be of use for a very first
simulation.

Visualization Displaying the geometry and the particle tracks helps both in checking and
interpreting the results of a simulation. Visualization is fully supported through Geant4,
supporting all the options provided by Geant4 [12]. Using the Qt viewer with the OpenGL
driver is the recommended option as long as the installed version of Geant4 is built with
Qt support enabled.

To add the visualization, the VisualizationGeant4 section should be added at the end
of the configuration file. An example configuration with some useful parameters is given
below:

1 [VisualizationGeant4]
2 # Use the Qt gui
3 mode = "gui"
4

5 # Set transparency of the detector models (in percent)
6 transparency = 0.4
7 # Set viewing style (alternative is ’wireframe’)
8 view_style = "surface"
9

23

10 # Color trajectories by charge of the particle
11 trajectories_color_mode = "charge"
12 trajectories_color_positive = "blue"
13 trajectories_color_neutral = "green"
14 trajectories_color_negative = "red"

If Qt is not available, a VRML viewer can be used as an alternative, however it is
recommended to reinstall Geant4 with the Qt viewer included. The following steps are
necessary in order to use a VRML viewer:

• A VRML viewer should be installed on the operating system. Good options are for
example FreeWRL or OpenVRML.

• Subsequently, two environmental parameters have to be exported to the shell en-
vironment to inform Geant4 about the configuration: G4VRMLFILE_VIEWER should
point to the location of the viewer executable and G4VRMLFILE_MAX_FILE_NUM should
typically be set to 1 to prevent too many files from being created.

• Finally, the configuration section of the visualization module should be altered as
follows:

1 [VisualizationGeant4]
2 # Do not start the Qt gui
3 mode = "none"
4 # Use the VRML driver
5 driver = "VRML2FILE"

More information about all possible configuration parameters can be found in the module
documentation in Section 7.

Electric Fields The example configuration before already contained a module for adding
a linear electric field to the detectors. By default, detectors do not have any electric field
and no bias voltage is applied.

The section below calculates a linear electric field for every point in active sensor volume
based on the depletion voltage of the sensor and the actually applied bias voltage. The
sensor is always depleted from the implant side, the direction of the electric field depends
on the sign of the bias voltage as described in the module description in Section 7.

1 # Add an electric field
2 [ElectricFieldReader]
3 # Set the field type to ‘linear‘
4 model = "linear"
5 # Applied bias voltage to calculate the electric field from

24

6 bias_voltage = -50V
7 # Depletion voltage at which the given sensor is fully depleted
8 depletion_voltage = -10V

Allpix2 also provides the possibility to utilize a full electrostatic TCAD simulation for
the description of the electric field. In order to speed up the lookup of the electric field
values at different positions in the sensor, the adaptive TCAD mesh has to be interpolated
and transformed into a regular grid with configurable feature size before using it. Allpix2

comes with a converter tool which reads TCAD DF-ISE files from the sensor simulation,
interpolates the field and writes it out in the appropriate format. A more detailed description
of the tool can be found in Section 10.2. An example electric field (which the file name
used in the example above) can be found in the etc directory of the Allpix2 repository.

Electric fields can be attached to a specific detectors using the standard syntax for detector
binding. A possible configuration would be:

1 [ElectricFieldReader]
2 # Bind the electric field to the detector named ‘dut‘
3 name = "dut"
4 # Specify that the model is provided in the ‘init‘ electric field map

format converted from TCAD↪→

5 model = "init"
6 # Name of the file containing the electric field
7 file_name = "example_electric_field.init"

4.5. Redirect Module Inputs and Outputs

In the Allpix2 framework, modules by default exchange messages based on their in- and
output message types and the detector type. It is, however, possible to specify a name for
the incoming and outgoing message of every module in the simulation. This module will
then only receive messages dispatched with the name provided and send named messages
out to other modules listening for messages with a specific name. This enables running the
same module several times for the same detector, e.g. to test different parameter settings.

The message output name of a module can be changed by setting the output parameter
of the module to a unique value. The output of this module is then not sent to modules
without a configured input, because the default input listens only to data without a name.
The input parameter of a particular receiving module should therefore be set to match the
value of the output parameter. In addition it is allowed to set the input parameter to
the special value * to indicate that the module should listen to all messages irrespective of
their name.

25

An example of a configuration with two different settings for the digitization module is
shown below:

1 # Digitize the propagated charges with low noise levels
2 [DefaultDigitizer]
3 # Specify an output identifier
4 output = "low_noise"
5 # Low amount of noise added by the electronics
6 electronics_noise = 100e
7 # Default values are used for the other parameters
8

9 # Digitize the propagated charges with high noise levels
10 [DefaultDigitizer]
11 # Specify an output identifier
12 output = "high_noise"
13 # High amount of noise added by the electronics
14 electronics_noise = 500e
15 # Default values are used for the other parameters
16

17 # Save histogram for ’low_noise’ digitized charges
18 [DetectorHistogrammer]
19 # Specify input identifier
20 input = "low_noise"
21

22 # Save histogram for ’high_noise’ digitized charges
23 [DetectorHistogrammer]
24 # Specify input identifier
25 input = "high_noise"

4.6. Logging and Verbosity Levels

Allpix2 is designed to identify mistakes and implementation errors as early as possible and
tries to provide the user with clear indications about the problem. The amount of feedback
can be controlled using different log levels. The global log level can be set using the global
parameter log_level. The log level can be overridden for a specific module by adding the
log_level parameter to the respective configuration section. The following log levels are
supported:

• FATAL: Indicates a fatal error that will lead to direct termination of the application.
Typically only emitted in the main executable after catching exceptions as they are
the preferred way of fatal error handling as discussed in Section 5.7. An example for
a fatal error is an invalid configuration parameter.

26

• STATUS: Important informational messages about the status of the simulation. Is
only used for informational messages which have to be logged in every run such as
the global seed for pseudo-random number generators and the cuurent progress of the
run.

• ERROR: Severe error that should not occur during a normal well-configured sim-
ulation run. Frequently leads to a fatal error and can be used to provide extra
information that may help in finding the reason of the problem. For example used to
indicate the reason a dynamic library cannot be loaded.

• WARNING: Indicate conditions that should not occur normally and possibly lead
to unexpected results. The framework will however continue without problems after
a warning. A warning is for example issued to indicate that a output message is not
used and that a module may therefore do unnecessary work.

• INFO: Informational messages about the physics process of the simulation. Contains
summaries about the simulation details of every event and for the overall simulation.
Should typically produce maximum one line of output per event and module.

• DEBUG: In-depth details about the progress of the simulation and all physics details
of the simulation. Produces large volumes of output per event should therefore only
be used for debugging the physics simulation of the modules.

• TRACE: Messages to trace what the framework or a module is currently doing.
Unlike the DEBUG level, it does not contain any direct information about the
physics of the simulation but rather indicates which part of the module or framework
is currently running. Mostly used for software debugging or determining performance
bottlenecks in the simulations.

It is not recommended to set the log_level higher than WARNING in a typical
simulation as important messages could be missed. Setting too low logging levels should
also be avoided since printing many log messages will significantly slow down the simulation.

The logging system does also support a few different formats to display the log messages.
The following formats are supported via the global parameter log_format or the individual
module parameter with the same name:

• SHORT: Displays the data in a short form. Includes only the first character of the
log level followed by the configuration section header and the message.

• DEFAULT: The default format. Displays system time, log level, section header and
the message itself.

• LONG: Detailed logging format. Displays all of the above but also indicates source
code file and line where the log message was produced. This can help in debugging
modules.

27

More details about the logging system and the procedure for reporting errors in the code
can be found in Section 5.6.1 and 5.7.

4.7. Storing Output Data

Saving the output to persistent storage is of primary importance for later review and
analysis. Allpix2 primarily uses ROOT for storing output data, because it supports writing
arbitrary objects and is a standard tool in High-Energy Physics. The ROOTObjectWriter
automatically saves all objects created by the modules to a TTree [13]. It stores separate
trees for all object types and creates branches for every unique message name, a combination
of the detector, the module and the message output name as described in Section 4.5. For
each event, values are added to the leafs of the branches containing the data of the objects.
This allows for easy histogramming of the acquired data over the total run using standard
ROOT utilities. Relations between objects within a single event are internally stored as
TRef allowing to fetch related objects as long as these are loaded in memory. An exception
is thrown when trying to fetch an object which is not loaded.

In order to save all objects of the simulation, a ROOTObjectWriter module has to be added
with a file_name parameter (without the “.root” suffix) to specify the file location of the
created ROOT file in the global output directory. The default file name is data, i.e. the
file data.root is created in the output directory. To replicate the default behaviour the
following configuration can be used:

1 # The object writer listens to all output data
2 [ROOTObjectWriter]
3 # specify the output file (default file name is used if omitted)
4 file_name = "data"

The generated output file can be analyzed using ROOT macros. A simple macro for
converting the results to a tree with standard branches for comparisons is described in
Section 10.3.1.

It is also possible to read object data back in in order to dispatch them as messages to
further modules. This feature is intended to allow splitting the execution of parts of the
simulation into independent steps, which can be repeated multiple times. The tree data can
be read using a ROOTObjectReader module, which automatically dispatches all objects to
the correct module instances. An example configuration for using this module could be:

1 # The object reader dispatches all objects in the tree
2 [ROOTObjectReader]
3 # path to the output data file, absolute or relative to the

configuration file↪→

4 file_name = "../output/data.root"

28

The Allpix2 framework comes with a few more output modules which allow storing data in
different formats, such as the LCIO persistency event data model [10] or the native RCE
file format [14]. Detailed descriptions of these modules can be found in Section 7.

29

5. The Allpix2 Framework

This section details the technical implementation of the Allpix2 framework and is mostly
intended to provide insight into the gearbox to potential developers and interested users.
The framework consists of the following four main components that together form Allpix2:

1. Core: The core contains the internal logic to initiate the modules, to provide the
geometry, to facilitate module communication and to run the event sequence. The
core keeps its dependencies to a minimum (it only relies on ROOT) and remains
independent from the other components as far as possible. It is the main component
discussed in this section.

2. Modules: A module is a set of methods which execute a part of the simulation chain.
Modules are build as separate libraries and loaded dynamically on demand by the
core. The available modules and their parameters are discussed in detail in Section 7.

3. Objects: Objects form the data passed around between modules using the message
framework provided by the core. Modules can listen and bind to messages with objects
they wish to receive. Messages are identified by the object type they are carrying,
but they can also be named to allow redirecting data to specific modules facilitating
more sophisticated simulation setups. Messages are meant to be read-only and a copy
of the data should be made if a module wishes to change the data. All objects are
compiled into a separate library which is automatically linked to every module. More
information about the messaging system and the supported objects can be found in
Section 5.5.

4. Tools: Allpix2 provides a set of header-only ’tools’ providing access to common logic
shared by various modules. Examples are the Runge-Kutta solver implemented using
the Eigen3 library and the set of template specializations for ROOT and Geant4
configurations. More information about the tools can be found in Section 10. This set
of tools is different from the set of core utilities the framework provides itself, which
is part of the core and explained in Section 5.6

Finally, Allpix2 provides an executable which instantiates the core of the framework, receives
and distributes the configuration object and runs the simulation chain.

This section is structured as follows. Section 5.1 provides an overview of the architectural
design of the core and describes its interaction with the rest of the Allpix2 framework.
The different subcomponents such as configuration, modules and messages are discussed in
Sections 5.2 to 5.5. Finally, the section closes with a description of the available framework
tools in Section 5.6. Some C++ code will be provided in the text, but readers not interested
may skip the technical details.

30

5.1. Architecture of the Core

The core is constructed as a light-weight framework which provides various subsystems
to the modules. It also contains the part responsible for instantiating and running the
modules from the supplied configuration file. The core is structured around five subsystems
of which four are centered around a manager and the fifth contain a set of simple general
utilities. The systems provided are:

1. Configuration: The configuration subsystem provides a configuration object from
which data can be retrieved or stored, together with a TOML-like [15] parser to read
configuration files. It also contains the Allpix2 configuration manager which provides
access to the main configuration file and its sections. It is used by the module manager
system to find the required instantiations and access the global configuration. More
information is given in Section 5.2.

2. Module: The module subsystem contains the base class of all Allpix2 modules as
well as the manager responsible for loading and executing the modules (using the
configuration system). This component is discussed in more detail in Section 5.3.

3. Geometry: The geometry subsystem supplies helpers for the simulation geometry.
The manager instantiates all detectors from the detector configuration file. A detector
object contains the position and orientation linked to an instantiation of a particular
detector model. The detector model contains all parameters describing the geometry
of the detector. More details about geometry and detector models is provided in
Section 5.4.

4. Messenger: The messenger is responsible for sending objects from one module to
another. The messenger object is passed to every module and can be used to bind
to messages to listen for. Messages with objects are also dispatched through the
messenger as described in Section 5.5.

5. Utilities: The framework provides a set of utilities for logging, file and directory
access, and unit conversion. An explanation on how to use of these utilities can be
found in Section 5.6. A set of C++ exceptions is also provided in the utilities, which are
inherited and extended by the other components. Proper use of exceptions, together
with logging informational messages and reporting errors, make the framework easier
to use and debug. A few notes about the use and structure of exceptions are provided
in Section 5.7.

5.2. Configuration and Parameters

Individual modules as well as the framework itself are configured through configuration files.
Explanations on how to use the various configuration files together with several examples

31

have been provided in Section 4.1. All configuration files follow the same format, but the
way their input is interpreted differs per configuration file.

5.2.1. File format

Throughout the framework, a simplified version of TOML [15] is used as standard format
for configuration files. The format is defined as follows:

1. All whitespace at the beginning or end of a line should be stripped by the parser.
Empty lines should be ignored.

2. Every non-empty line should start with either #, [or an alphanumeric character.
Every other character should lead to an immediate parsing error.

3. If the line starts with a hash character (#), it is interpreted as comment and all other
content on the same line is ignored.

4. If the line starts with an open square bracket ([), it indicates a section header (also
known as configuration header). The line should contain an alphanumeric string
indicating the header name followed by a closing square bracket (]) to end the header
(a missing] should raise an exception). Multiple section header with the same
name are allowed. All key-value pairs following this section header are part of this
section until a new section header is started. After any number of ignored whitespace
characters there may be a # character. If this is the case, the rest of the line is handled
as specified in point 3.

5. If the line starts with an alphanumeric character, the line should indicate a key-value
pair. The beginning of the line should contain an string of alphabetic characters,
numbers and underscores, but it may not start with an underscore. This string
indicates the ’key’. After a optional number of ignored whitespace, the key should be
followed by an equality sign (=). Any text between the = and the first # character
not enclosed within a pair of double quotes (") is known as the non-stripped string.
Any character after the # is handled as specified in point 3. If the line does not
contain any non-enclosed # character, the value ends at the end of the line instead.
The ’value’ of the key-value pair is the non-stripped string with all whitespace in
front and at the end stripped.

6. The value can either be accessed as a single value or an array. If the value is accessed
as an array, the string is split at every whitespace or comma character (,) not enclosed
in a pair of " characters. All empty entities are not considered. All other entities are
treated as single values in the array.

7. All single values are stored as a string containing at least one character. The conversion
to the actual type is performed when accessing the value.

32

8. All key-value pairs defined before the first section header are part of a zero-length
empty section header.

5.2.2. Accessing parameters

Values are accessed via the configuration object. In the following example, the key is a
string called key, the object is named config and the type TYPE is a valid C++ type
the value should represent. The values can be accessed via the following methods:

1 // Returns true if the key exists and false otherwise
2 config.has("key")
3 // Returns the value in the given type, throws an exception if not

existing or a conversion to TYPE is not possible↪→

4 config.get<TYPE>("key")
5 // Returns the value in the given type or the provided default value if

it does not exist↪→

6 config.get<TYPE>("key", default_value)
7 // Returns an array of single values of the given type; throws an

exception if the key does not exist or a conversion is not possible↪→

8 config.getArray<TYPE>("key")
9 // Returns an absolute (canonical if it should exist) path to a file

10 config.getPath("key", true /* check if path exists */)
11 // Return an array of absolute paths
12 config.getPathArray("key", false /* do not check if paths exists */)
13 // Returns the value as literal text including possible quotation marks
14 config.getText("key")
15 // Set the value of key to the default value if the key is not defined
16 config.setDefault("key", default_value)
17 // Set the value of the key to the default array if key is not defined
18 config.setDefaultArray<TYPE>("key", vector_of_default_values)
19 // Create an alias named new_key for the already existing old_key.

Throws an exception if the old_key does not exist↪→

20 config.setAlias("new_key", "old_key")

Conversions to the requested type are using the from_string and to_string methods
provided by the string utility library described in Section 5.6.3. These conversions largely
follow the standard C++ parsing, with one important exception. If (and only if) the
value is retrieved as any C/C++ string type and the string is fully enclosed by a pair of "
characters, they are stripped before returning the value. Strings can thus also be provided
with or without quotation marks.

33

It should be noted that a conversion from string to the requested type is a comparatively
heavy operation. For performance-critical sections of the code, one should consider fetching
the configuration value once and caching it in a local variable.

5.3. Modules and the Module Manager

Allpix2 is a modular framework and one of its core ideas is to partition functionality in
independent modules. The modules are defined in the subdirectory src/modules/ in the
repository. The name of the directory is the unique name of the module. The suggested
naming scheme is CamelCase, thus an exemplary module name would be GenericPropagation.
There are two different kind of modules which can be defined:

• Unique: Modules for which always only one single instance runs irrespective of the
number of detectors.

• Detector: Modules which are specific to a single detector. They are replicated for
all required detectors.

The type of module determines the constructor used, the internal unique name and the
supported configuration parameters. More details about the instantiation logic for the
different types of modules can be found in Section 5.3.3.

5.3.1. Files of a Module

Every module directory should at minimum contain the following documents (with
ModuleName replaced by the name of the module):

• CMakeLists.txt: The build script to load the dependencies and define the source
files of the library.

• README.md: Full documentation of the module.

• ModuleNameModule.hpp: The header file of the module (note that another name
can be used for this source file, but that is deprecated).

• ModuleNameModule.cpp: The implementation file of the module.

The files are discussed in more detail below. By default, all modules are added to the
src/modules/ directory will be build automatically by CMake. This means that all subdi-
rectories should feature a module with a CMakeLists.txt containing instructions on how to
build the respective module.

If a module depends on additional packages which not every user might have installed,
one can consider adding the following line to the top of the module’s CMakeLists.txt (see
below):

34

1 ALLPIX_ENABLE_DEFAULT(OFF)

Whether or not this is necessary for a given module will be decided on a case-by-case
basis.

General guidelines and instructions for implementing new modules are provided in Sec-
tion 8.1.

CMakeLists.txt Contains the build description of the module with the following compo-
nents:

1. On the first line either ALLPIX_DETECTOR_MODULE(MODULE_NAME) or
ALLPIX_UNIQUE_MODULE(MODULE_NAME) depending on the type of the
module defined. The internal name of the module is automatically saved in the
variable ${MODULE_NAME} which should be used as argument to other functions.
Another name can be used by overwriting the variable content, but in the examples
below, ${MODULE_NAME} is used exclusively.

2. The following lines should contain the logic to load possible dependencies of the
module (below is an example to load Geant4). Only ROOT is automatically included
and linked to the module.

3. A line with ALLPIX_MODULE_SOURCES(${MODULE_NAME} sources) defines
the module source files. Here, sources should be replaced by a list of all source files
relevant to this module.

4. Possibly lines to include additional directories and to link libraries for dependencies
loaded earlier.

5. A line containing ALLPIX_MODULE_INSTALL(${MODULE_NAME}) to set up
the required target for the module to be installed to.

A simple CMakeLists.txt for a module named Test which requires Geant4 is provided below
as an example.

1 # Define module and save name to MODULE_NAME
2 # Replace by ALLPIX_DETECTOR_MODULE(MODULE_NAME) to define a detector

module↪→

3 ALLPIX_UNIQUE_MODULE(MODULE_NAME)
4

5 # Load Geant4
6 FIND_PACKAGE(Geant4)
7 IF(NOT Geant4_FOUND)

35

8 MESSAGE(FATAL_ERROR "Could not find Geant4, make sure to source the
Geant4 environment\n$ source YOUR_GEANT4_DIR/bin/geant4.sh")↪→

9 ENDIF()
10

11 # Add the sources for this module
12 ALLPIX_MODULE_SOURCES(${MODULE_NAME}
13 TestModule.cpp
14)
15

16 # Add Geant4 to the include directories
17 TARGET_INCLUDE_DIRECTORIES(${MODULE_NAME} SYSTEM PRIVATE

${Geant4_INCLUDE_DIRS})↪→

18

19 # Link the Geant4 libraries to the module library
20 TARGET_LINK_LIBRARIES(${MODULE_NAME} ${Geant4_LIBRARIES})
21

22 # Provide standard install target
23 ALLPIX_MODULE_INSTALL(${MODULE_NAME})

README.md The README.md serves as the documentation for the module and
should be written in the Markdown format [16]. It is automatically converted to LATEXusing
Pandoc [17] and included in this user manual in Section 7. By documenting the module
functionality in Markdown, the information as also viewable with a web browser at the
repository in the module subfolder.

The README.md should follow the structure indicated in the README file of the
DummyModule in src/modules/Dummy. The documentation should contain at least the
following sections:

• The H2-size header with the name of the module and at least the following required
elements: the Maintainer and the Status of the module. If the module is working
and well-tested, the status of the module should be Functional. By default, new
modules are given the status Immature. The maintainer entry should mention both
the full name and email address of the module maintainer between parentheses. An
example for a minimal header is therefore

ModuleName
Maintainer: Example Author (<example@example.org>)
Status: Functional

In addition, the Input and Output objects consumed and dispatched by the module
should be mentioned.

• A H4-size section named Description, containing a short description of the module.

36

• A H4-size section named Parameters with all available configuration parameters of
the module. The parameters should be briefly explained in an itemized list with the
name of the parameter set as inline code block.

• A H4-size section with the title Usage which should contain at least one simple
example of a valid configuration for the module.

ModuleNameModule.hpp and ModuleNameModule.cpp All modules should consist of
both a header file and a source file. In the header file, the module is defined together with
all its methods. Brief Doxygen documentation should be added to explain what every
method does. The source file should provide the implementation of every method and also
its more detailed Doxygen documentation. Method shall only be declared in the header
and only defined in the source file to keep the interface clean.

5.3.2. Module structure

All modules have to inherit from the Module base class which can be found in src/core/mod-
ule/Module.hpp. The module base class provides two base constructors, a few convenient
methods and several methods to override. Every module should provide a constructor
consuming a fixed set of arguments defined by the framework. This particular constructor is
always called during construction by the module instantiation logic. The arguments for the
constructor differs for unique and detector modules. For unique modules, the constructor
for a TestModule should be:

1 TestModule(Configuration config, Messenger* messenger, GeometryManager*
geo_manager): Module(config) {}↪→

It should be noted that the configuration object has to be forwarded to the base module.

For detector modules, the first two arguments are the same, but the last argument is a
std::shared_ptr to the linked detector instead. It should always forward this detector to
the base class together with the configuration object. Thus, the constructor of a detector
module is:

1 TestModule(Configuration config, Messenger* messenger,
std::shared_ptr<Detector> detector): Module(config, detector) {}↪→

The pointer to the Messenger can be used to bind variables to either receive or dispatch
messages as explained in 5.5. The constructor should be used to bind required messages,
set configuration defaults and to throw exceptions in case of failures. Unique modules can
access the GeometryManager to fetch all detector descriptions, while detector modules
directly receive the object of their respective detector.

In addition to the constructor, every module can override the following methods:

37

• init(): Called after loading and constructing all modules and before starting the
event loop. This method can for example be used to initialize histograms.

• run(unsigned int event_number): Called for every event in the simulation run
with the event number (starting from one). An exception should be thrown for every
serious error, otherwise an warning should be logged.

• finalize(): Called after processing all events in the run and before destructing the
module. Typically used to save the output data (like histograms). Any exceptions
should be thrown from here instead of the destructor.

5.3.3. Module instantiation

The modules are dynamically loaded and instantiated by the Module Manager. Modules
are constructed, initialized, executed and finalized in the linear order they are defined
in the configuration file. Thus the configuration file should follow the order of the real
process. For every non-special section in the main configuration file (see 5.2 for more
details), a corresponding library is searched for which contains the module. Module
library are always named following the scheme libAllpixModuleModuleName reflecting
the ModuleName configured via CMake. The module search order is as follows:

1. Modules already loaded before from an earlier section header

2. All directories in the global configuration parameter library_directories in the provided
order if this parameter exists

3. The internal library paths of the executable, that should automatically point to the
libraries that are build and installed together with the executable. These library
paths are stored in RPATH on Linux, see the next point for more information.

4. The other standard locations to search for libraries depending on the operating system.
Details about the procedure Linux follows can be found in [18].

If the loading of the module library is successful, it is checked if the module is an unique or
a detector module. The instantiation logic determines a unique name and priority, where a
lower number indicates a higher priority, for every instantiation. The name and priority for
the instantiation are determined differently for the two types of modules:

• Unique: Combination of the name of the module and the input and output
parameter (both defaulting to an empty string). The priority is always zero.

• Detector: Combination of the name of the module, the input and output parameter
(both defaulting to an empty string) and the name of detector this module is executed
for. If the name of the detector is specified directly by the name parameter, the
priority is high. If the detector is only matched by the type parameter, the priority is

38

medium. If the name and type are both unspecified and the module is instantiated
for all detectors, the priority is low.

The instantiation logic only allows a single instance for every unique name. If there are
multiple instantiations with the same unique name, the instantiation with the highest
priority is kept. If multiple instantiations with the same unique name and the same priority
exist, an exception is raised.

5.4. Geometry and Detectors

Simulations are frequently performed for a set of different detectors (such as a beam
telescope and a device under test). All these individual detectors together is what Allpix2

defines as the geometry. Every detector has a set of properties attached to it:

• A unique detector name to refer to the detector in the configuration.

• The position in the world frame. This is the position of the geometric center of the
sensitive device (sensor) given in world coordinates as X, Y and Z (note that any
additional components like the chip and possible support layers are ignored when
determining the geometric center).

• The orientation given as Euler angles using the extrinsic Z-X-Z convention relative
to the world frame (also known as the 1-3-1 or the "x-convention" and the most widely
used definition of Euler angles [19]).

• A type of a detector model such as hybrid or monolithic. The model defines the
geometry and parameters of the detector. Multiple detectors can share the same
model. Several ready-to-use models are shipped with the framework.

• An optional electric field in the sensitive device. An electric field can be added to a
detector by a special module as demonstrated in Section 4.4.

The detector configuration is provided in the detector configuration file as is explained in
Section 4.1.3.

5.4.1. Changing and accessing the geometry

The geometry is needed at a very early stage because it determines the number of detector
module instantiations as explained in Section 5.3.3. The procedure of finding and loading
the appropriate detector models is explained in more detail in Section 5.4.3.

The geometry is directly added from the detector configuration file described in Section 4.1.3.
The geometry manager parses this file on construction, the detector models are loaded and
linked later during geometry closing as described above. It is also possible to add additional
models and detectors directly using addModel and addDetector (before the geometry is

39

closed). Furthermore it is possible to add additional points which should be part of the
world geometry using addPoint. This can for example be used to add the beam source to
the world geometry.

The detectors and models can be accessed by name and type through the geometry manager
using getDetector and getModel, respectively. All detectors can be fetched at once using
the getDetectors method. If the module is a detector-specific module its related Detector
can be accessed through the getDetector method of the module base class instead (returns
a null pointer for unique modules) as follows:

1 void run(unsigned int event_id) {
2 // Returns the linked detector
3 std::shared_ptr<Detector> detector = this->getDetector();
4 }

5.4.2. Coordinate systems

All detectors have a fixed position in the world frame which has an arbitrary origin. Every
detector also has a local coordinate system attached to it. The origin of this local coordinate
system does usually not correspond with the geometric center of the sensitive device, which
is the center of rotation of the detector in the global frame. The origin of the local coordinate
system is instead based on the pixel grid in the sensor. The origin of the local coordinate
system is fixed to the center of the first pixel in the grid, which allows for simpler calculations
through the framework that are also easier to understand.

While the actual origin of the local coordinate system depends on the type of the model,
there are fixed rules for the orientation of the coordinate system. The positive z-axis should
point in the direction the particle beam is supposed to enter the sensor, perpendicular to
the 2D pixel grid. The x-axis should be in the plane that defines the pixel grid. It should
be in horizontal direction perpendicular to the direction of the beam, if the sensor is placed
unrotated in a horizontal beam. The y-axis should be normal to both the x- and the z-axis
in such a way that a right-handed coordinate system is constructed.

5.4.3. Detector models

Different types of detector models are already available and shipped with the framework.
The configuration for these standard models use the configuration format introduced in
Section 5.2.1 and can be found in the models directory in the repository. Every models
extends from the DetectorModel base class which defines the minimum parameter of a
detector model in the framework:

40

• The coordinate of the center in the local frame. This is the location of the local
point which is defined as position in the global frame, and the rotation center for the
specified orientation.

• The number of pixels in the sensor in both the x- and y-axis. Every pixel is an
independent block replicated over the x,y-plane of the sensor.

• The size of an individual pixel. The multiplication of the pixel size and the number
of pixels is known as the pixel grid and goes over the full x,y-plane.

• The sensor with a center and a size. The sensor is at least as large as the pixel grid
size and has a certain thickness. It can have excess length in the x,y-plane in each
direction.

• The readout chip with a center and a size. It is positioned directly after the sensor
by default. The chip can also have an excess as described above for the sensor.

• Possible support layers with a center and a size. It is positioned directly after the
sensor and the chip by default. The support layer can be of various materials and
possibly contain a cutout.

• Total size of the box with the local frame center in the middle that fit all elements of
the model.

This standard detector model can be extended to provide a more detailed geometry if
required by particular modules (most notably the Geant4 geometry builder). The position
and size of all elements can be changed by these extending models. A model with only
the standard elements described above is the MonolithicPixelDetectorModel. Currently
the only extended detector model is the HybridPixelDetectorModel, which also include
bump bonds between the sensor and the readout chip.

Detector model parameters
Models are defined in configuration files which are used to instatiate the actual model
classes. These files for detector models can contain various types of parameters. Some are
required for all models, other optional for all models and there are also parameters only
supported by certain types of models. For more details about the steps to perform to add
and use your own new model, Section 8.2 should be consulted.

The set of base parameters supported by every models is provided below. These parameters
should be given at the top of the file before opening any sections.

• type: A required parameter describing the type of the model. At the moment
either monolithic or hybrid. This value determines any optional extra supported
parameters discussed later.

• number_of_pixels: The number of pixels in the 2D pixel grid. Determines the base
size of the sensor together with the pixel_size parameter below.

41

• pixel_size: The size of a single pixel in the pixel grid. Given in 2D as pixels do not
have any direct thickness. This parameter is required for all models.

• sensor_thickness: Thickness of the active area of the detector model containing
the individual pixels. This parameter is required for all models.

• sensor_excess: Fallback for the excess width of the sensor in all four directions (top,
bottom, left and right). Used if the specialized parameters described below are not
given. Defaults to zero, thus having a sensor size equal to the number of pixels times
the size of a single pixel.

• sensor_excess_direction : With direction either top, bottom, left or right, where
the top, bottom, right and left direction are respectively the positive y-axis, the
negative y-axis, the positive x-axis and the negative x-axis. It specifies the extra
excess length added to the sensor in the specific direction.

• chip_thickness: Thickness of the readout chip, placed next to the sensor.

• chip_excess: Fallback for the excess width of the chip, defaults to zero thus a chip
equal to the size of the pixel grid. See the sensor_excess parameter above.

• chip_excess_direction : With direction either top, bottom, left or right. The chip
excess in the specific direction, see the sensor_excess_direction parameter above.

Besides these base parameters, several base layers of support can be added to detector
models. Every layer of support should be given in its own section with the name support. By
default there are no support layers. The support layers support the following parameters.

• size: Size of the support in 2D (the thickness is given separately below). This
parameter is required for all support layers.

• thickness: Thickness of the support layers. This parameter is required for all support
layers.

• location: Location of the support layer. Either sensor to attach it to the sensor
(on the opposite side of the chip), chip to add the support layer after the chip or
absolute to specify the offset in the z-direction manually. Defaults to chip if not given.
If the parameter is equal to sensor or chip, the support layers are stacked in there
respective direction when multiple layers of support are specified.

• offset: When the parameter location is equal to ’sensor’ or ’chip’, an optional
2D offset can be specified using this parameter, the offset in the z-direction is then
automatically determined. These support layers are centered by default to the middle
of the pixel grid (the rotation center of the model). If the location is set to absolute,
the offset is a required parameter and given as a 3D vector with respect to the center
of the model (thus the center of the active sensor). Care should be taken to ensure
that these support layers and the rest of the model do not overlap. Either sensor to
stick it to the sensor (on the opposite side of the chip) or chip to add the support layer

42

after the chip. Defaults to chip if not given. Sensors are stacked in there respectively
direction if multiple layers of support are given.

• hole_size: Adds an optional cut-out hole to the support with the 2D size provided.
The hole always covers the full support thickness. No hole will be added if this
parameter is not given.

• hole_offset: The hole is added by default to the center of the support layer. A 2D
offset from this default center can be specified using this parameter.

• material: Material of the support to use, given as a lowercase string. There is no
default set of materials and support for certain types of materials is up to the modules.
Refer to Section 7 for details about the materials supported by the geometry creator
module.

The base parameters are the only set of parameters supported by the monolithic model.
The hybrid model add bump bonds between the chip and the sensor while automatically
making sure the chip and support layers are shifted appropriately. The set of extra
parameters for the hybrid model are the following (these should be put in the empty start
section):

• bump_height: Height of the bump bonds (the separation distance between the chip
and the sensor)

• bump_sphere_radius: The individual bump bonds are simulated as union solids of
a sphere and a cylinder. This parameter set the radius of the sphere to use, which
should generally be smaller than the height of the bump.

• bump_cylinder_radius: The radius of the cylinder part of the bump. The height of
the cylinder is determined by the bump_height parameter.

• bump_offset: A 2D offset of the grid of bumps. The individual bumps are by default
positioned at the center of all the single pixels in the grid.

Fetching specific models within the framework
Some modules are specific for a particular type of detector model. To fetch a specific
detector model from the base class, the model should be downcasted. An example to
try fetching an HybridPixelDetectorModel is the following (the downcast return a null
pointer if the class is not of the appropriate type).

1 // Detector is a pointer to a Detector object
2 auto model = detector->getModel();
3 auto hybrid_model =

std::dynamic_pointer_cast<HybridPixelDetectorModel>(model);↪→

4 if(hybrid_model != nullptr) {

43

5 // The model of this Detector is a HybridPixelDetectorModel
6 }

Specializing detector models
A detector model contains default values for all the parameters. Some parameters like
the sensor thickness can however vary between different detectors of the same general
model. To allow for easy adjustment of these parameters, models can be specialized in the
detector configuration file introduced in 4.1.3. All of the model parameters, except the
type parameter, in the header at the top (thus not the support layers) can be changed by
adding a parameter with the exact same key to the detector model file with the specialized
value. The framework will then internally automatically create a copy of this model with
the requested change.

Search order for models
To support different detector models and storage locations the framework supports model
readers. The core geometry manager does also read models and will read all remaining
models, not parsed earlier, before the geometry is closed. The model readers and the core
geometry manager should search for model files in the following order.

1. If defined, the paths in the models_path parameter provided to the model reader
module or the global models_path parameter if no module-specific one is defined
(the geometry manager only uses the global one). Files are read and parsed directly.
If the path is a directory, all files in the directory are added (not recursing into
subdirectories).

2. The location where the models are installed to (see the MODEL_DIRECTORY
variable in Section 3.5).

3. The standard data paths on the system as given by the environmental variable
$XDG_DATA_DIRS with the allpix-directory appended. The $XDG_DATA_DIRS
variable defaults to /usr/local/share/ (thus effectively /usr/local/share/allpix) fol-
lowed by /usr/share/ (effectively /usr/share/allpix).

For almost all purposes a specific model reader is not needed and all internal models can
be read by the geometry manager.

5.5. Passing Objects using Messages

Communication between modules happens through messages (only some internal information
is shared through external detector objects and the dependencies like Geant4). Messages
are templated instantiations of the Message class carrying a vector of objects. The list of

44

objects available in the Allpix2 objects library are discussed in Section 6. The messaging
system has a dispatching part to send messages and a receiving part that fetches messages.

The dispatching module can specify an optional name for the messages, but modules should
normally not specify this name directly. If the name is not directly given (or equal to -) the
output parameter of the module is used to determine the name of the message, defaulting
to an empty string. Dispatching the message to their receivers then goes by the following
rules:

1. The receiving module the will only receive a message if it has the exact same type
as the message dispatched (thus carrying the exact same object). If the receiver is
however listening to the BaseMessage type it will receive all dispatched messages
instead.

2. The receiving module will only receive messages with the exact same name as it is
listening for. The module uses the input parameter to determine to which message
names the module should listen. If the input parameter is equal to * the module
should listen to all messages. Every module listens by default to messages with no
name specified (thus receiving the messages of default dispatching modules).

3. If the receiving module is a detector module it will only receive messages that are
bound to that specific detector or messages that are not bound to any detector.

An example how to dispatch, in the run function of a module, a message containing an
array of Object types bound to a detector named dut is provided here:

1 void run(unsigned int event_id) {
2 std::vector<Object> data;
3 // ..fill the data vector with objects ...
4

5 // The message is dispatched only for ’dut’ detector
6 std::shared_ptr<Message<Object>> message =

std::make_shared<Message<Object>>(data, "dut");↪→

7

8 // Send the message using the Messenger object
9 messenger->dispatchMessage(this, message);

10 }

5.5.1. Methods to process messages

The message system has multiple methods to process received messages. The first two are
the most common methods and the third should only be used if necessary. The options
are:

45

1. Bind a single message to a variable. This should usually be the preferred method
as most modules only expect one message to arrive per event (as a module should
typically send only one message containing the list of all the objects it should send).
An example of how to bind a message containing an array of Object types in the
constructor of a detector TestModule would be:

1 TestModule(Configuration, Messenger* messenger,
std::shared_ptr<Detector>) {↪→

2 messenger->bindSingle(this,
3 /* Pointer to the message variable */
4 &TestModule::message,
5 /* No special messenger flags */
6 MsgFlags::NONE);
7 }
8 std::shared_ptr<Message<Object>> message;

2. Bind a set of messages to an vector variable. This method should be used it
the module can (and expects to) receive the same message multiple times (possibly
because it wants to receive the same type of message for all detectors). An example
to bind multiple messages containing an array of Object types in the constructor of
a detector TestModule would be:

1 TestModule(Configuration, Messenger* messenger,
std::shared_ptr<Detector>) {↪→

2 messenger->bindMulti(this,
3 /* Pointer to the message vector */
4 &TestModule::messages,
5 /* No special messenger flags */
6 MsgFlags::NONE);
7 }
8 std::vector<std::shared_ptr<Message<Object>>> messages;

3. Listen to a particular message type and execute a listener function as soon as an
object is received. Can be used for more advanced strategies for fetching messages.
Note that this method can lead to surprising behaviour because the listener function
is executed during the run of the dispatching module (leading to log messages with
incorrect section headers at the minimum). The listening module should not do any
heavy work in the listening function as this is supposed to take place in their run
method instead. An example of using this to listen to a message containing an array
of Object types in a detector TestModule would be:

1 TestModule(Configuration, Messenger* messenger,
std::shared_ptr<Detector>) {↪→

2 messenger->registerListener(this,

46

3 /* Pointer to the listener method
*/↪→

4 &TestModule::listener,
5 /* No special message flags */
6 MsgFlags::NONE);
7 }
8 void listener(std::shared_ptr<Message<Object>> message) {
9 // Do something with received message ...

10 }

5.5.2. Message flags

Various flags can be added to the bind function and listening functions. The flags enable
a particular behaviour of the framework (if the particular type of method supports the
flag).

• REQUIRED: Specify that this message is required to be received. If the particular
type of message is not received before it is time to execute the run function, the run
is automatically skipped by the framework. This can be used to ignore modules that
cannot do any action without received messages, for example propagation without
any deposited charges.

• NO_RESET: Messages are by default automatically reset after the run function
executes to prevent older messages from previous runs to appear again. This behaviour
can be disabled by setting this flag (this does not have any effect for listening functions).
Setting this flag for single bound messages (without ALLOW_OVERWRITE) would
cause an exception to be raised if the message is overwritten in a later event.

• ALLOW_OVERWRITE: By default an exception is automatically raised if a
single bound message is overwritten (thus setting it multiple times instead of once).
This flag prevents this behaviour. It is only used for variables to a single message.

• IGNORE_NAME: If this flag is specified, the name of the dispatched message is
not considered. Thus the input parameter is ignored and forced to the value *.

5.6. Logging and other Utilities

The Allpix2 framework provides a set of utilities that can be attributed to two types:

• Two utilities to improve the usability of the framework. One of these is a flexible
and easy-to-use logging system, introduced below in Section 5.6.1. The other is
an easy-to-use framework for units that supports converting arbitrary combinations

47

of units to an independent number which can be used transparently through the
framework. It will be discussed in more detail in Section 5.6.2.

• A few utilities to extend the functionality provided by the C++ Standard Template
Library (STL). These are provided to provide functionality the C++14 standard lacks
(like filesystem support). The utilities are used internally in the framework and are
only shortly discussed here. The utilities falling in this category are the filesystem
functions (see Section 5.6.3) and the string utilies (see Section 5.6.3).

5.6.1. Logging system

The logging system is build to handle input/output in the same way as std::cin and
std::cout. This approach is both very flexible and easy to read. The system is globally
configured, thus there exists only one logger, and no special local versions. To send a
message to the logging system at a level of LEVEL, the following can be used:

1 LOG(LEVEL) << "this is an example message with an integer and a double "
<< 1 << 2.0;↪→

A newline is added at the end of every log message. Multi-line log messages can also be
used: the logging system will automatically align every new line under the previous message
and will leave the header space empty on the new lines.

The system also allows for producing a message which is updated on the same line for simple
progress bar like functionality. It is enabled using the LOG_PROCESS(LEVEL, IDENTIFIER)
macro (where the IDENTIFIER is a special string to determine if the output should be
written to the same line or not). If the output is a terminal screen the logging output will
be colored to make it prettier to read. This will be disabled automatically for all devices
that are not terminals.

More details about the various logging levels can be found in Section 4.6.

5.6.2. Unit system

Correctly handling units and conversions is of paramount importance. Having a separate
C++ type for all different kind of units would however be too cumbersome for a lot of
operations. Therefore the units are stored in standard C++ floating point types in a default
unit which all the code in the framework uses for calculations. In configuration files as well
as for logging it is however very useful to provide quantities in a different unit.

The unit system allows adding, retrieving, converting and displaying units. It is a global
system transparently used throughout the framework. Examples of using the unit system
are given below:

48

1 // Define the standard length unit and an auxiliary unit
2 Units::add("mm", 1);
3 Units::add("m", 1e3);
4 // Define the standard time unit
5 Units::add("ns", 1);
6 // Get the units given in m/ns in the defined framework unit mm/ns
7 Units::get(1, "m/ns");
8 // Get the framework unit of mm/ns in m/ns
9 Units::convert(1, "m/ns");

10 // Give the unit in the best type (lowest number above one) as string
11 // input is default unit 2000mm/ns and ’best’ output is 2m/ns

(string)↪→

12 Units::display(2e3, {"mm/ns", "m/ns"});

More details about how the unit system is used within Allpix2 can be found in Section 4.1.1.

5.6.3. Internal utilities

Filesystem Provides functions to convert relative to absolute canonical paths, to iterate
through all files in a directory and to create new directories. These functions should be
replaced by the C++17 file system API [20] as soon as the framework minimum standard
is updated to C++17.

String utilities The STL only provides string conversions for standard types using
std::stringstream and std::to_string. It does not allow to parse strings encapsulated
in pairs of " characters and neither does it allow to integrate different units. Furthermore
it does not provide wide flexibility to add custom conversions for other external types in
either way. The Allpix2 to_string and from_string do allow for these flexible conversions
and it it extensively used in the configuration system. Conversions of numeric types with a
unit attached are automatically resolved using the unit system discussed in Section 5.6.2.
The Allpix2 tools system contain extensions to allow automatic conversions for ROOT and
Geant4 types as explained in Section 10.1.1. The string utilities also include trim and split
strings functions as they are missing in the STL.

5.7. Error Reporting and Exceptions

Allpix2 generally follows the principle to throw exceptions in all cases where something
is definitely wrong, it should never try to circumvent problems. Also error codes are not
supposed to be returned, only exceptions should be used to report fatal errors. Exceptions

49

are also thrown to signal for errors in the user configuration. The asset of this method is
that configuration and code is more likely to do what they are supposed to do.

For warnings and informational messages the logging should be used extensively. This helps
in both following the progress of the simulation as well as for debugging problems. Care
should however be taken to limit the amount of messages outside of the DEBUG and TRACE
levels. More details about the log levels and their usage is given in Section 4.6.

The base exceptions in Allpix2 are available in the utilities. The most important exception
base classes are the following:

• ConfigurationError: All errors related to incorrect user configuration. Could be a
non-existing configuration file, a missing key or an invalid parameter value.

• RuntimeError: All other errors arising at run-time. Could be related to incorrect
configuration if messages are not correctly passed or non-existing detectors are specified.
Could also be raised if errors arise while loading a library or running a module.

• LogicError: Problems related to modules that do not properly follow the specifica-
tions, for example if a detector module fails to pass the detector to the constructor.
These methods should never be raised for a well-behaving module and should therefore
not be triggerable by users. Reporting these type of errors can help developers during
their development of new modules.

Outside of the core framework, exceptions can also be used directly by the modules. There
are only two exceptions which should be used by typical modules to indicate errors:

• InvalidValueError: Available under the subset of configuration exceptions. Signals
any problem with the value of a configuration parameter that is not related to either
the parsing or the conversion to the required type. Can for example be used for
parameters where the possible valid values are limited, like the set of logging levels,
or for paths that do not exist. An example is shown below:

1 void run(unsigned int event_id) {
2 // Fetch a key from the configuration
3 std::string value = config.get("key");
4

5 // Check if it is a ’valid’ value
6 if(value != ’A’ && value != "B") {
7 // Raise an error if it the value is not valid
8 // provide configuration object, key and an explanation
9 throw InvalidValueError(config, "key", "A and B are the only

allowed values");↪→

10 }
11 }

50

• ModuleError: Available under the subset of module exceptions. Should be used
to indicate any runtime error in a module that is not directly caused by an invalid
configuration value. For example if it is not possible to write an output. A reason
should be given to indicate what the problem is.

51

6. Objects

Allpix2 ships a set of objects that should be used to transfer data between modules. These
objects can be send with the messaging system explained in Section 5.5. A typedef is
added to every object to provide an alternative name for the message directly linking to
the carried object.

Currently this list of supported objects are the following:

MCParticle
The Monte-Carlo truth information about the particle passage through the sensor. Both
the entry and the exit point are stored in the object, to approximate the track. The exact
handling of non-linear tracks due to for example in-sensor nuclear interactions, is up to
module. The MCParticle also stores an identifier of the particle type. The naming scheme
is again up to the module, but it is recommended to use PDG codes [21].

DepositedCharge
Set of charges that are deposited by an ionizing particle crossing the active material of
the sensor. The object stores both the local position in the sensor together with the total
number of deposited charges in elementary charge units. Also the time (in ns the internal
framework unit) of the deposition after the start of the event is stored.

PropagatedCharge
Set of charges that are propagated through the silicon sensor due to drift and/or diffusion
processes. The object should store the final local position of the propagation. This is either
on the pixel implant if the set of charges are ready to be collected, or on any other position
in the sensor if the set of charges got stuck or lost in another process. Timing information
about the total time to arrive at the final location, from the start of the event, can also be
stored.

PixelCharge
Set of charges that are collected at a single pixel. The pixel indices are stored in both the
x and y direction, starting to count from zero from the first pixel. Only the total number
of charges at a pixel is currently stored, the timing information of the individual charges
can be retrieved from the related PropagatedCharge objects.

52

PixelHit
Digitized hit of a pixel after digitization. The object allows to store both the time and a
signal value. The time can be stored in an arbitrary unit used to timestamp the hits. The
signal can also store different kind of information depending on the type of the digitizer
used. Examples of the signal information is the ’true’ charge, the number of ADC counts
or the ToT (time-over-threshold).

53

7. Modules

7.1. DefaultDigitizer

Maintainer: Simon Spannagel (simon.spannagel@cern.ch)
Status: Functional
Input: PixelCharge
Output: PixelHit

Description

Very simple digitization module which translates the collected charges into a digitized
signal proportional to the input charge. It simulates noise contributions from the readout
electronics as gaussian noise and allow for a configurable threshold.

In detail, the following steps are performed for every pixel charge:

• A Gaussian noise is added to the input charge value in order to simulate input noise
to the preamplifier circuit

• A charge threshold is applied. Only if the threshold is surpassed, the pixel is accounted
for - for all values below the threshold, the pixel charge is discarded. The actually
applied threshold is smeared with a Gaussian distribution on an event-by-event basis
allowing for the simulation of fluctuations of the threshold level.

• An inaccuracy of the ADC is simulated using an additional Gaussian smearing, this
allows to take ADC noise into account.

Parameters

• electronics_noise : Standard deviation of the Gaussian noise in the electronics
(before applying the threshold). Defaults to 110 electrons.

• threshold : Threshold for considering the readout charge as a hit. Defaults to 600
electrons.

• threshold_smearing : Standard deviation of the Gaussian uncertainty in the threshold
charge value. Defaults to 30 electrons.

• adc_smearing : Standard deviation of the Gaussian noise in the ADC conversion
(after applying the threshold). Defaults to 300 electrons.

• output_plots : Enables output histograms to be be generated from the data in every
step (slows down simulation considerably). Disabled by default.

54

mailto:simon.spannagel@cern.ch

Usage

The default configuration is equal to the following
[DefaultDigitizer]
electronics_noise = 110e
threshold = 600e
threshold_smearing = 30e
adc_smearing = 300e

7.2. DepositionGeant4

Maintainer: Koen Wolters (koen.wolters@cern.ch)
Status: Functional
Output: DepositedCharge, MCParticle

Description

Module that creates the deposits in the sensitive devices, wrapper around the Geant4 logic.
Depends on a geometry construction in the GeometryBuilderGeant4 module. Initializes
the physical processes to simulate and create a particle source that will generate particles
in every event. For all particles passing the detectors in the geometry, the energy loss
is converted into charge deposits for all steps (of customizable size) in the sensor. The
information about the truth particle passage is also made available for later modules.

Parameters

• physics_list: Internal Geant4 list of physical processes to simulate. More information
about possible physics list and recommendations for default is available here.

• charge_creation_energy : Energy needed to create a charge deposit. Defaults to the
energy needed to create an electron-hole pair in silicon (3.64 eV).

• max_step_length : Maximum length of a simulation step in every sensitive device.
• particle_position : Position of the particle source in the world geometry.
• particle_type : Type of the Geant4 particle to use in the source. Refer to this page

for information about the available types of particles.
• particle_radius_sigma : Standard deviation of the radius from the particle source.
• particle_direction : Direction of the particle as a unit vector.
• particle_energy : Energy of the generated particle.
• number_of_particles : Number of particles to generate in a single event. Defaults to

one particle.

55

mailto:koen.wolters@cern.ch
http://geant4.cern.ch/support/proc_mod_catalog/physics_lists/referencePL.shtml
http://geant4.cern.ch/G4UsersDocuments/UsersGuides/ForApplicationDeveloper/html/TrackingAndPhysics/particle.html

Usage

A solid default configuration to use, simulating a test beam of 120 GeV pions, is the
following:
[DepositionGeant4]
physics_list = QGSP_BERT
particle_type = "pi+"
particle_energy = 120GeV
particle_position = 0 0 -1mm
particle_direction = 0 0 1
number_of_particles = 1

7.3. DetectorHistogrammer

Maintainer: Koen Wolters (koen.wolters@cern.ch), Paul Schuetze (paul.schuetze@desy.de)
Status: Functional
Input: PixelHit

Description

This module should only give an overview of the produced simulation data for a quick
inspection and simple checks. For more sophisticated analyses the output from one of the
output writers should be used to produce the necessary information.

Within the module, a clustering is performed. Looping over the PixelHits, hits being
adjacent to an existing cluster are added to this cluster. Clusters are merged if there are
multiple adjacent clusters. If the PixelHit is free-standing, a new cluster is created.

The module creates the following histograms:

• A hitmap of all pixels in the pixel grid, displaying the number of times a pixel has
been hit during the simulation run.

• A cluster map indicating the cluster positions for the whole simulation run.
• Total number of pixel hits (event size) per event (an event can have multiple particles).
• Cluster sizes in x, y and total per cluster.

Parameters

No parameters

56

mailto:koen.wolters@cern.ch
mailto:paul.schuetze@desy.de

Usage

This module is normally bound to a specific detector to plot, for example to the ‘dut’:
[DetectorHistogrammer]
name = "dut"

7.4. ElectricFieldReader

Maintainer: Koen Wolters (koen.wolters@cern.ch)
Status: Functional

Description

Adds an electric field to the detector from the standard supported sources. By default every
detector has no electric field in the sensitive device.

The reader does work with two models of electric field to read:

• For constant electric fields it add a constant electric field in the z-direction towards
the pixel implants.

• For linear electric fields the field has a constant slope determined by the bias voltage
and the depletion voltage. The sensor is always depleted from the implant side, the
direction of the electric field depends on the sign of the bias voltage (with negative
bias voltage the electric field vector points towards the backplane and vice versa).

• For electric fields in the INIT format it parses a file the INIT format used in the
PixelAV software. An example of a electric field in this format can be found in
etc/example_electric_field.init in the repository. An explanation of the format is
available in the source code of this module.

Furthermore the module can produce a plot the electric field profile on an projection axis
normal to the x,y or z-axis at a particular plane in the sensor.

Parameters

• model : Type of the electric field model, either linear, constant or init.
• bias_voltage : Voltage over the whole sensor thickness. Used to calculate the electric

field if the model parameter is equal to constant or linear.
• file_name : Location of file containing the electric field in the INIT format. Only

used if the model parameter has the value init.
• output_plots : Determines if output plots should be generated (slows down simula-

tion). Disabled by default.

57

mailto:koen.wolters@cern.ch

• output_plots_steps : Number of bins in both the X and Y direction in the 2D
histogram used to plot the electric field in the detectors. Only used if output_plots
is enabled.

• output_plots_project : Axis to project the 3D electric field on to create the 2D
histogram. Either x, y or z. Only used if output_plots is enabled.

• output_plots_projection_percentage : Percentage on the projection axis to plot the
electric field profile. For example if output_plots_project is x and this parameter is
0.5 the profile is plotted in the Y,Z-plane at the X-coordinate in the middle of the
sensor. Default is 0.5.

• output_plots_single_pixel: Determines if the whole sensor has to be plotted or only
a single pixel. Defaults to true (plotting a single pixel).

Usage

An example to add a linear field of 50 volt bias to all the detectors, apart from the detector
with name ‘dut’ where a specific INIT field is added, is given below
[ElectricFieldReader]
model = "linear"
voltage = 50V

[ElectricFieldReader]
name = "dut"
model = "init"
Should point to the example electric field in the repositories etc directory
file_name = "example_electric_field.init"

7.5. GenericPropagation

Maintainer: Koen Wolters (koen.wolters@cern.ch), Simon Spannagel (simon.spannagel@
cern.ch)
Status: Functional
Input: DepositedCharge
Output: PropagatedCharge

Description

Simulates generic propagation of electrons (ignoring the corresponding holes) through the
sensitive devices of every detector. Splits up the set of deposited charges in multiple smaller
sets of charges (containing multiple charges) that are propagated together. The propagation
process is fully independent, the individual sets of propagated charges do not influence

58

mailto:koen.wolters@cern.ch
mailto:simon.spannagel@cern.ch
mailto:simon.spannagel@cern.ch

each other. The maximum size of the set of propagated charges and the accuracy of the
propagation can be controlled.

The propagation consists of a combination of drift and diffusion simulation. The drift is
calculated using the charge carrier velocity derived from the electron mobility parameteri-
zation by C. Jacobini et al. in A review of some charge transport properties of silicon. The
correct mobility for either electrons or holes is automatically chosen, based on the type of
the charge carrier under consideration. Thus, also input with both electrons and holes is
treated properly.

The two parameters propagate_electrons and propagate_holes allow to control, which
type of charge carrier is propagated to their respective electrodes. Either one of the carrier
types can be selected, or both can be propagated. It should be noted that this will slow
down the simulation considerably since twice as many carriers have to be handled and
it should only be used where sensible. The direction of the propagation depends on the
electric field configured, and it should be ensured that the carrier types selected are actually
transported to the implant side.

An fourth-order Runge-Kutta-Fehlberg method with fifth-order error estimation is used
to integrate the electric field. After every Runge-Kutta step a random walk is simulated
by applying Gaussian diffusion calculated from the electron mobility, the temperature and
the time step. The propagation stops when the set of charges reaches the border of the
sensor.

The propagation module also produces a variety of output plots for debugging and publi-
cation purposes. The plots include a 3D line plot of the path of all separate propagated
charges from their deposits, with nearby paths having different colors. In this coloring
scheme, electrons are marked in blue colors, while holes are presented in different shades of
orange. In addition, a 3D GIF animation for the drift of all individual sets of charges (with
the size of the point proportional to the number of charges in the set) can be produced.
Finally, the module produces 2D contour animations in all the planes normal to the X, Y
and Z axis, showing the concentration flow in the sensor. It should be noted that generating
the animations is very time-consuming and should be switched off even when investigating
drift behavior.

Parameters

• temperature : Temperature in the sensitive device, used to estimate the diffusion
constant and therefore the strength of the diffusion.

• charge_per_step : Maximum number of charges to propagate together. Divides the
total deposited charge at a specific point in sets of this number of charges and a set
with the remaining amount of charges. A value of 10 charges per step is used if this
value is not specified.

59

https://doi.org/10.1016/0038-1101(77)90054-5

• spatial_precision : Spatial precision to aim for. The timestep of the Runge-Kutta
propagation is adjusted to reach this spatial precision after calculating the error from
the fifth-order error method. Defaults to 0.1nm.

• timestep_start : Timestep to initialize the Runge-Kutta integration with. Better
initialization of this parameter reduces the time to optimize the timestep to the
spatial_precision parameter. Default value is 0.01ns.

• timestep_min : Minimum step in time to use for the Runge-Kutta integration regard-
less of the spatial precision. Defaults to 0.5ps.

• timestep_max : Maximum step in time to use for the Runge-Kutta integration
regardless of the spatial precision. Defaults to 0.1ns.

• integration_time : Time within which charge carriers are propagated. After exceed-
ing this time, no further propagation is performed for the respective carriers. Defaults
to the LHC bunch crossing time of 25ns.

• propagate_electrons : Select whether electron-type charge carriers should be propa-
gated to the electrodes. Defaults to true.

• propagate_holes : Select whether hole-type charge carriers should be propagated to
the electrodes. Defaults to false.

• output_plots : Determines if output plots should be generated for every event. This
causes a very huge slow down of the simulation, it is not recommended to use this
with a run of more than a single event. Disabled by default.

• output_plots_step : Timestep to use between two points that are plotted. Indirectly
determines the amount of points plotted. Defaults to timestep_max if not explicitly
specified.

• output_plots_theta : Viewpoint angle of the 3D animation and the 3D line graph
around the world X-axis. Defaults to zero.

• output_plots_phi : Viewpoint angle of the 3D animation and the 3D line graph
around the world Z-axis. Defaults to zero.

• output_plots_use_pixel_units : Determines if the plots should use pixels as unit
instead of metric length scales. Defaults to false (thus using the metric system).

• output_plots_use_equal_scaling : Determines if the plots should be produced with
equal distance scales on every axis (also if this implies that some points will fall out
of the graph). Defaults to true.

• output_animations : In addition to the other output plots, also write a GIF animation
of the charges drifting towards the electrodes. This is very slow and writing the
animation takes a considerable amount of time, therefore defaults to false.

• output_animations_time_scaling : Scaling for the animation to use to convert the
actual simulation time to the time step in the animation. Defaults to 1.0e9, meaning
that every nanosecond is equal to an animation step of a single second.

• output_animations_contour_max_scaling : Scaling to use for the contour color axis
from the theoretical maximum charge at every single plot step. Default is 10, meaning
that the maximum of the color scale axis is equal to the total amount of charges divided
by ten (values above this are displayed in the same maximum color). Parameter can
be used to improve the color scale of the contour plots.

60

Usage

A example of generic propagation for all Timepix sensors at room temperature using packets
of 25 charges is the following:
[GenericPropagation]
type = "timepix"
temperature = 293K
charge_per_step = 25

7.6. GeometryBuilderGeant4

Maintainer: Koen Wolters (koen.wolters@cern.ch)
Status: Functional

Description

Constructs the Geant4 geometry from the internal geometry. First constructs the world
geometry from the internal world size, with a certain margin, using a particular world
material. Then continues to create all the detectors using their internal detector models.

All the available detector models are fully supported. This builder can create extra support
layers of the following materials (note that these should be specified in lowercase):

• silicon
• plexiglass
• kapton
• copper
• epoxy
• carbonfiber
• g10
• solder

Parameters

• world_material : Material of the world, should either be air or vacuum. Default to
air if not specified.

• world_margin_percentage : Percentage of the world size to add extra compared to
the internally calculated minimum world size. Defaults to 0.1, thus 10%.

• world_minimum_margin : Minimum absolute margin to add to all sides of the internally
calculated minimum world size. Defaults to zero for all axis, thus not having any
minimum margin.

61

mailto:koen.wolters@cern.ch

• GDML_output_file : Optional file to write the geometry to in GDML format. Can
only be used if this Geant4 version has GDML support (will throw an error otherwise).
Otherwise also likely produces an error due to incomplete GDML implementation in
Geant4.

Usage

To create a Geant4 geometry using vacuum as world material and with always exactly one
meter added to the minimum world size on every side, the following configuration can be
used.
[GeometryBuilderGeant4]
world_material = "vacuum"
world_margin_percentage = 0
world_minimum_margin = 1m 1m 1m

7.7. GeometryBuilderTGeo

Maintainer: Neal Gauvin (neal.gauvin@unige.ch)
Status: OUTDATED (not supported)

Description

Constructs an TGeo representation of the internal geometry. Creates all detector devices
and also add optional appliances and an optional test structure. Code is based on Geant4
geometry construction in original AllPix. Only supports hybrid pixel detectors.

Parameters

• world_material : Material used to use to represent the world. There are two possible
options, either Vacuum or Air.

• world_size : Size of the world (centered at the origin). Defaults to a box of 1x1x1
cubic meter.

• build_appliances : Determines if appliances are enabled.
• appliances_type : Type of the appliances to be constructed (see source code for

options). Only used if build_appliances is enabled.
• build_test_structures : Determines if the test structure has to be build.
• output_file : Optional ROOT file to write the constructed geometry into
• GDML_output_file : Optional file to write geometry to in the GDML format. Can
only be used if the used ROOT version has GDML support (will throw an error
otherwise).

62

mailto:neal.gauvin@unige.ch

Usage

An example to construct a simple TGeo geometry without appliances and no test structure
and a world of 5x5x5 cubic meters.
[GeometryBuilderTGeo]
world_material = "Air"
world_size = 5m 5m 5m
build_appliances = 0
build_test_structures = 0

7.8. LCIOWriter

Maintainer: Andreas Nurnberg (andreas.nurnberg@cern.ch)
Status: Functional
Input: PixelHit

Description

Writes pixel hit data to LCIO file, compatible to EUTelescope analysis framework.

Parameters

• file_name: LCIO file to write. Extension .slcio
• pixel_type: EUtelescope pixel type to create. Options: EUTelSimpleSparsePixelDe-
fault = 1, EUTelGenericSparsePixel = 2, EUTelTimepix3SparsePixel = 5 (Default:
EUTelGenericSparsePixel)

• detector_name: Detector name written to the run header. Default: “EUTelescope”
• output_collection_name: Name of the LCIO collection containing the pixel data.

Default: “zsdata_m26”

Usage
[LCIOWriter]

7.9. RCEWriter

Maintainer: Salman Maqbool (salman.maqbool@cern.ch)
Status: Functional
Input: PixelHit

63

mailto:andreas.nurnberg@cern.ch
mailto:salman.maqbool@cern.ch

Description

Reads in the Pixel hit messages and saves track data in the RCE format, appropriate
for the Proteus telescope reconstruction software. An event tree and a sensor tree and
their branches are initialized when the module first runs. The event tree is initialized with
the appropriate branches, while a sensor tree is created for each detector and the brances
initialized from a strcut. Initially, the program loops over all the pixel hit messages, and
then over all the hits in the message, and writes data to the tree branches in the RCE
Format. If there are no hits, the event is saved with nHits = 0, with the other fields
empty.

Parameters

• file_name : Name of the data file (without the .root suffix) to create, relative to the
output directory of the framework. The default filename is rce_data.root

Usage

To create the default file (with the name rce_data.root) an instantiation without arguments
can be placed at the end of the configuration:
[RCEWriter]

7.10. ROOTObjectReader

Maintainer: Koen Wolters (koen.wolters@cern.ch)
Status: Functional
Output: all objects in input file

Description

Converts all the object data stored in the ROOT data file produced by ROOTObjectWriter
back in to messages (see the description of ROOTObjectWriter for more information about
the format). Reads all the trees defined in the data file that contain Allpix objects. Creates
a message from the objects in the tree for every event (as long as the file contains the same
number of events as used in the simulation).

Currently it is not yet possible to exclude objects from being read. In case not all objects
should be converted to messages, these objects need to be removed from the file before the
simulation is started.

64

mailto:koen.wolters@cern.ch

Parameters

• file_name : Location of the ROOT file containing the trees with the object data

Usage

This module should be at the beginning of the main configuration. An example to read the
objects from the file data.root is:
[ROOTObjectReader]
file_name = "data.root"

7.11. ROOTObjectWriter

Maintainer: Koen Wolters (koen.wolters@cern.ch)
Status: Functional
Input: all objects in simulation

Description

Reads in all the messages dispatched by the framework that contain Allpix objects (which
should normally be all messages). Every of those messages contain a vector of objects,
which are converted to a vector to pointers of the object base class. The first time a new
type of object is received a new tree is created having the class name of this object as name.
Then for every combination of detector and message name a new branch is created in this
tree. A leaf is automatically created for every member of the object. The vector of objects
is then written to the file for every event it is dispatched (saving an empty vector if that
event did not include the specific object).

If the same type of messages is dispatched multiple times, it is combined and written to the
same tree. Thus the information about those separate messages is lost. It is also currently
not possible to limit the data that is written to the file. If only a subset of the objects is
needed than the rest of the data should be discarded afterwards.

Parameters

• file_name : Name of the data file (without the .root suffix) to create, relative to the
output directory of the framework.

65

mailto:koen.wolters@cern.ch

Usage

To create the default file (with the name data.root) an instantiation without arguments can
be placed at the end of the configuration:
[ROOTObjectWriter]

7.12. SimpleTransfer

Maintainer: Koen Wolters (koen.wolters@cern.ch)
Status: Functional
Input: PropagatedCharge
Output: PixelCharge

Description

Combines individual sets of propagated charges together to a set of charges on the sensor
pixels. The module does a simple direct mapping to the nearest pixel, ignoring propagated
charges that are too far away from the implants or outside the pixel grid. Timing information
for the pixel charges is currently not yet produced, but can be fetched from the linked
propagated charges.

Parameters

• max_depth_distance : Maximum distance in the depth direction (normal to the pixel
grid) from the implant side for a propagated charge to be taken into account.

Usage

For typical simulation purposes a max_depth_distance around 10um should be sufficient,
leading to the following configuration:
[SimpleTransfer]
max_depth_distance = 10um

7.13. VisualizationGeant4

Maintainer: Koen Wolters (koen.wolters@cern.ch)
Status: Functional

66

mailto:koen.wolters@cern.ch
mailto:koen.wolters@cern.ch

Description

Constructs a visualization viewer to display the constructed Geant4 geometry. The module
supports all type of viewers included in Geant4, but the default Qt visualization with the
OpenGL viewer is recommended as long as the Geant4 version supports it.

The module allows for changing a variety of parameters to control the output visualization
both for the different detector components and the display of the particle beam.

Parameters

• mode : Determines the mode of visualization. Options are gui which starts a Qt
visualization window that contains the driver (as long as the chosen driver supports
that), terminal starting both the visualization viewer together with a Geant4 terminal
or none which only starts the driver itself (and directly closes it if the driver is
asynchronous). Defaults to gui.

• driver : Geant4 driver used to visualize the geometry. All the supported options
can be found online and depend on the build options of the Geant4 version used.
The default OGL should normally be used with the gui option if the visualization
should be accumulated, otherwise terminal is the better option. Moreover only the
VRML2FILE driver has been tested. This driver should be used with mode equal
to none. Defaults to the OpenGL driver OGL.

• accumulate : Determines if all the events should be accumulated and displayed at
the end, or if only the last event should be kept and directly visualized (if the driver
supports that). Defaults to true, thus accumulating the events and only displaying
the final result.

• accumulate_time_step : Time step to sleep every event to allow time to display it if
the events are not accumulated. Only used if accumulate has been set to disabled.
Default value is 100ms.

• simple_view : Determines if the visualization should be simplified, not displaying the
pixel grid and other parts that are replicated multiple times. Default value is true.
This parameter should normally not be changed as it will cause a very huge slowdown
of the visualization for a sensor with a typical amount of pixels.

• background_color : Color of the background of the viewer. Defaults to white.
• view_style : Style to use to display the elements in the geometry. Options include
wireframe and surface. By default the elements are displayed as solid surface.

• transparency : Default transparency percentage of all the detector elements, only
used if the view_style is set to display solids. The default value is 0.4, giving a
moderate amount of transparency.

• display_trajectories : Determines if the trajectories of the particles should be
displayed. Defaults to enabled.

67

https://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/ForApplicationDeveloper/html/ch08s03.html

• hidden_trajectories : Determines if the trajectory paths should be hidden inside
the detectors. Only used if the display_trajectories is enabled. Default value of the
parameter is true.

• trajectories_color_mode : Configures the way the trajectories are colored. First
option is generic, which colors all trajectories in the same way. The next option is
charge which bases the color on the charge. The last possible choice particle, colors
the trajectory based on the type of the particle.

• trajectories_color : Color of the trajectories if trajectories_color_mode is set to
generic. Default value is blue.

• trajectories_color_positive : Visualization color for positive particles. Only used
if trajectories_color_mode is equal to charge. Default is blue.

• trajectories_color_neutral : Visualization color for neutral particles. Only used if
trajectories_color_mode is equal to charge. Default is green.

• trajectories_color_negative : Visualization color for negative particles. Only used
if trajectories_color_mode is equal to charge. Default is red.

• trajectories_particle_colors : Array of combinations of particle id and color, used
to determine the particle colors if if trajectories_color_mode is equal to particle.
Refer to the Geant4 documentation for details about the ID’s of the particles.

• trajectories_draw_step : Determines if the steps of the trajectories should be plotted.
Defaults to enabled. Only used if the display_trajectories is enabled.

• trajectories_draw_step_size : Size of the markers used to display a trajectory step.
Defaults to 2 points. Only used if the trajectories_draw_step is enabled.

• trajectories_draw_step_color : Color of the markers used to display a trajectory
step. Default value is the color red. Only used if the trajectories_draw_step is
enabled.

• draw_hits : Determines if the hits in the detector should be displayed. Defaults to
false. Option is only useful if Geant4 hits are generated in a specific module.

• macro_init : Optional Geant4 macro to execute during initialization. Whenever
possible the configuration parameters above should be used instead of this option.

Usage

An example with a wireframe viewing style with the same color for every particle and
displaying the result after every event with 2s waiting time, is the following:
[VisualizationGeant4]
mode = "none"
view_style = "wireframe"
trajectories_color_mode = "generic"
accumulate = 0
accumulate_time_step = 2s

68

http://geant4.cern.ch/G4UsersDocuments/UsersGuides/ForApplicationDeveloper/html/TrackingAndPhysics/particle.html

8. Module & Detector Development

8.1. Implementing a New Module

Before creating a module it is essential to read through the framework module manager
documentation in Section 5.3, the information about the directory structure in Section 5.3.1
and the details of the module structure in Section 5.3.2. Thereafter the steps below should
provide enough details for starting with a new module ModuleName (constantly replacing
ModuleName with the real name of the new module):

1. Run the module initialization script at etc/scripts/make_module.sh in the repository.
The script will ask for the name of the model and the type (unique or detector-specific).
It creates the directory with a minimal example toe get started together with a setup
of the documentation in README.md.

2. Before continuing to implement the module it is recommended to check and update
the introductory documention in README.md. Also the Doxygen documentation in
ModuleName.hpp can be extended to give a basic description of the module.

3. Now the constructor, and possibly the init, run and/or finalize methods can be
written, depending on what the new module needs.

After this, it is up to the developer to implement all the required functionality in the
module. Keep considering however that at some point it may be beneficial to split up
modules to support the modular design of Allpix2. Various sources which may be primarily
useful during the development of the module include:

• The framework documentation in Section 5 for an introduction to the different parts
of the framework.

• The module documentation in Section 7 for a description of functionality other
modules already provide and to look for similar modules which can help during
development.

• The Doxygen (core) reference documentation included in the framework .

• The latest version of the source code of all the modules (and the core itself). Freely
available to copy and modify under the MIT license at https://gitlab.cern.ch/simonspa/
allpix-squared/tree/master.

Any module that may be useful for other people can be contributed back to the main
repository. It is very much encouraged to send a merge-request at https://gitlab.cern.ch/
simonspa/allpix-squared/merge_requests.

69

https://gitlab.cern.ch/simonspa/allpix-squared/tree/master
https://gitlab.cern.ch/simonspa/allpix-squared/tree/master
https://gitlab.cern.ch/simonspa/allpix-squared/merge_requests
https://gitlab.cern.ch/simonspa/allpix-squared/merge_requests

8.2. Adding a New Detector Model

Custom detector models can be easily added to the framework. Required information, before
writing the model, is Section 5.2.1 describing the file format, Section 4.1.1 for information
about the units used in Allpix2 and the full Section 5.4 describing the geometry and detector
models. In particular Section 5.4.3 explains all the parameters of the detector model. The
default models shipped in models could serve as examples. To write your own module follow
the steps below:

1. Create a new file with the internal name of the model followed by the .conf suffix
(for example your_model.conf).

2. Add a configuration parameter type with the type of the model, at the moment
either ’monolithic’ or ’hybrid’ for respectively monolithic sensors or hybrid models
with bump bonds.

3. Add all the required parameters and possibly other optional parameters explained in
Section 5.4.3.

4. Include the detector model in the search path of the framework by adding the
model_path parameter to the general setting of the main configuration (see Section
4.2) pointing to either directly to the detector model file or the detector containing
it (note that files in this path overwrite models with the same name in the default
model folder).

Models can be contributed to the repository to make them available to other users of the
framework. To add the detector model to the framework the configuration file should be
moved to the models folder of the repository. Then the file should be added to the installation
target in the CMakeLists.txt file in the models directory. Afterwards a merge-request can
be created at https://gitlab.cern.ch/simonspa/allpix-squared/merge_requests.

70

https://gitlab.cern.ch/simonspa/allpix-squared/merge_requests

9. Frequently Asked Questions

How do I run a module only for one detector?
This is only possible for detector modules (which are constructed to work on individual
detectors). To run it on a single detector one should add a parameter name specifying
the name of the detector (as given in the detector configuration file).

How do I run a module only for a specific detector type?
This is only possible for detector modules (which are constructed to work on individual
detectors). To run it for a specific type of detectors one should add a parameter type
with the type of the detector model (as given in the detector configuration file by the
model parameter).

How can I run the exact same type of module with different settings?
This is possible by using the input and output parameters of a module that specialize
the location where the messages from the modules are send to and received from. By
default both the input and the output of module defaults to the message without a
name.

How can I temporarily ignore a module during development?
The section header of a particular module in the configuration file can be replaced by
the string Ignore. The section and all of its key/value pairs are then ignored.

Can I get a high verbosity level only for a specific module?
Yes, it is possible to specify verbosity levels and log formats per module. This can be
done by adding a log_level and/or log_format key to a specific module to replace
the parameter in the global configuration sections.

I want to use a detector model with one or several small changes, do I have to create
a whole new model for this?
No, models can be specialized in the detector configuration file. This feature is
available to, for example, use models with different sensor thicknesses. To specialize a
detector model the key that should be changed in the standard detector model (like
sensor_thickness) should be added as key to the section of the detector configuration
(which is always required to already contain the position, orientation and the base
model). Only parameters in the header of detector models can be changed. If support
layers should be changed, or new support layers are needed, a new model should be
created instead.

How do I access the history of a particular object?
Many objects can include an internal link to related other objects (for example
getPropagatedCharges in the PixelCharge object), containing the history of the
object (thus the objects that were used to construct the current object). These
referenced objects are stored as special ROOT pointers inside the object, which can
only be accessed if the referenced object is available in memory. In Allpix2 this

71

requirement can be automatically fullfilled by also binding the history object in a
module, assuming the creating module actually saved the history with the object
which is not strictly required. During analysis the tree holding the referenced object
should be loaded and pointing to the same event entry as the object that request
the reference to load it. If the referenced object can not be loaded an exception is
required to be thrown by the retrieving method.

How do I access the Monte Carlo truth of a specific PixelHit?
The Monte Carlo truth is just part of the indirect history of a PixelHit. This means
that the Monte-Carlo truth can be fetched as described in the question above. However
take notice that there are multiple layers between a PixelHit and its MCParticles,
which are the PixelCharge, PropagatedCharges and DepositedCharges. These should
all be loaded in memory to make it possible to fetch the history. Because getting
the Monte Carlo truth of a PixelHit is quite a common thing a getMCParticles
convenience method is available which searches all the layers of the history and returns
an exception if any of the in between steps is not available or not loaded.

Can I import an electric field from TCAD and use that for simulating propagation?
Yes, the framework includes a tool to convert DF-ISE files from TCAD to an internal
format which Allpix2 can parse. More information about this tool can be found in
Section 10.2, instructions to import the generated field are given in Section 4.4.

72

10. Additional Tools & Resources

10.1. Framework Tools

10.1.1. ROOT and Geant4 utilities

The framework provides a set of methods to ease the integration of ROOT and Geant4 in
the framework. An important part is the extension of the custom conversion to_string
and from_string methods from the internal string utilities (see Section 5.6.3) to support
internal ROOT and Geant4 classes. This allows for directly reading configuration parameters
to those types, making the code in the modules both shorter and cleaner. Besides this, some
other conversions functions are provided together with other useful utilities (for example to
display a ROOT vector with units attached).

10.1.2. Runge-Kutta integrator

A fast Eigen-powered [3] Runge-Kutta integrator is provided as a tool to solve differential
equations. The Runge-Kutta integrator is build genericly and supports multiple methods
using different tableaus. It allows to integrate every system of equations in several steps
with customizable timestep. This time step can also be updated during the integration
depending on the error of the Runge-Kutta method (when a tableau with errors is used).

10.2. TCAD DF-ISE mesh converter

This code takes as input the .grd and .dat files from TCAD simulations. The .grd file
contains the vertex coordinates (3D or 2D) of each mesh node and the .dat file contains
the module of each electric field vector component for each mesh node, grouped by model
regions (such as silicon bulk or metal contacts). The regions are defined in the .grd file by
grouping vertices into edges, faces and, consecutively, volumes or elements.

A new regular mesh is created by scanning the model volume in regular X Y and Z steps
(not coinciding necessarily with original mesh nodes) and using a barycentric interpolation
method to calculate the respective electric field vector on the new point. The interpolation
uses the 4 closest, no-coplanar, neighbour vertex nodes that respective tetrahedron encloses
the query point. For the neighbours search, the software uses the Octree implementation
from the paper “Efficient Radius Neighbor Search in Three-dimensional Point Clouds” by
J. Behley et al (see below).

The output .init file (with the same .grd and .dat prefixe) can be imported into allpix (see
the User’s Manual for details). The INIT file has a header followed by a list of columns
organized as

73

node.x node.y node.z e-field.x e-field.y e-field.z

Features

• TCAD DF-ISE file format reader.
• Fast radius neighbor search for three-dimensional point clouds.
• Barycentric interpolation between non-regular mesh points.
• Several cuts available on the interpolation algorithm variables.
• Interpolated data visalisation tool.

Usage

Example .grd and .dat files can be found in the data folder with the example_data prefix.
To run the program the following should be executed from the installation folder:
bin/tcad_dfise_converter/dfise_converter -f <file_name_prefix> [<options>] [<arguments>]

The list with options can be accessed using the -h option. Default values are assumed for
the options not used. These are -R = “bulk” -r = 1 um -r = 0.5 um -m = 10 um -c =
std::numeric_limits::min() -x,y,z = 100 (option should be set using -x, -y and -z)

The output INIT file will be named with the same file_name_prefix as the .grd and .dat
files.

INIT files are read by specifying a file_name containing an .INIT file. The mesh_plotter
tool can be used from the installation folder as follows:
bin/tcad_dfise_converter/mesh_plotter -f <file_name> [<options>] [<arguments>]

The list with options and defaults is shown with the -h option. A default value of 100 is
used for the binning, but this can be changed. In a 3D mesh, the plane to be plotted must
be identified by using the option -p with argument xy, yz or zx, defaulting to yz. The data
to be ploted can be selected with the -d option, the arguments are ex, ey, ez for the vector
components or the default value n for the norm of the electric field.

Octree

corresponding paper: J. Behley, V. Steinhage, A.B. Cremers. Efficient Radius Neighbor
Search in Three-dimensional Point Clouds, Proc. of the IEEE International Conference on
Robotics and Automation (ICRA), 2015.

Copyright 2015 Jens Behley, University of Bonn. This project is free software made available
under the MIT License. For details see the OCTREE LICENSE file.

74

http://jbehley.github.io/papers/behley2015icra.pdf

10.3. ROOT Analysis Macros

Collection of macros to analyze the data generated by the framework. Currently contains
a single macro to convert the TTree of objects to a tree containing typical standard data
users are interested in. This is useful for simple comparisons with other frameworks.

Comparison tree

Read all the required tree from the given file and bind their contents to the objects defined
in the framework. Then creates an output tree and bind every branch to a simple arithmetic
type. Continues to loop over all the events in the tree and converting the stored data of
the various trees to the output tree. The final output tree contains branches for the cluster
sizes, aspect ratios, accumulated charge per event, the track position from the Monte-Carlo
truth and the reconstructed track using a very simple direct center of gravity calculation
using the charges without any corrections.

To construct a comparison tree using this macro follow these steps: 1. Open
root with the data file attached like root -l /path/to/data.root 2. Load the
current library of objects with .L path/to/libAllpixObjects.so 3. Build the
macro with .L path/to/constructComparisonTree.C++ 4. Run the macro with
auto tree = constructComparisonTree(_file0, "name_of_dut") 5. Open a new file
with auto file = new TFile("output.root", "RECREATE") 6. Write the tree with
tree->Write()

10.3.1. Remake project

Simple macro to show the possiblity to recreate source files for legacy objects stored in
ROOT data files from older versions of the framework. Can be used when the corresponding
dynamic library for that particular version is not accessible anymore. It is not possible to
add the methods of the objects and it is therefore not easily possible to reconstruct the
stored history (when available).

To recreate the project source files 1. Open root with the data file attached like
root -l /path/to/data.root 2. Build the macro with .L path/to/remakeProject.C++ 3.
Recreate the source files using remakeProject(_file0, "output_dir")

75

11. Acknowledgments

• Mathieu Benoit, John Idarraga, Samir Arfaoui and all other contributors to
the first version of AllPix, for their earlier work that inspired Allpix2.

• Neal Gauvin for interesting discussion, his experiments with TGeo and his help
implementing a visualization module.

• Paul Schütze for contributing his earlier work on simulating charge propagation
and providing help on simulations with electric fields.

• Marko Petric for his help setting up several software tools like continous integration
and automatic static-code analysis.

• Salman Maqbool for comments on the documentation and his help with porting
the detector models from the original AllPix.

• Moritz Kiehn for his contributions to the code and helpful discussions on different
matters concerning the simulation process.

• Mateus Vicente for his help in implementing a tool to interpolate electric fields
from a TCAD mesh format to the grid used in Allpix2.

We would also like to thank all others not listed here, that have contributed to the source
code, provided input or suggested improvements.

76

A. Output of Example Simulation

Possible output for the example simulation in Section 4.3 is given below:
(S) Welcome to Allpix^2 v0.3alpha5+14^g44961d2
(S) Initialized PRNG with system entropy seed 2756271465933902033
(S) Loaded 7 modules
(S) Initializing 14 module instantiations
(I) [I:DepositionGeant4] Using G4 physics list "QGSP_BERT"
(I) [I:DepositionGeant4] Not depositing charges in telescope1 because there is

no listener for its output
(I) [I:ElectricFieldReader:telescope1] Setting linear electric field from 50V

bias voltage and 50V depletion voltage
(I) [I:ElectricFieldReader:dut] Setting linear electric field from 50V bias

voltage and 50V depletion voltage
(I) [I:ElectricFieldReader:telescope2] Setting linear electric field from 50V

bias voltage and 50V depletion voltage
(S) Initialized 14 module instantiations
(S) Running event 1 of 5
(W) [R:DepositionGeant4] Dispatched message Message<allpix::MCParticle> from

DepositionGeant4 has no receivers!
(I) [R:DepositionGeant4] Deposited 182856 charges in sensor of detector dut
(W) [R:DepositionGeant4] Dispatched message Message<allpix::MCParticle> from

DepositionGeant4 has no receivers!
(W) [R:DepositionGeant4] Dispatched message Message<allpix::MCParticle> from

DepositionGeant4 has no receivers!
(I) [R:DepositionGeant4] Deposited 191740 charges in sensor of detector

telescope2
(W) [R:DepositionGeant4] Dispatched message Message<allpix::MCParticle> from

DepositionGeant4 has no receivers!
(I) [R:GenericPropagation:dut] Propagated 91428 charges in 1829 steps in average

time of 5.04796ns
(I) [R:GenericPropagation:telescope2] Propagated 95870 charges in 1918 steps in

average time of 5.04183ns
(I) [R:SimpleTransfer:dut] Transferred 91428 charges to 4 pixels
(I) [R:SimpleTransfer:telescope2] Transferred 95870 charges to 4 pixels
(I) [R:DefaultDigitizer:dut] Digitized 4 pixel hits
(I) [R:DefaultDigitizer:telescope2] Digitized 4 pixel hits
(W) [R:DefaultDigitizer:telescope2] Dispatched message Message<allpix::PixelHit>

from DefaultDigitizer:telescope2 has no receivers!
(S) Running event 2 of 5
(W) [R:DepositionGeant4] Dispatched message Message<allpix::MCParticle> from

DepositionGeant4 has no receivers!
(I) [R:DepositionGeant4] Deposited 56190 charges in sensor of detector dut
(W) [R:DepositionGeant4] Dispatched message Message<allpix::MCParticle> from

DepositionGeant4 has no receivers!

77

(W) [R:DepositionGeant4] Dispatched message Message<allpix::MCParticle> from
DepositionGeant4 has no receivers!

(I) [R:DepositionGeant4] Deposited 328756 charges in sensor of detector
telescope2

(W) [R:DepositionGeant4] Dispatched message Message<allpix::MCParticle> from
DepositionGeant4 has no receivers!

(I) [R:GenericPropagation:dut] Propagated 28095 charges in 562 steps in average
time of 5.04909ns

(I) [R:GenericPropagation:telescope2] Propagated 164378 charges in 3293 steps in
average time of 4.37604ns

(I) [R:SimpleTransfer:dut] Transferred 28095 charges to 4 pixels
(I) [R:SimpleTransfer:telescope2] Transferred 164378 charges to 12 pixels
(I) [R:DefaultDigitizer:dut] Digitized 3 pixel hits
(I) [R:DefaultDigitizer:telescope2] Digitized 11 pixel hits
(W) [R:DefaultDigitizer:telescope2] Dispatched message Message<allpix::PixelHit>

from DefaultDigitizer:telescope2 has no receivers!
(S) Running event 3 of 5
(W) [R:DepositionGeant4] Dispatched message Message<allpix::MCParticle> from

DepositionGeant4 has no receivers!
(I) [R:DepositionGeant4] Deposited 53386 charges in sensor of detector dut
(W) [R:DepositionGeant4] Dispatched message Message<allpix::MCParticle> from

DepositionGeant4 has no receivers!
(W) [R:DepositionGeant4] Dispatched message Message<allpix::MCParticle> from

DepositionGeant4 has no receivers!
(I) [R:DepositionGeant4] Deposited 42496 charges in sensor of detector

telescope2
(W) [R:DepositionGeant4] Dispatched message Message<allpix::MCParticle> from

DepositionGeant4 has no receivers!
(I) [R:GenericPropagation:dut] Propagated 26693 charges in 534 steps in average

time of 5.04742ns
(I) [R:GenericPropagation:telescope2] Propagated 21248 charges in 425 steps in

average time of 5.03504ns
(I) [R:SimpleTransfer:dut] Transferred 26693 charges to 4 pixels
(I) [R:SimpleTransfer:telescope2] Transferred 21248 charges to 4 pixels
(I) [R:DefaultDigitizer:dut] Digitized 3 pixel hits
(I) [R:DefaultDigitizer:telescope2] Digitized 4 pixel hits
(W) [R:DefaultDigitizer:telescope2] Dispatched message Message<allpix::PixelHit>

from DefaultDigitizer:telescope2 has no receivers!
(S) Running event 4 of 5
(W) [R:DepositionGeant4] Dispatched message Message<allpix::MCParticle> from

DepositionGeant4 has no receivers!
(I) [R:DepositionGeant4] Deposited 43632 charges in sensor of detector dut
(W) [R:DepositionGeant4] Dispatched message Message<allpix::MCParticle> from

DepositionGeant4 has no receivers!

78

(W) [R:DepositionGeant4] Dispatched message Message<allpix::MCParticle> from
DepositionGeant4 has no receivers!

(I) [R:DepositionGeant4] Deposited 48516 charges in sensor of detector
telescope2

(W) [R:DepositionGeant4] Dispatched message Message<allpix::MCParticle> from
DepositionGeant4 has no receivers!

(I) [R:GenericPropagation:dut] Propagated 21816 charges in 437 steps in average
time of 5.03719ns

(I) [R:GenericPropagation:telescope2] Propagated 24258 charges in 486 steps in
average time of 5.06338ns

(I) [R:SimpleTransfer:dut] Transferred 21816 charges to 4 pixels
(I) [R:SimpleTransfer:telescope2] Transferred 24258 charges to 4 pixels
(I) [R:DefaultDigitizer:dut] Digitized 2 pixel hits
(I) [R:DefaultDigitizer:telescope2] Digitized 4 pixel hits
(W) [R:DefaultDigitizer:telescope2] Dispatched message Message<allpix::PixelHit>

from DefaultDigitizer:telescope2 has no receivers!
(S) Running event 5 of 5
(W) [R:DepositionGeant4] Dispatched message Message<allpix::MCParticle> from

DepositionGeant4 has no receivers!
(I) [R:DepositionGeant4] Deposited 40924 charges in sensor of detector dut
(W) [R:DepositionGeant4] Dispatched message Message<allpix::MCParticle> from

DepositionGeant4 has no receivers!
(W) [R:DepositionGeant4] Dispatched message Message<allpix::MCParticle> from

DepositionGeant4 has no receivers!
(I) [R:DepositionGeant4] Deposited 63184 charges in sensor of detector

telescope2
(W) [R:DepositionGeant4] Dispatched message Message<allpix::MCParticle> from

DepositionGeant4 has no receivers!
(I) [R:GenericPropagation:dut] Propagated 20462 charges in 410 steps in average

time of 5.06975ns
(I) [R:GenericPropagation:telescope2] Propagated 31592 charges in 632 steps in

average time of 5.03731ns
(I) [R:SimpleTransfer:dut] Transferred 20462 charges to 4 pixels
(I) [R:SimpleTransfer:telescope2] Transferred 31592 charges to 4 pixels
(I) [R:DefaultDigitizer:dut] Digitized 3 pixel hits
(I) [R:DefaultDigitizer:telescope2] Digitized 4 pixel hits
(W) [R:DefaultDigitizer:telescope2] Dispatched message Message<allpix::PixelHit>

from DefaultDigitizer:telescope2 has no receivers!
(S) Finished run of 5 events
(I) [F:DepositionGeant4] Deposited total of 2103360 charges in 4 sensor(s) (

average of 105168 per sensor for every event)
(I) [F:GenericPropagation:dut] Propagated total of 188494 charges in 3772 steps

in average time of 5.04917ns
(I) [F:GenericPropagation:telescope2] Propagated total of 337346 charges in 6754

steps in average time of 4.71792ns

79

(I) [F:SimpleTransfer:telescope1] Transferred total of 0 charges to 0 different
pixels

(I) [F:SimpleTransfer:dut] Transferred total of 188494 charges to 4 different
pixels

(I) [F:SimpleTransfer:telescope2] Transferred total of 337346 charges to 12
different pixels

(I) [F:DefaultDigitizer:telescope1] Digitized 0 pixel hits in total
(I) [F:DefaultDigitizer:dut] Digitized 15 pixel hits in total
(I) [F:DefaultDigitizer:telescope2] Digitized 27 pixel hits in total
(I) [F:DetectorHistogrammer:dut] Plotted 15 hits in total, mean position is

(125.667,125.6)
(S) Finalization completed
(S) Executed 14 instantiations in 2 seconds, spending 41% of time in slowest

instantiation DepositionGeant4
(S) Average processing time is 401 ms/event, event generation at 2 Hz

80

References

[1] S. Agostinelli et al. “Geant4 - a simulation toolkit”. In: Nuclear Instruments and
Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment 506.3 (2003), pp. 250–303. issn: 0168-9002. doi: https://doi.
org/10.1016/S0168-9002(03)01368-8.

[2] ROOT - An Object Oriented Data Analysis Framework. Vol. 389. Sept. 1996, pp. 81–
86.

[3] Gaël Guennebaud, Benoît Jacob, et al. Eigen v3. 2010. url: http://eigen.tuxfamily.org.
[4] Mathieu Benoit et al. The AllPix Simulation Framework. Mar. 21, 2017. url: https:

//twiki.cern.ch/twiki/bin/view/Main/AllPix.
[5] Mathieu Benoit, John Idarraga, and Samir Arfaoui. AllPix. Generic simulation for

pixel detectors. url: https://github.com/ALLPix/allpix.
[6] Daniel Hynds, Simon Spannagel, and Koen Wolters. The Allpix2 Project Issue Tracker.

July 27, 2017. url: https://gitlab.cern.ch/simonspa/allpix-squared/issues.
[7] Rene Brun and Fons Rademakers. Building ROOT. url: https://root.cern.ch/building-

root.
[8] Geant4 Collaboration. Geant4 Installation Guide. Building and Installing Geant4

for Users and Developers. 2016. url: http : / / geant4 . web . cern . ch / geant4 /
UserDocumentation/UsersGuides/InstallationGuide/html/.

[9] Daniel Hynds, Simon Spannagel, and Koen Wolters. The Allpix2 Project Repository.
Aug. 2, 2017. url: https://gitlab.cern.ch/simonspa/allpix-squared/.

[10] S. Aplin et al. “LCIO: A persistency framework and event data model for HEP”.
In: Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), IEEE.
Anaheim, CA, Oct. 2012, pp. 2075–2079. doi: 10.1109/NSSMIC.2012.6551478.

[11] X. Llopart et al. “Timepix, a 65k programmable pixel readout chip for arrival
time, energy and/or photon counting measurements”. In: Nuclear Instruments and
Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment 581.1 (2007). VCI 2007, pp. 485–494. issn: 0168-9002. doi:
http://dx.doi.org/10.1016/j.nima.2007.08.079.

[12] Geant4 Collaboration. Geant4 User’s Guide for Application Developers. Visualization.
2016. url: https://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/
ForApplicationDeveloper/html/ch08.html.

[13] Rene Brun and Fons Rademakers. ROOT User’s Guide. Trees. url: https://root.
cern.ch/root/htmldoc/guides/users-guide/Trees.html.

[14] Rainer Bartholdus, Su Dong, et al. ATLAS RCE Development Lab. url: https :
//twiki.cern.ch/twiki/bin/view/Atlas/RCEDevelopmentLab.

81

http://dx.doi.org/https://doi.org/10.1016/S0168-9002(03)01368-8
http://dx.doi.org/https://doi.org/10.1016/S0168-9002(03)01368-8
http://eigen.tuxfamily.org
https://twiki.cern.ch/twiki/bin/view/Main/AllPix
https://twiki.cern.ch/twiki/bin/view/Main/AllPix
https://github.com/ALLPix/allpix
https://gitlab.cern.ch/simonspa/allpix-squared/issues
https://root.cern.ch/building-root
https://root.cern.ch/building-root
http://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/InstallationGuide/html/
http://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/InstallationGuide/html/
https://gitlab.cern.ch/simonspa/allpix-squared/
http://dx.doi.org/10.1109/NSSMIC.2012.6551478
http://dx.doi.org/http://dx.doi.org/10.1016/j.nima.2007.08.079
https://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/ForApplicationDeveloper/html/ch08.html
https://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/ForApplicationDeveloper/html/ch08.html
https://root.cern.ch/root/htmldoc/guides/users-guide/Trees.html
https://root.cern.ch/root/htmldoc/guides/users-guide/Trees.html
https://twiki.cern.ch/twiki/bin/view/Atlas/RCEDevelopmentLab
https://twiki.cern.ch/twiki/bin/view/Atlas/RCEDevelopmentLab

[15] Tom Preston-Werner. TOML. Tom’s Obvious, Minimal Language. url: https://
github.com/toml-lang/toml.

[16] John Gruber and Aaron Swartz. Markdown. url: https://daringfireball.net/projects/
markdown/.

[17] John MacFarlane. Pandoc. A universal document converter. url: http://pandoc.org/.
[18] Michael Kerrisk. Linux Programmer’s Manual. ld.so, ld-linux.so - dynamic link-

er/loader. url: http://man7.org/linux/man-pages/man8/ld.so.8.html.
[19] Eric W. Weisstein. Euler Angles. From MathWorld – A Wolfram Web Resource. url:

http://mathworld.wolfram.com/EulerAngles.html.
[20] Beman Dawes. Adopt the File System TS for C++17. Feb. 2016. url: http://www.

open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0218r0.html.
[21] L. Garren et al. Monte Carlo Particle Numbering Scheme. 2015. url: http://hepdata.

cedar.ac.uk/lbl/2016/reviews/rpp2016-rev-monte-carlo-numbering.pdf.

82

https://github.com/toml-lang/toml
https://github.com/toml-lang/toml
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
http://pandoc.org/
http://man7.org/linux/man-pages/man8/ld.so.8.html
http://mathworld.wolfram.com/EulerAngles.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0218r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0218r0.html
http://hepdata.cedar.ac.uk/lbl/2016/reviews/rpp2016-rev-monte-carlo-numbering.pdf
http://hepdata.cedar.ac.uk/lbl/2016/reviews/rpp2016-rev-monte-carlo-numbering.pdf

	Quick Start
	Introduction
	Historical Summary
	Scope of this Manual
	Support and Reporting Issues
	Contributing Code

	Installation
	Supported Operating Systems
	Prerequisites
	Downloading the source code
	Initializing the dependencies
	Configuration via CMake
	Compilation and installation
	Testing

	Getting Started
	Configuration Files
	Parsing types and units
	Main configuration
	Detector configuration

	Framework parameters
	Setting up the Simulation Chain
	Adding More Modules
	Redirect Module Inputs and Outputs
	Logging and Verbosity Levels
	Storing Output Data

	The Allpix2 Framework
	Architecture of the Core
	Configuration and Parameters
	File format
	Accessing parameters

	Modules and the Module Manager
	Files of a Module
	Module structure
	Module instantiation

	Geometry and Detectors
	Changing and accessing the geometry
	Coordinate systems
	Detector models

	Passing Objects using Messages
	Methods to process messages
	Message flags

	Logging and other Utilities
	Logging system
	Unit system
	Internal utilities

	Error Reporting and Exceptions

	Objects
	Modules
	DefaultDigitizer
	DepositionGeant4
	DetectorHistogrammer
	ElectricFieldReader
	GenericPropagation
	GeometryBuilderGeant4
	GeometryBuilderTGeo
	LCIOWriter
	RCEWriter
	ROOTObjectReader
	ROOTObjectWriter
	SimpleTransfer
	VisualizationGeant4

	Module & Detector Development
	Implementing a New Module
	Adding a New Detector Model

	Frequently Asked Questions
	Additional Tools & Resources
	Framework Tools
	ROOT and Geant4 utilities
	Runge-Kutta integrator

	TCAD DF-ISE mesh converter
	ROOT Analysis Macros
	Remake project

	Acknowledgments
	Output of Example Simulation
	References

