
Allpix2 User Manual
Koen Wolters (koen.wolters@cern.ch)

Simon Spannagel (simon.spannagel@cern.ch)
Daniel Hynds (daniel.hynds@cern.ch)

July 6, 2022

Version v1.0

cb This manual is licensed under the Creative Commons Attribution 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

1

mailto:koen.wolters@cern.ch
mailto:simon.spannagel@cern.ch
mailto:daniel.hynds@cern.ch
http://creativecommons.org/licenses/by/4.0/

Contents

1. Quick Start 5

2. Introduction 6
2.1. Scope of this Manual . 7
2.2. Support and Reporting Issues . 7
2.3. Contributing Code . 8

3. Installation 9
3.1. Supported Operating Systems . 9
3.2. Prerequisites . 9
3.3. Downloading the source code . 10
3.4. Initializing the dependencies . 10
3.5. Configuration via CMake . 11
3.6. Compilation and installation . 12
3.7. Testing . 12

4. Getting Started 13
4.1. Configuration Files . 13

4.1.1. Parsing types and units . 13
4.1.2. Main configuration . 16
4.1.3. Detector configuration . 18

4.2. Framework parameters . 20
4.3. Setting up the Simulation Chain . 21
4.4. Adding More Modules . 24
4.5. Redirect Module Inputs and Outputs . 26
4.6. Logging and Verbosity Levels . 27
4.7. Storing Output Data . 28

5. The Allpix2 Framework 30
5.1. Architecture of the Core . 31
5.2. Configuration and Parameters . 31

5.2.1. File format . 32
5.2.2. Accessing parameters . 33

5.3. Modules and the Module Manager . 34
5.3.1. Files of a Module . 34
5.3.2. Module structure . 37
5.3.3. Module instantiation . 38
5.3.4. Parallel execution of modules . 39

5.4. Geometry and Detectors . 39
5.4.1. Changing and accessing the geometry 40
5.4.2. Coordinate systems . 41

2

5.4.3. Detector models . 41
5.5. Passing Objects using Messages . 45

5.5.1. Methods to process messages . 46
5.5.2. Message flags . 48

5.6. Logging and other Utilities . 48
5.6.1. Logging system . 49
5.6.2. Unit system . 49
5.6.3. Internal utilities . 50

5.7. Error Reporting and Exceptions . 51

6. Objects 53
6.1. Object History . 53
6.2. Object Types . 53

7. Modules 55
7.1. CorryvreckanWriter . 55
7.2. DefaultDigitizer . 55
7.3. DepositionGeant4 . 57
7.4. DetectorHistogrammer . 59
7.5. ElectricFieldReader . 59
7.6. GenericPropagation . 61
7.7. GeometryBuilderGeant4 . 64
7.8. LCIOWriter . 65
7.9. ProjectionPropagation . 66
7.10. RCEWriter . 67
7.11. ROOTObjectReader . 68
7.12. ROOTObjectWriter . 69
7.13. SimpleTransfer . 70
7.14. VisualizationGeant4 . 71

8. Module & Detector Development 74
8.1. Implementing a New Module . 74
8.2. Adding a New Detector Model . 75

9. Frequently Asked Questions 76

10.Additional Tools & Resources 78
10.1. Framework Tools . 78

10.1.1. ROOT and Geant4 utilities . 78
10.1.2. Runge-Kutta integrator . 78

10.2. TCAD DF-ISE mesh converter . 78
10.3. ROOT Analysis Macros . 80

11.Acknowledgments 82

3

A. Output of Example Simulation 83

References 86

4

1. Quick Start

This chapter serves as a swift introduction to Allpix2 for users who prefer to start quickly
and learn the details while simulating. The typical user should skip the next paragraphs
and continue reading Section 2 instead.

Allpix2 is a generic simulation framework for pixel detectors. It provides a modular, flexible
and user-friendly structure for the simulation of independent detectors in the geometry.
The framework currently relies on the Geant4 [1], ROOT [2] and Eigen3 [3] libraries which
need to be installed and loaded before using Allpix2.

The minimal, default installation can be installed by executing the commands below. More
detailed installation instructions can be found in Section 3.

$ git clone https://gitlab.cern.ch/simonspa/allpix-squared
$ cd allpix-squared
$ mkdir build && cd build/
$ cmake ..
$ make install
$ cd ..

The binary can then be executed with the provided example configuration file as follows:

$ bin/allpix -c etc/example.conf

Hereafter, the example configuration can be copied and adjusted to the needs of the user.
This example contains a simple setup of two test detectors. It simulates the whole process,
starting from the passage of the beam, the deposition of charges in the detectors, the
particle propagation and the conversion of the collected charges to digitized pixel hits. All
generated data is finally stored on disk on ROOT TTrees for later analysis.

After this quick start it is very much recommended to proceed to the other sections of
this user manual. For quickly resolving common issues, the Frequently Asked Questions in
Section 9 may be particularly useful.

5

2. Introduction

Allpix2 is a generic simulation framework for silicon tracker and vertex detectors written in
modern C++. The goal of the Allpix2 framework is to provide and easy-to-use package
for simulating the performance of Silicon detectors, starting with the passage of ionizing
radiation through the sensor and finishing with the the digitization of hits in the readout
chip.

The framework builds upon other packages to perform tasks in the simulation chain, most
notably Geant4 [1] for the deposition of charge carriers in the sensor and ROOT [2] for
producing histograms and storing the produced data. The core of the framework focuses
on the simulation of charge transport in semiconductor detectors and the digitization to
hits in the frontend electronics. The framework does not perform a reconstruction of the
particle tracks.

Allpix2 is designed as a modular framework, allowing for an easy extension to more complex
and specialized detector simulations. The modular setup also allows to separate the core
of the framework from the implementation of the algorithms in the modules, leading to a
framework which is both easier to understand and to maintain. Besides modularity, the
Allpix2 framework was designed with the following main design goals in mind (listed from
most to least important):

1. Reflects the physics

• A run consists of several sequential events. A single event here refers to an
independent passage of one or multiple particles through the setup

• Detectors are treated as separate objects for particles to pass through

• All relevant information must be contained at the very end of processing every
single event (sequential events)

2. Ease of use (user-friendly)

• Simple, intuitive configuration and execution ("does what you expect")

• Clear and extensive logging and error reporting capabilities

• Implementing a new module should be feasible without knowing all details of
the framework

3. Flexibility

• Event loop runs sequence of modules, allowing for both simple and complex user
configurations

• Possibility to run multiple different modules on different detectors

• Limit flexibility for the sake of simplicity and ease of use

6

Allpix2 has been designed following some ideas previously implemented in the AllPix [4, 5]
project. Originally written as a Geant4 user application, it has been successfully used for
simulating a variety of different detector setups through the years.

2.1. Scope of this Manual

This document is meant to be the primary User’s Guide for Allpix2. It contains both an
extensive description of the user interface and configuration possibilities and a detailed
introduction to the code base for potential developers. This manual is designed to:

• Guide all new users through the installation

• Introduce new users to the toolkit for the purpose of running their own simulations

• Explain the structure of the core framework and the components it provides to the
simulation modules

• Provide detailed information about all modules and how to use and configure them

• Describe the required steps for adding new detector models and implementing new
simulation modules

Within the scope of this document, only an overview of the framework can be provided
and more detailed information on the code itself can be found in the Doxygen reference
manual [doxygen] available online. No programming experience is required from novice
users, but knowledge of (modern) C++ will be useful in the later chapters and might
contribute to the overall understanding of the mechanisms.

2.2. Support and Reporting Issues

As for most of the software used within the high-energy particle physics community, no
professional support for this software can be offered. The authors are, however, happy to
receive feedback on potential improvements or problem arising. Reports on issues, questions
concerning the software as well as the documentation and suggestions for improvements are
very much appreciated. These should preferably be brought up on the issues tracker of the
project which can be found in the repository [6].

7

2.3. Contributing Code

Allpix2 is a community project that lives from active participation in the development and
code contributions from users. We encourage users to discuss their needs either via the issue
tracker of the repository [6] or the developer’s mailing list to receive ideas and guidance
on how to implement a specific feature. Getting in touch with other developers early in
the development cycle prevents from spending time on features which already exist or are
currently developed by someone else.

The repository contains a few tools to facilitate contributions.

8

3. Installation

This section aims at providing details and instructions on how to build and install Allpix2.
An overview of possible build configurations is given. After installing and loading the
required dependencies, there are various options to customize the installation of Allpix2.
This chapter contains details on the standard installation process and information about
custom build configurations.

3.1. Supported Operating Systems

Allpix2 is designed to run without issues on either a recent Linux distribution or Mac OSX.
The continuous integration of the project ensures correct building and functioning of the
software framework on CentOS 7 (with GCC and LLVM), SLC6 (with GCC and LLVM)
and Mac OS Sierra (OS X 10.12, with AppleClang). Microsoft Windows is not supported.

3.2. Prerequisites

If the framework is to be compiled and executed on CERN’s LXPLUS service, all build
dependencies can be loaded automatically from the CVMFS file system as described in
Section 3.4.

The core framework is compiled separately from the individual modules and Allpix2 has
therefore only one required dependency: ROOT 6 (versions below 6 are not supported!) [2].
Otherwise all required dependencies need to be installed before building Allpix2. Please
refer to [7] for instructions on how to install ROOT. ROOT has several components of
which the GenVector package is required to run Allpix2. This package is included in the
default build.

For some modules, additional dependencies are necessary. For details about the depen-
dencies and their installation visit the module documentation in Section 7. The following
dependencies are needed to compile the standard installation:

• Geant4 [1]: Simulates the particle beam, depositing charges in the detectors with the
help of the constructed geometry. See the instructions in [8] for details on how to
install the software. All Geant4 data sets are required to run the modules successfully.
It is recommended to enable the Geant4 Qt extensions to allow visualization of the
detector setup and the simulated particle tracks. A useful set of CMake flags to build
a functional Geant4 package would be:

-DGEANT4_INSTALL_DATA=ON
-DGEANT4_BUILD_MULTITHREADED=OFF
-DGEANT4_USE_GDML=ON

9

-DGEANT4_USE_QT=ON
-DGEANT4_USE_XM=ON
-DGEANT4_USE_OPENGL_X11=ON
-DGEANT4_USE_SYSTEM_CLHEP=OFF

• Eigen3 [3]: Vector package to do Runge-Kutta integration in the generic charge
propagation module. Eigen is available in almost all Linux distributions through the
package manager. Otherwise it can be easily installed since it is a header-only library.

Extra flags needs to be set for building an Allpix2 installation without these dependencies.
Details about these configuration options are given in Section 3.5.

3.3. Downloading the source code

The latest version of Allpix2 can be downloaded from the CERN Gitlab repository [9]. For
production environments it is recommended to only download and use tagged software
versions since the versions available from the git branches are considered development
versions and might exhibit unexpected behavior.

However, for developers it is recommended to always use the latest available version from
the git master branch. The software repository can be cloned as follows:

$ git clone https://gitlab.cern.ch/simonspa/allpix-squared
$ cd allpix-squared

3.4. Initializing the dependencies

Before continuing with the build, the necessary setup scripts for ROOT and Geant4 (unless
a build without Geant4 modules is attempted) should be executed. In a Bash terminal
on a private Linux machine this means executing the following two commands from their
respective installation directories (replacing <root_install_dir> with the local ROOT
installation directory and likewise for Geant):

$ source <root_install_dir>/bin/thisroot.sh
$ source <geant4_install_dir>/bin/geant4.sh

On the CERN LXPLUS service, a standard initialization script is available to load all
dependencies from the CVMFS infrastructure. This script should be run as follows (from
the main repository directory):

$ source etc/scripts/setup_lxplus.sh

10

3.5. Configuration via CMake

Allpix2 uses the CMake build system to configure, build and install the core framework
as well as its modules. An out-of-source build is recommended: this means CMake should
not be directly executed in the source folder. Instead a build folder should be created,
from which CMake should be run. For a standard build without any flags this implies
executing:

$ mkdir build
$ cd build
$ cmake ..

CMake can be run with several extra arguments to change the type of installation. These
options can be set with -Doption (see the end of this section for an example). Currently
the following options are supported:

• CMAKE_INSTALL_PREFIX: The directory to use as a prefix for installing the
binaries, libraries and data. Defaults to the source directory (where the folders bin/
and lib/ are added).

• CMAKE_BUILD_TYPE: Type of build to install, defaults to RelWithDebInfo
(compiles with optimizations and debug symbols). Other possible options are Debug
(for compiling with no optimizations, but with debug symbols and extended tracing
using the Clang Address Sanitizer library) and Release (for compiling with full
optimizations and no debug symbols).

• MODEL_DIRECTORY: Directory to install the internal models to. Defaults
to not installing if the CMAKE_INSTALL_PREFIX is set to the directory
containing the sources (the default). Otherwise the default value is equal to the
directory <CMAKE_INSTALL_PREFIX>/share/allpix/. The install directory is
automatically added to the model search path used by the geometry model parsers to
find all the detector models.

• BUILD_ModuleName: If the specific module ModuleName should be installed or
not. Defaults to ON for most modules, however some modules with large additional
dependencies such as LCIO [10] are disabled by default. This set of parameters allows
to configure the build for minimal requirements as detailed in Section 3.2.

• BUILD_ALL_MODULES: Build all included modules, defaulting to OFF. This
overwrites any selection using the parameters described above.

An example of a custom debug build, without the GeometryBuilderGeant4 module and
with installation to a custom directory is shown below:

11

$ mkdir build
$ cd build
$ cmake -DCMAKE_INSTALL_PREFIX=../install/ \

-DCMAKE_BUILD_TYPE=DEBUG \
-DBUILD_GeometryBuilderGeant4=OFF ..

3.6. Compilation and installation

Compiling the framework is now a single command in the build folder created earlier
(replacing <number_of_cores> > with the number of cores to use for compilation):

$ make -j<number_of_cores>

The compiled (non-installed) version of the executable can be found at src/exec/allpix in
the build folder. Running Allpix2 directly without installing can be useful for developers.
It is not recommended for normal users, because the correct library and model paths are
only fully configured during installation.

To install the library to the selected installation location (defaulting to the source directory)
requires the following command:

$ make install

The binary is now available as bin/allpix in the installation directory. The example configu-
ration files are not installed as they should only be used as a starting point for your own
configuration. They can however be used to check if the installation was successful. Running
the allpix binary with the example configuration (bin/allpix -c etc/example.conf)
should pass the test without problems if a standard installation is used.

3.7. Testing

The build system of the framework is configured such, that it provides a set of automated
tests which can be executed to ensure a correct compilation and functionality of the
framework.

The tests use the example configuration delivered with the source code and can be started
from the build directory of Allpix2 by invoking

$ make test

All tests are expected to pass.

12

4. Getting Started

This Getting Started guide is written with a default installation in mind, meaning that
some parts may not apply if a custom installation was used. When the allpix binary is used,
this refers to the executable installed in bin/allpix in your installation path. Remember
that before running any Allpix2 simulation, ROOT and likely Geant4 should be initialized.
Refer to Section 3.4 on instructions how to load these libraries.

4.1. Configuration Files

The framework is configured with simple human-readable configuration files. The con-
figuration format is described in detail in Section 5.2.1. The configuration consists of
several section headers within [and] brackets and a section without header at the start.
Every section contain a set of key/value pairs separated by the = character. Comments are
indicated using the has symbol (#).

The framework has the following three required layers of configuration files:

• The main configuration: The most important configuration file and the file that is
passed directly to the binary. Contains both the global framework configuration and
the list of modules to instantiate together with their configuration. An example can
be found in the repository at etc/example.conf. More details and a more thorough
example are found in Section 4.1.2.

• The detector configuration passed to the framework to determine the geometry.
Describes the detector setup, containing the position, orientation and model type of
all detectors. An example is available in the repository at etc/example_detector.conf.
Introduced in Section 4.1.3.

• The detector models configuration. Contain the parameters describing a particular
type of detector. Several models are already provided by the framework, but new
types of detectors can easily be added. See models/test.conf in the repository for an
example. Please refer to Section 8.2 for more details about adding new models.

In the following paragraphs, the available types and the unit system are explained and an
introduction to the different configuration files is given.

4.1.1. Parsing types and units

The Allpix2 framework supports the use of a variety of types for all configuration values.
The module specifies how the value type should be interpreted. An error will be raised if
either the key is not specified in the configuration file, the conversion to the desired type is
not possible, or if the given value is outside the domain of possible options. Please refer to

13

the module documentation in Section 7 for the list of module parameters and their types.
Parsing the value roughly follows common-sense (more details can be found in Section 5.2.2).
A few special rules do apply:

• If the value is a string, it may be enclosed by a single pair of double quotation marks
("), which are stripped before passing the value to the modules. If the string is not
enclosed by quotation marks, all whitespace before and after the value is erased. If
the value is an array of strings, the value is split at every whitespace or comma (’)
that is not enclosed in quotation marks.

• If the value is a boolean, either numerical (0, 1) or textual (false, true) represen-
tations are accepted.

• If the value is a relative path, that path will be made absolute by adding the
absolute path of the directory that contains the configuration file where the key is
defined.

• If the value is an arithmetic type, it may have a suffix indicating the unit. The list
of base units is shown in Table 1.

If no units are specified, values will always be interpreted in the base units of the
framework. In some cases this can lead to unexpected results. E.g. specifying a bias
voltage as bias_voltage = 50 results in an applied voltage of 50 MV. Therefore it is
strongly recommended to always specify units in the configuration files.

The internal base units of the framework are not chosen for user convenience but for
maximum precision of the calculations and in order to avoid the necessity of conversions in
the code.

Combinations of base units can be specified by using the multiplication sign * and the
division sign / that are parsed in linear order (thus V m

s2 should be specified as V ∗m/s/s).
The framework assumes the default units (as given in Table 1) if the unit is not explicitly
specified. It is recommended to always specify the unit explicitly for all parameters that
are not dimensionless as well as for angles.

Examples of specifying key/values pairs of various types are given below:

1 # All whitespace at the front and back is removed
2 first_string = string_without_quotation
3 # All whitespace within the quotation marks is preserved
4 second_string = " string with quotation marks "
5 # Keys are split on whitespace and commas
6 string_array = "first element" "second element","third element"
7 # Integer and floats can be specified in standard formats
8 int_value = 42

14

Table 1: List of units supported by Allpix2

Quantity Default unit Auxiliary units

Length mm (millimeter)

nm (nanometer)
um (micrometer)
cm (centimeter)
dm (decimeter)
m (meter)
km (kilometer)

Time ns (nanosecond)

ps (picosecond)
us (microsecond)
ms (millisecond)
s (second)

Energy MeV (megaelectronvolt)

eV (electronvolt)
keV (kiloelectronvolt)
GeV (gigaelectronvolt)

Temperature K (kelvin)
Charge e (elementary charge) C (coulomb)

Voltage MV (megavolt) V (volt)
kV (kilovolt)

Angle rad (radian) deg (degree)
mrad (milliradian)

15

9 float_value = 123.456e9
10 # Units can be passed to arithmetic type
11 energy_value = 1.23MeV
12 time_value = 42ns
13 # Units are combined in linear order
14 acceleration_value = 1.0m/s/s
15 # Thus the quantity below is the same as 1.0deg*kV*K/m/s
16 random_quantity = 1.0deg*kV/m/s*K
17 # Relative paths are expanded to absolute
18 # Path below will be /home/user/test if the config file is in

/home/user↪→

19 output_path = "test"
20 # Booleans can be represented in numerical or textual style
21 my_switch = true
22 my_other_switch = 0

4.1.2. Main configuration

The main configuration consists of a set of sections specifying the modules used. All modules
are executed in the linear order in which they are defined. There are a few section names
which have a special meaning in the main configuration, namely the following:

• The global (framework) header sections: These are all zero-length section headers
(including the one at the beginning of the file) and all sections marked with the header
[Allpix] (case-insensitive). These are combined and accessed together as the global
configuration, which contain all parameters of the framework itself (see Section 4.2 for
details). All key-value pairs defined in this section are also inherited by all individual
configurations as long the key is not defined in the module configuration itself.

• The ignore header sections: All sections with name [Ignore] are ignored. Key-value
pairs defined in the section as well as the section itself are being discarded by the
parser. These section headers are useful for quickly enabling and disabling individual
modules by replaing their actual name by an ignore section header.

All other section headers are used to instantiate modules. Installed modules are loaded
automatically. If problems arise please review the loading rules described in Section 5.3.3.

Modules can be specified multiple times in the configuration files, but it depends on their
type and configuration if this allowed. The type of the module determines how the module
is instantiated:

• If the module is unique, it is instantiated only a single time irrespective of the amount
of detectors. These kind of modules should only appear once in the whole configuration
file unless a different inputs and outputs are used as explained in Section 4.5.

16

• If the module is detector-specific, it is instantiated once for every detector it is
configured to run on. By default, an instantiation is created for all detectors defined
in the detector configuration file (see Section 4.1.3, lowest priority) unless one or both
of the following parameters are specified:

– name: An array of detector names the module should be executed for. Replaces
all global and type-specific modules of the same kind (highest priority).

– type: An array of detector type the module should be executed for. Instantiated
after considering all detectors specified by the name parameter above. Replaces
all global modules of the same kind (medium priority).

Within the same module, the order of the individual instances in the configuration
file is irrelevant.

A valid example configuration using the detector configuration above could be:

1 # Key is part of the empty section and therefore the global
configuration↪→

2 string_value = "example1"
3 # The location of the detector configuration is a global parameter
4 detectors_file = "manual_detector.conf"
5 # The Allpix section is also considered global and merged with the

above↪→

6 [Allpix]
7 another_random_string = "example2"
8

9 # First run a unique module
10 [MyUniqueModule]
11 # This module takes no parameters
12 # [MyUniqueModule] cannot be instantiated another time
13

14 # Then run detector modules on different detectors
15 # First run a module on the detector of type Timepix
16 [MyDetectorModule]
17 type = "timepix"
18 int_value = 1
19 # Replace the module above for ‘dut‘ with a specialized version
20 # this does not inherit any parameters from earlier modules
21 [MyDetectorModule]
22 name = "dut"
23 int_value = 2
24 # Run the module on the remaining unspecified detector (‘telescope1‘)

17

25 [MyDetectorModule]
26 # int_value is not specified, so it uses the default value

This configuration can however not be executed in practice because MyUniqueModule and
MyDetectorModule do not exist. In the following paragraphs, a fully functional albeit simple
configuration file with valid configuration including a detector configuration is presented.

4.1.3. Detector configuration

The detector configuration consist of a set of sections describing the detectors in the setup.
Each section starts with a header describing the name used to identify the detector. All
names have to be unique, thus using the same detector name multiple times is not possible.
Every detector should contain all of the following parameters:

• A string referring to the type of the detector model. The model should exist in the
search path described in Section 5.4.3.

• The 3D position in the world frame in the order x, y, z. See Section 5.4 for details.

• The orientation specified as X-Y-Z extrinsic Euler angle. This means the detector is
rotated first around the X-axis, then around the world’s Y-axis and then around the
world’s Z-axis. Alternatively the orientation can be set in an X-Z-X extrinsic Euler
angle, refer to Section 5.4 for details.

Furthermore it is possible to specialize certain parameters of the detector models, which
is explained in more detail in Section 5.4.3. This allows to quickly adapt e.g. the sensor
thickness of a certain detector without altering the actual detector model file.

An example configuration file of one test detector and two Timepix [11] models is:

1 # name the first detector ‘telescope1‘
2 [telescope1]
3 # set the type to the "test" detector model
4 type = "test"
5 # place it at the origin of the world frame
6 position = 0 0 0mm
7 # use the default orientation
8 orientation = 0 0 0
9

10 # name the second detector ‘dut‘ (device under test)
11 [dut]
12 # set the type to the "timepix" detector model
13 type = "timepix"
14 # set the position in the world frame
15 position = 100um 100um 10mm

18

Figure 1: Visualization of a particle passing through the telescope setup defined in the
detector configuration file

16 # rotate 20 degrees around the world x-axis
17 orientation = 20deg 0 0
18

19 # name the third detector ‘telescope2‘
20 [telescope2]
21 # set the type to the "timepix" detector model
22 type = "timepix"
23 # place it 50 mm up in the z-axis direction from the origin
24 position = 0 0 50mm
25 # use the default orientation
26 orientation = 0 0 0

Figure 1 shows a visualization of the setup described in the file. This configuration is used
in the rest of this chapter for explaining concepts.

19

4.2. Framework parameters

The Allpix2 framework provides a set of global parameters which control and alter its
behavior:

• detectors_file: Location of the file describing the detector configuration (intro-
duced in Section 4.1.3). The only required global parameter: the framework will fail
if it is not specified.

• number_of_events: Determines the total number of events the framework should
simulate. Equivalent to the amount of times the modules are run. Defaults to one
(simulating a single event).

• root_file: Location relative to the output_directory where the ROOT output
data of all modules will be written to. Default value is modules.root. Directories
within the ROOT file will be created automatically for all module instantiations.

• log_level: Specifies the lowest log level which should be reported. Possible values
are FATAL, STATUS, ERROR, WARNING, INFO and DEBUG, where all options are case-
insensitive. Defaults to the INFO level. More details and information about the log
levels and how to change them for a particular module can be found in Section 4.6.
Can be overwritten by the -v parameter on the command line.

• log_format: Determines the format to display. Possible options are SHORT, DEFAULT
and LONG, where all options are case-insensitive. More information can be found in
Section 4.6.

• log_file: File where the log output should be written to in addition to printing to
the standard output (usually the terminal). Only writes to standard output if this
option is not provided. Another (additional) location to write to can be specified on
the command line using the -l parameter.

• output_directory: Directory to write all output files into. Subdirectories are
created automatically for all module instantiations. This directory will also contain
the root_file specified via the parameter described above. Defaults to the current
working directory with the subdirectory output/ attached.

• random_seed: Seed for the global random seed generator used to initialize seeds for
module instantiations. A random seed from multiple entropy sources will be generated
if the parameter is not specified. Can be used to reproduce an earlier simulation run.

• library_directories: Additional directories to search for module libraries, before
searching the default paths. See Section 5.3.3 for details.

• model_path: Additional files or directories from which detector models should be read
besides the standard search locations. Refer to Section 5.4.3 for more information.

20

• experimental_multithreading: Enable EXPERIMENTAL multithreading for the
framework. This can speed up simulations of multiple detectors significantly. More
information about the multithreading in Section 5.3.4.

• workers: Specify the number of workers to use in total, should be strictly larger than
zero. Only used if experimental_multithreading is set to true. Defaults to the
number of native threads available on the system if this can be determined.

4.3. Setting up the Simulation Chain

In the following, the framework parameters are used to set up a fully functional simulation.
Module parameters are shortly introduced when they are first used. For more details about
these parameters, the respective module documentation in Section 7 should be consulted.
A typical simulation in Allpix2 contains at least the following components.

• The geometry builder, responsible for creating the external Geant4 geometry from
the internal geometry. In this document, internal geometry refers to the detector
parameters used by Allpix2 for coordinate transformations and conversions throughout
the simulation, while external geometry refers to the constructed Geant4 geometry
used for charge carrier deposition (and possibly visualization) only.

• The deposition module that simulates the particle beam that deposits charge carriers
in the detectors using the provided physics list (containing a description of the
simulated interactions) and the geometry created above.

• A propagation module that propagates the charges through the sensor.

• A transfer module that transfers the charges from the sensor and assigns them to a
pixel of the readout electronics.

• A digitizermodule which converts the charges in the pixel to a detector hit, simulating
the front-end electronics response.

• An output module, saving the data of the simulation. The Allpix2 standard file
format is a ROOT TTree as will be detailed in Section 4.7.

In this example, charge carriers will be deposited in the three sensors defined in the detector
configuration file in Section 4.1.3. Only the charge carriers deposited in the sensors of the
Timepix detector models are going to be propagated and digitized. Finally, some detector
histograms for the device under test (DUT) will be recorded as ROOT histograms and all
simulated objects (including the Monte Carlo truth) are stored to the Allpix2 ROOT file.
A configuration file implementing this could look like this:

21

1 # Initialize the global configuration
2 [Allpix]
3 # Run a total of 5 events
4 number_of_events = 5
5 # Use the short logging format
6 log_format = "SHORT"
7 # Location of the detector configuration
8 detectors_file = "manual_detector.conf"
9

10 # Read and instantiate the detectors and construct the Geant4 geometry
11 [GeometryBuilderGeant4]
12

13 # initialize physics list, setup the particle source and deposit the
charges↪→

14 [DepositionGeant4]
15 # Use one of the standard Geant4 physics lists
16 physics_list = FTFP_BERT_LIV
17 # Use a charged pion as particle
18 particle_type = "pi+"
19 # Set the energy of the particle
20 beam_energy = 120GeV
21 # The position of the beam
22 beam_position = 0 0 -1mm
23 # The direction of the beam
24 beam_direction = 0 0 1
25 # Use a single particle in a single ’event’
26 number_of_particles = 1
27

28 # Specify a linear electric field for all detectors
29 # NOTE: This will be explained in more detail later in the manual
30 [ElectricFieldReader]
31 # Use a linear field
32 model = "linear"
33 # Applied bias voltage to calculate the electric field from
34 bias_voltage = -100V
35 # Depletion voltage at which the given sensor is fully depleted
36 depletion_voltage = -50V
37

38 # Propagate the charges in the sensor
39 [GenericPropagation]
40 # Only propagate charges in the Timepix sensors
41 type = "timepix"

22

42 # Set the temperature of the sensor
43 temperature = 293K
44 # Propagate multiple charges together in one step for faster simulation
45 charge_per_step = 50
46

47 # Transfer the propagated charges to the pixels
48 [SimpleTransfer]
49 max_depth_distance = 5um
50

51 # Digitize the propagated charges
52 [DefaultDigitizer]
53 # Input noise added by the electronics
54 electronics_noise = 110e
55 # Threshold for a hit to be detected
56 threshold = 600e
57 # Noise of the threshold level
58 threshold_smearing = 30e
59 # Uncertainty added by the digitization
60 adc_smearing = 100e
61

62 # Save histograms to the ROOT output file
63 [DetectorHistogrammer]
64 # Save histograms only for the dut
65 name = "dut"
66

67 # Store all simulated objects to a ROOT file containing TTrees
68 [ROOTObjectWriter]
69 # File name of the output file
70 file_name = "allpix-squared_output"

This configuration is available in the repository at etc/manual.conf. The detector configura-
tion file from Section 4.1.3 can be found at etc/manual_detector.conf.

The simulation can be executed by passing the main configuration to the allpix binary as
follows:

$ allpix -c etc/manual.conf

The output should look similar to the sample log provided in Appendix A. The detector
histograms such as the hit map are stored in the ROOT file output/modules.root in the
TDirectory DetectorHistogrammer/.

If problems occur when exercising this example, it should be made sure that an up-to-
date and properly installed version of Allpix2 is used (see the installation instructions in

23

Section 3). If modules and models fail to load, more information about potential issues
with the library loading can be found in the detailed framework description in Section 5.

4.4. Adding More Modules

In the following, a few basic modules are discussed which might be of use for a very first
simulation.

Visualization Displaying the geometry and the particle tracks helps both in checking and
interpreting the results of a simulation. Visualization is fully supported through Geant4,
supporting all the options provided by Geant4 [12]. Using the Qt viewer with the OpenGL
driver is the recommended option as long as the installed version of Geant4 is built with
Qt support enabled.

To add the visualization, the VisualizationGeant4 section should be added at the end
of the configuration file. An example configuration with some useful parameters is given
below:

1 [VisualizationGeant4]
2 # Use the Qt gui
3 mode = "gui"
4

5 # Set transparency of the detector models (in percent)
6 transparency = 0.4
7 # Set viewing style (alternative is ’wireframe’)
8 view_style = "surface"
9

10 # Color trajectories by charge of the particle
11 trajectories_color_mode = "charge"
12 trajectories_color_positive = "blue"
13 trajectories_color_neutral = "green"
14 trajectories_color_negative = "red"

If Qt is not available, a VRML viewer can be used as an alternative, however it is
recommended to reinstall Geant4 with the Qt viewer included. The following steps are
necessary in order to use a VRML viewer:

• A VRML viewer should be installed on the operating system. Good options are for
example FreeWRL or OpenVRML.

• Subsequently, two environmental parameters have to be exported to the shell en-
vironment to inform Geant4 about the configuration: G4VRMLFILE_VIEWER should

24

point to the location of the viewer executable and G4VRMLFILE_MAX_FILE_NUM should
typically be set to 1 to prevent too many files from being created.

• Finally, the configuration section of the visualization module should be altered as
follows:

1 [VisualizationGeant4]
2 # Do not start the Qt gui
3 mode = "none"
4 # Use the VRML driver
5 driver = "VRML2FILE"

More information about all possible configuration parameters can be found in the module
documentation in Section 7.

Electric Fields The example configuration before already contained a module for adding
a linear electric field to the detectors. By default, detectors do not have any electric field
and no bias voltage is applied.

The section below calculates a linear electric field for every point in active sensor volume
based on the depletion voltage of the sensor and the actually applied bias voltage. The
sensor is always depleted from the implant side, the direction of the electric field depends
on the sign of the bias voltage as described in the module description in Section 7.

1 # Add an electric field
2 [ElectricFieldReader]
3 # Set the field type to ‘linear‘
4 model = "linear"
5 # Applied bias voltage to calculate the electric field from
6 bias_voltage = -50V
7 # Depletion voltage at which the given sensor is fully depleted
8 depletion_voltage = -10V

Allpix2 also provides the possibility to utilize a full electrostatic TCAD simulation for
the description of the electric field. In order to speed up the lookup of the electric field
values at different positions in the sensor, the adaptive TCAD mesh has to be interpolated
and transformed into a regular grid with configurable feature size before using it. Allpix2

comes with a converter tool which reads TCAD DF-ISE files from the sensor simulation,
interpolates the field and writes it out in the appropriate format. A more detailed description
of the tool can be found in Section 10.2. An example electric field (which the file name
used in the example above) can be found in the etc directory of the Allpix2 repository.

Electric fields can be attached to a specific detectors using the standard syntax for detector
binding. A possible configuration would be:

25

1 [ElectricFieldReader]
2 # Bind the electric field to the detector named ‘dut‘
3 name = "dut"
4 # Specify that the model is provided in the ‘init‘ electric field map

format converted from TCAD↪→

5 model = "init"
6 # Name of the file containing the electric field
7 file_name = "example_electric_field.init"

4.5. Redirect Module Inputs and Outputs

In the Allpix2 framework, modules by default exchange messages based on their in- and
output message types and the detector type. It is, however, possible to specify a name for
the incoming and outgoing message of every module in the simulation. This module will
then only receive messages dispatched with the name provided and send named messages
out to other modules listening for messages with a specific name. This enables running the
same module several times for the same detector, e.g. to test different parameter settings.

The message output name of a module can be changed by setting the output parameter
of the module to a unique value. The output of this module is then not sent to modules
without a configured input, because the default input listens only to data without a name.
The input parameter of a particular receiving module should therefore be set to match the
value of the output parameter. In addition it is allowed to set the input parameter to
the special value * to indicate that the module should listen to all messages irrespective of
their name.

An example of a configuration with two different settings for the digitization module is
shown below:

1 # Digitize the propagated charges with low noise levels
2 [DefaultDigitizer]
3 # Specify an output identifier
4 output = "low_noise"
5 # Low amount of noise added by the electronics
6 electronics_noise = 100e
7 # Default values are used for the other parameters
8

9 # Digitize the propagated charges with high noise levels
10 [DefaultDigitizer]
11 # Specify an output identifier
12 output = "high_noise"
13 # High amount of noise added by the electronics

26

14 electronics_noise = 500e
15 # Default values are used for the other parameters
16

17 # Save histogram for ’low_noise’ digitized charges
18 [DetectorHistogrammer]
19 # Specify input identifier
20 input = "low_noise"
21

22 # Save histogram for ’high_noise’ digitized charges
23 [DetectorHistogrammer]
24 # Specify input identifier
25 input = "high_noise"

4.6. Logging and Verbosity Levels

Allpix2 is designed to identify mistakes and implementation errors as early as possible and
tries to provide the user with clear indications about the problem. The amount of feedback
can be controlled using different log levels. The global log level can be set using the global
parameter log_level. The log level can be overridden for a specific module by adding the
log_level parameter to the respective configuration section. The following log levels are
supported:

• FATAL: Indicates a fatal error that will lead to direct termination of the application.
Typically only emitted in the main executable after catching exceptions as they are
the preferred way of fatal error handling as discussed in Section 5.7. An example for
a fatal error is an invalid configuration parameter.

• STATUS: Important informational messages about the status of the simulation. Is
only used for informational messages which have to be logged in every run such as
the global seed for pseudo-random number generators and the cuurent progress of the
run.

• ERROR: Severe error that should not occur during a normal well-configured sim-
ulation run. Frequently leads to a fatal error and can be used to provide extra
information that may help in finding the reason of the problem. For example used to
indicate the reason a dynamic library cannot be loaded.

• WARNING: Indicate conditions that should not occur normally and possibly lead
to unexpected results. The framework will however continue without problems after
a warning. A warning is for example issued to indicate that a output message is not
used and that a module may therefore do unnecessary work.

27

• INFO: Informational messages about the physics process of the simulation. Contains
summaries about the simulation details of every event and for the overall simulation.
Should typically produce maximum one line of output per event and module.

• DEBUG: In-depth details about the progress of the simulation and all physics details
of the simulation. Produces large volumes of output per event should therefore only
be used for debugging the physics simulation of the modules.

• TRACE: Messages to trace what the framework or a module is currently doing.
Unlike the DEBUG level, it does not contain any direct information about the
physics of the simulation but rather indicates which part of the module or framework
is currently running. Mostly used for software debugging or determining performance
bottlenecks in the simulations.

It is not recommended to set the log_level higher than WARNING in a typical
simulation as important messages could be missed. Setting too low logging levels should
also be avoided since printing many log messages will significantly slow down the simulation.

The logging system does also support a few different formats to display the log messages.
The following formats are supported via the global parameter log_format or the individual
module parameter with the same name:

• SHORT: Displays the data in a short form. Includes only the first character of the
log level followed by the configuration section header and the message.

• DEFAULT: The default format. Displays system time, log level, section header and
the message itself.

• LONG: Detailed logging format. Displays all of the above but also indicates source
code file and line where the log message was produced. This can help in debugging
modules.

More details about the logging system and the procedure for reporting errors in the code
can be found in Section 5.6.1 and 5.7.

4.7. Storing Output Data

Saving the output to persistent storage is of primary importance for later review and
analysis. Allpix2 primarily uses ROOT for storing output data, because it supports writing
arbitrary objects and is a standard tool in High-Energy Physics. The ROOTObjectWriter
automatically saves all objects created by the modules to a TTree [13]. It stores separate
trees for all object types and creates branches for every unique message name, a combination
of the detector, the module and the message output name as described in Section 4.5. For
each event, values are added to the leafs of the branches containing the data of the objects.

28

This allows for easy histogramming of the acquired data over the total run using standard
ROOT utilities.

Relations between objects within a single event are internally stored as ROOT TRefs [14]
allowing to retrieve related objects as long as these are loaded in memory. An exception
will be thrown when trying to access an object which is not in memory. Refer to Section
6.1 for more information about object history.

In order to save all objects of the simulation, a ROOTObjectWriter module has to be added
with a file_name parameter (without the “.root” suffix) to specify the file location of the
created ROOT file in the global output directory. The default file name is data, i.e. the
file data.root is created in the output directory. To replicate the default behaviour the
following configuration can be used:

1 # The object writer listens to all output data
2 [ROOTObjectWriter]
3 # specify the output file (default file name is used if omitted)
4 file_name = "data"

The generated output file can be analyzed using ROOT macros. A simple macro for
converting the results to a tree with standard branches for comparisons is described in
Section 10.3.

It is also possible to read object data back in in order to dispatch them as messages to
further modules. This feature is intended to allow splitting the execution of parts of the
simulation into independent steps, which can be repeated multiple times. The tree data can
be read using a ROOTObjectReader module, which automatically dispatches all objects to
the correct module instances. An example configuration for using this module could be:

1 # The object reader dispatches all objects in the tree
2 [ROOTObjectReader]
3 # path to the output data file, absolute or relative to the

configuration file↪→

4 file_name = "../output/data.root"

The Allpix2 framework comes with a few more output modules which allow storing data in
different formats, such as the LCIO persistency event data model [10] or the native RCE
file format [15]. Detailed descriptions of these modules can be found in Section 7.

29

5. The Allpix2 Framework

This section details the technical implementation of the Allpix2 framework and is mostly
intended to provide insight into the gearbox to potential developers and interested users.
The framework consists of the following four main components that together form Allpix2:

1. Core: The core contains the internal logic to initiate the modules, to provide the
geometry, to facilitate module communication and to run the event sequence. The
core keeps its dependencies to a minimum (it only relies on ROOT) and remains
independent from the other components as far as possible. It is the main component
discussed in this section.

2. Modules: A module is a set of methods which execute a part of the simulation chain.
Modules are build as separate libraries and loaded dynamically on demand by the
core. The available modules and their parameters are discussed in detail in Section 7.

3. Objects: Objects form the data passed around between modules using the message
framework provided by the core. Modules can listen and bind to messages with objects
they wish to receive. Messages are identified by the object type they are carrying,
but they can also be named to allow redirecting data to specific modules facilitating
more sophisticated simulation setups. Messages are meant to be read-only and a copy
of the data should be made if a module wishes to change the data. All objects are
compiled into a separate library which is automatically linked to every module. More
information about the messaging system and the supported objects can be found in
Section 5.5.

4. Tools: Allpix2 provides a set of header-only ’tools’ providing access to common logic
shared by various modules. Examples are the Runge-Kutta solver implemented using
the Eigen3 library and the set of template specializations for ROOT and Geant4
configurations. More information about the tools can be found in Section 10. This set
of tools is different from the set of core utilities the framework provides itself, which
is part of the core and explained in Section 5.6

Finally, Allpix2 provides an executable which instantiates the core of the framework, receives
and distributes the configuration object and runs the simulation chain.

This section is structured as follows. Section 5.1 provides an overview of the architectural
design of the core and describes its interaction with the rest of the Allpix2 framework.
The different subcomponents such as configuration, modules and messages are discussed in
Sections 5.2 to 5.5. Finally, the section closes with a description of the available framework
tools in Section 5.6. Some C++ code will be provided in the text, but readers not interested
may skip the technical details.

30

5.1. Architecture of the Core

The core is constructed as a light-weight framework which provides various subsystems
to the modules. It also contains the part responsible for instantiating and running the
modules from the supplied configuration file. The core is structured around five subsystems
of which four are centered around a manager and the fifth contain a set of simple general
utilities. The systems provided are:

1. Configuration: The configuration subsystem provides a configuration object from
which data can be retrieved or stored, together with a TOML-like [16] parser to read
configuration files. It also contains the Allpix2 configuration manager which provides
access to the main configuration file and its sections. It is used by the module manager
system to find the required instantiations and access the global configuration. More
information is given in Section 5.2.

2. Module: The module subsystem contains the base class of all Allpix2 modules as
well as the manager responsible for loading and executing the modules (using the
configuration system). This component is discussed in more detail in Section 5.3.

3. Geometry: The geometry subsystem supplies helpers for the simulation geometry.
The manager instantiates all detectors from the detector configuration file. A detector
object contains the position and orientation linked to an instantiation of a particular
detector model. The detector model contains all parameters describing the geometry
of the detector. More details about geometry and detector models is provided in
Section 5.4.

4. Messenger: The messenger is responsible for sending objects from one module to
another. The messenger object is passed to every module and can be used to bind
to messages to listen for. Messages with objects are also dispatched through the
messenger as described in Section 5.5.

5. Utilities: The framework provides a set of utilities for logging, file and directory
access, and unit conversion. An explanation on how to use of these utilities can be
found in Section 5.6. A set of C++ exceptions is also provided in the utilities, which are
inherited and extended by the other components. Proper use of exceptions, together
with logging informational messages and reporting errors, make the framework easier
to use and debug. A few notes about the use and structure of exceptions are provided
in Section 5.7.

5.2. Configuration and Parameters

Individual modules as well as the framework itself are configured through configuration files.
Explanations on how to use the various configuration files together with several examples

31

have been provided in Section 4.1. All configuration files follow the same format, but the
way their input is interpreted differs per configuration file.

5.2.1. File format

Throughout the framework, a simplified version of TOML [16] is used as standard format
for configuration files. The format is defined as follows:

1. All whitespace at the beginning or end of a line should be stripped by the parser.
Empty lines should be ignored.

2. Every non-empty line should start with either #, [or an alphanumeric character.
Every other character should lead to an immediate parsing error.

3. If the line starts with a hash character (#), it is interpreted as comment and all other
content on the same line is ignored.

4. If the line starts with an open square bracket ([), it indicates a section header (also
known as configuration header). The line should contain an alphanumeric string
indicating the header name followed by a closing square bracket (]) to end the header
(a missing] should raise an exception). Multiple section header with the same
name are allowed. All key-value pairs following this section header are part of this
section until a new section header is started. After any number of ignored whitespace
characters there may be a # character. If this is the case, the rest of the line is handled
as specified in point 3.

5. If the line starts with an alphanumeric character, the line should indicate a key-value
pair. The beginning of the line should contain an string of alphabetic characters,
numbers and underscores, but it may not start with an underscore. This string
indicates the ’key’. After a optional number of ignored whitespace, the key should be
followed by an equality sign (=). Any text between the = and the first # character
not enclosed within a pair of double quotes (") is known as the non-stripped string.
Any character after the # is handled as specified in point 3. If the line does not
contain any non-enclosed # character, the value ends at the end of the line instead.
The ’value’ of the key-value pair is the non-stripped string with all whitespace in
front and at the end stripped.

6. The value can either be accessed as a single value or an array. If the value is accessed
as an array, the string is split at every whitespace or comma character (,) not enclosed
in a pair of " characters. All empty entities are not considered. All other entities are
treated as single values in the array.

7. All single values are stored as a string containing at least one character. The conversion
to the actual type is performed when accessing the value.

32

8. All key-value pairs defined before the first section header are part of a zero-length
empty section header.

5.2.2. Accessing parameters

Values are accessed via the configuration object. In the following example, the key is a
string called key, the object is named config and the type TYPE is a valid C++ type
the value should represent. The values can be accessed via the following methods:

1 // Returns true if the key exists and false otherwise
2 config.has("key")
3 // Returns the value in the given type, throws an exception if not

existing or a conversion to TYPE is not possible↪→

4 config.get<TYPE>("key")
5 // Returns the value in the given type or the provided default value if

it does not exist↪→

6 config.get<TYPE>("key", default_value)
7 // Returns an array of single values of the given type; throws an

exception if the key does not exist or a conversion is not possible↪→

8 config.getArray<TYPE>("key")
9 // Returns an absolute (canonical if it should exist) path to a file

10 config.getPath("key", true /* check if path exists */)
11 // Return an array of absolute paths
12 config.getPathArray("key", false /* do not check if paths exists */)
13 // Returns the value as literal text including possible quotation marks
14 config.getText("key")
15 // Set the value of key to the default value if the key is not defined
16 config.setDefault("key", default_value)
17 // Set the value of the key to the default array if key is not defined
18 config.setDefaultArray<TYPE>("key", vector_of_default_values)
19 // Create an alias named new_key for the already existing old_key.

Throws an exception if the old_key does not exist↪→

20 config.setAlias("new_key", "old_key")

Conversions to the requested type are using the from_string and to_string methods
provided by the string utility library described in Section 5.6.3. These conversions largely
follow the standard C++ parsing, with one important exception. If (and only if) the
value is retrieved as any C/C++ string type and the string is fully enclosed by a pair of "
characters, they are stripped before returning the value. Strings can thus also be provided
with or without quotation marks.

33

It should be noted that a conversion from string to the requested type is a comparatively
heavy operation. For performance-critical sections of the code, one should consider fetching
the configuration value once and caching it in a local variable.

5.3. Modules and the Module Manager

Allpix2 is a modular framework and one of its core ideas is to partition functionality in
independent modules. The modules are defined in the subdirectory src/modules/ in the
repository. The name of the directory is the unique name of the module. The suggested
naming scheme is CamelCase, thus an exemplary module name would be GenericPropagation.
There are two different kind of modules which can be defined:

• Unique: Modules for which always only one single instance runs irrespective of the
number of detectors.

• Detector: Modules which are specific to a single detector. They are replicated for
all required detectors.

The type of module determines the constructor used, the internal unique name and the
supported configuration parameters. More details about the instantiation logic for the
different types of modules can be found in Section 5.3.3.

5.3.1. Files of a Module

Every module directory should at minimum contain the following documents (with
ModuleName replaced by the name of the module):

• CMakeLists.txt: The build script to load the dependencies and define the source
files of the library.

• README.md: Full documentation of the module.

• ModuleNameModule.hpp: The header file of the module (note that another name
can be used for this source file, but that is deprecated).

• ModuleNameModule.cpp: The implementation file of the module.

The files are discussed in more detail below. By default, all modules are added to the
src/modules/ directory will be build automatically by CMake. This means that all subdi-
rectories should feature a module with a CMakeLists.txt containing instructions on how to
build the respective module.

If a module depends on additional packages which not every user might have installed,
one can consider adding the following line to the top of the module’s CMakeLists.txt (see
below):

34

1 ALLPIX_ENABLE_DEFAULT(OFF)

Whether or not this is necessary for a given module will be decided on a case-by-case
basis.

General guidelines and instructions for implementing new modules are provided in Sec-
tion 8.1.

CMakeLists.txt Contains the build description of the module with the following compo-
nents:

1. On the first line either ALLPIX_DETECTOR_MODULE(MODULE_NAME) or
ALLPIX_UNIQUE_MODULE(MODULE_NAME) depending on the type of the
module defined. The internal name of the module is automatically saved in the
variable ${MODULE_NAME} which should be used as argument to other functions.
Another name can be used by overwriting the variable content, but in the examples
below, ${MODULE_NAME} is used exclusively.

2. The following lines should contain the logic to load possible dependencies of the
module (below is an example to load Geant4). Only ROOT is automatically included
and linked to the module.

3. A line with ALLPIX_MODULE_SOURCES(${MODULE_NAME} sources) defines
the module source files. Here, sources should be replaced by a list of all source files
relevant to this module.

4. Possibly lines to include additional directories and to link libraries for dependencies
loaded earlier.

5. A line containing ALLPIX_MODULE_INSTALL(${MODULE_NAME}) to set up
the required target for the module to be installed to.

A simple CMakeLists.txt for a module named Test which requires Geant4 is provided below
as an example.

1 # Define module and save name to MODULE_NAME
2 # Replace by ALLPIX_DETECTOR_MODULE(MODULE_NAME) to define a detector

module↪→

3 ALLPIX_UNIQUE_MODULE(MODULE_NAME)
4

5 # Load Geant4
6 FIND_PACKAGE(Geant4)
7 IF(NOT Geant4_FOUND)

35

8 MESSAGE(FATAL_ERROR "Could not find Geant4, make sure to source the
Geant4 environment\n$ source YOUR_GEANT4_DIR/bin/geant4.sh")↪→

9 ENDIF()
10

11 # Add the sources for this module
12 ALLPIX_MODULE_SOURCES(${MODULE_NAME}
13 TestModule.cpp
14)
15

16 # Add Geant4 to the include directories
17 TARGET_INCLUDE_DIRECTORIES(${MODULE_NAME} SYSTEM PRIVATE

${Geant4_INCLUDE_DIRS})↪→

18

19 # Link the Geant4 libraries to the module library
20 TARGET_LINK_LIBRARIES(${MODULE_NAME} ${Geant4_LIBRARIES})
21

22 # Provide standard install target
23 ALLPIX_MODULE_INSTALL(${MODULE_NAME})

README.md The README.md serves as the documentation for the module and
should be written in the Markdown format [17]. It is automatically converted to LATEXusing
Pandoc [18] and included in this user manual in Section 7. By documenting the module
functionality in Markdown, the information as also viewable with a web browser at the
repository in the module sub-folder.

The README.md should follow the structure indicated in the README file of the
DummyModule in src/modules/Dummy. The documentation should contain at least the
following sections:

• The H2-size header with the name of the module and at least the following required
elements: the Maintainer and the Status of the module. If the module is working
and well-tested, the status of the module should be Functional. By default, new
modules are given the status Immature. The maintainer entry should mention both
the full name and email address of the module maintainer between parentheses. An
example for a minimal header is therefore

ModuleName
Maintainer: Example Author (<example@example.org>)
Status: Functional

In addition, the Input and Output objects consumed and dispatched by the module
should be mentioned.

• A H4-size section named Description, containing a short description of the module.

36

• A H4-size section named Parameters with all available configuration parameters of
the module. The parameters should be briefly explained in an itemized list with the
name of the parameter set as inline code block.

• A H4-size section with the title Usage which should contain at least one simple
example of a valid configuration for the module.

ModuleNameModule.hpp and ModuleNameModule.cpp All modules should consist of
both a header file and a source file. In the header file, the module is defined together with
all its methods. Brief Doxygen documentation should be added to explain what every
method does. The source file should provide the implementation of every method and also
its more detailed Doxygen documentation. Method shall only be declared in the header
and only defined in the source file to keep the interface clean.

5.3.2. Module structure

All modules have to inherit from the Module base class which can be found in src/core/mod-
ule/Module.hpp. The module base class provides two base constructors, a few convenient
methods and several methods to override. Every module should provide a constructor
consuming a fixed set of arguments defined by the framework. This particular constructor is
always called during construction by the module instantiation logic. The arguments for the
constructor differs for unique and detector modules. For unique modules, the constructor
for a TestModule should be:

1 TestModule(Configuration config, Messenger* messenger, GeometryManager*
geo_manager): Module(config) {}↪→

It should be noted that the configuration object has to be forwarded to the base module.

For detector modules, the first two arguments are the same, but the last argument is a
std::shared_ptr to the linked detector instead. It should always forward this detector to
the base class together with the configuration object. Thus, the constructor of a detector
module is:

1 TestModule(Configuration config, Messenger* messenger,
std::shared_ptr<Detector> detector): Module(config, detector) {}↪→

The pointer to the Messenger can be used to bind variables to either receive or dispatch
messages as explained in 5.5. The constructor should be used to bind required messages,
set configuration defaults and to throw exceptions in case of failures. Unique modules can
access the GeometryManager to fetch all detector descriptions, while detector modules
directly receive the object of their respective detector.

In addition to the constructor, every module can override the following methods:

37

• init(): Called after loading and constructing all modules and before starting the
event loop. This method can for example be used to initialize histograms.

• run(unsigned int event_number): Called for every event in the simulation run
with the event number (starting from one). An exception should be thrown for every
serious error, otherwise an warning should be logged.

• finalize(): Called after processing all events in the run and before destructing the
module. Typically used to save the output data (like histograms). Any exceptions
should be thrown from here instead of the destructor.

5.3.3. Module instantiation

The modules are dynamically loaded and instantiated by the Module Manager. Modules
are constructed, initialized, executed and finalized in the linear order they are defined
in the configuration file. Thus the configuration file should follow the order of the real
process. For every non-special section in the main configuration file (see 5.2 for more
details), a corresponding library is searched for which contains the module. Module
library are always named following the scheme libAllpixModuleModuleName reflecting
the ModuleName configured via CMake. The module search order is as follows:

1. Modules already loaded before from an earlier section header

2. All directories in the global configuration parameter library_directories in the provided
order if this parameter exists

3. The internal library paths of the executable, that should automatically point to the
libraries that are build and installed together with the executable. These library
paths are stored in RPATH on Linux, see the next point for more information.

4. The other standard locations to search for libraries depending on the operating system.
Details about the procedure Linux follows can be found in [19].

If the loading of the module library is successful, it is checked if the module is an unique or
a detector module. The instantiation logic determines a unique name and priority, where a
lower number indicates a higher priority, for every instantiation. The name and priority for
the instantiation are determined differently for the two types of modules:

• Unique: Combination of the name of the module and the input and output
parameter (both defaulting to an empty string). The priority is always zero.

• Detector: Combination of the name of the module, the input and output parameter
(both defaulting to an empty string) and the name of detector this module is executed
for. If the name of the detector is specified directly by the name parameter, the
priority is high. If the detector is only matched by the type parameter, the priority is

38

medium. If the name and type are both unspecified and the module is instantiated
for all detectors, the priority is low.

The instantiation logic only allows a single instance for every unique name. If there are
multiple instantiations with the same unique name, the instantiation with the highest
priority is kept. If multiple instantiations with the same unique name and the same priority
exist, an exception is raised.

5.3.4. Parallel execution of modules

The framework has experimental support for running several modules in parallel. This
feature is disabled by default, it has to supported by the module and it has to enabled by
the user as described in Section 4.2. A significant speed up can be achieved if the simulation
contains multiple detectors or simulates the same module using different parameters.

The framework allows to parallelize the execution of the same type of module, if these
would otherwise be executed directly after each other in the linear order. Thus, as long
as the name of the module remains the same, while going through the execution order
of all run() methods, all instances are added to a work queue. The instances are then
distributed to a set of worker threads as specified in the configuration or determined from
system parameters, which will execute the individual modules. The module manager will
wait for all jobs to finish, before it will continue to handle the next type of module.

To enable parallelization for a module, the following line of code has to be added to the
constructor of a module:

1 // Enable parallelization of this module if multithreading is enabled
2 enable_parallelization();

By adding this, the module promises that it will work correctly if the run-method is executed
multiple times in parallel in separate instantiations. This means in particular that the
module will safely handle access to shared (for example static) variables and it will properly
bind ROOT histograms to their directory before the run()-method. Access to constant
operations in the GeometryManager, Detector and DetectorModel is always valid between
various threads. Also sending and receiving messages is thread-safe.

5.4. Geometry and Detectors

Simulations are frequently performed for a set of different detectors (such as a beam
telescope and a device under test). All these individual detectors together is what Allpix2

defines as the geometry. Every detector has a set of properties attached to it:

• A unique detector name to refer to the detector in the configuration.

39

• The position in the world frame. This is the position of the geometric center of the
sensitive device (sensor) given in world coordinates as X, Y and Z (note that any
additional components like the chip and possible support layers are ignored when
determining the geometric center).

• An orientation_mode that determines the way the orientation is applied. It can
be either xyz or zxz, where xyz is used if the parameter is not specified. The xyz
option uses extrinsic Euler angles to apply an rotation around the X-axis, followed
by an rotation around the original global Y-axis and finally an rotation around the
global Z-axis. The zxz uses the extrinsic Z-X-Z convention for Euler angles instead
(this option is also known as the 3-1-3 or the "x-convention" and the most widely used
definition of Euler angles overall [20]).

• The orientation to specify the Euler angles in logical order, interpreted using the
method above (or with the xyz method if the orientation_mode is not specified).

• A type of a detector model, for example hybrid or monolithic. The model defines
the geometry and parameters of the detector. Multiple detectors can share the same
model. Several ready-to-use models are shipped with the framework.

• An optional electric field in the sensitive device. An electric field can be added to a
detector by a special module as demonstrated in Section 4.4.

The detector configuration is provided in the detector configuration file as is explained in
Section 4.1.3.

5.4.1. Changing and accessing the geometry

The geometry is needed at a very early stage because it determines the number of detector
module instantiations as explained in Section 5.3.3. The procedure of finding and loading
the appropriate detector models is explained in more detail in Section 5.4.3.

The geometry is directly added from the detector configuration file described in Section 4.1.3.
The geometry manager parses this file on construction, the detector models are loaded and
linked later during geometry closing as described above. It is also possible to add additional
models and detectors directly using addModel and addDetector (before the geometry is
closed). Furthermore it is possible to add additional points which should be part of the
world geometry using addPoint. This can for example be used to add the beam source to
the world geometry.

The detectors and models can be accessed by name and type through the geometry manager
using getDetector and getModel, respectively. All detectors can be fetched at once using
the getDetectors method. If the module is a detector-specific module its related Detector
can be accessed through the getDetector method of the module base class instead (returns
a null pointer for unique modules) as follows:

40

1 void run(unsigned int event_id) {
2 // Returns the linked detector
3 std::shared_ptr<Detector> detector = this->getDetector();
4 }

5.4.2. Coordinate systems

Local coordinate systems for each detector and a global frame of reference for the full setup
are defined. The global coordinate system is chosen as a right-handed Cartesian system
with the particle beam along the positive z-axis. Rotations of the individual devices are
performed around the geometrical center of their sensor.

Also the local coordinate systems are right-handed Cartesian systems, with the x- and
y-axes defining the sensor plane. The beam is entering along the positive z-axis. The origin
of the coordinate system is the center of the lower left pixel in the grid, i.e. the pixel with
the indices (0,0). This simplifies calculations in the local coordinate system as all positions
can either be stated in absolute numbers or in fractions of the pixel pitch.

5.4.3. Detector models

Different types of detector models are already available and distributed together with the
framework. These models use the configuration format introduced in Section 5.2.1 and
can be found in the models directory of the repository. Every model extends from the
DetectorModel base class which defines the minimum required parameters of a detector
model in the framework. The coordinates place the detector in the global coordinate system.
The reference point here is the geometric center of the active sensor. The number of pixels
in the sensor in both x- and y-direction define the active pixel matrix. The pitch of the
individual pixels defines its size and also, together with the number of pixels, the total size
of the pixel matrix. Outside the active pixel matrix, the sensor can feature excess material
in all directions in the x-y-plane. A detector of base class type does not feature a separate
readout chip, thus only the thickness of an additional, inactive silicon layer can be specified.
Derived models allow for separate readout chips, possibly connected with bump bonds.

Furthermore, multiple layers of support material can be added to the detector description.
It is possible to place support layers at arbitrary positions relative to the sensor, while the
default position is behind the readout chip (or inactive silicon layer). The support material
can be chosen from a set of predefined materials, including PCB and Kapton.

This base detector model can be extended to provide a more detailed geometry. Currently
implemented derived models are the MonolithicPixelDetectorModel, which describes a
monolithic detector with all electronics directly implemented in the same silicon wafer as the

41

sensor, and the HybridPixelDetectorModel, which in addition to the features described
above also includes a separate readout chip with configurable size and bump bonds between
the sensor and the readout chip.

Detector model parameters
Models are defined in configuration files which are used to instantiate the actual model
classes. These files for detector models can contain various types of parameters. Some are
required for all models, others are optional or only supported by certain types of models.
For more details about the steps to perform in order to add and use a new detector model,
Section 8.2 should be consulted.

The set of base parameters supported by every models is provided below. These parameters
should be given at the top of the file before opening any sections.

• type: A required parameter describing the type of the model. At the moment either
monolithic or hybrid. This value determines the supported parameters as discussed
later.

• number_of_pixels: The number of pixels in the 2D pixel matrix. Determines the
base size of the sensor together with the pixel_size parameter below.

• pixel_size: The pitch of a single pixel in the pixel matrix. Provided as 2D parameter
in the x-y-plane. This parameter is required for all models.

• sensor_thickness: Thickness of the active area of the detector model containing
the individual pixels. This parameter is required for all models.

• sensor_excess_direction : With direction either top, bottom, left or right, where
the top, bottom, right and left direction are the positive y-axis, the negative y-axis,
the positive x-axis and the negative x-axis, respectively. Specifies the extra material
added to the sensor outside the active pixel matrix in the given direction.

• sensor_excess: Fallback for the excess width of the sensor in all four directions (top,
bottom, left and right). Used if the specialized parameters described below are not
given. Defaults to zero, thus having a sensor size equal to the number of pixels times
the pixel pitch.

• chip_thickness: Thickness of the readout chip, placed next to the sensor.

In addition, multiple layers of support can be added to the detector model. Every support
layer should be defined in its own section headed with the name [support]. By default,
no support layers are added. Support layers allow for the following parameters.

• size: Size of the support in 2D (the thickness is given separately below). This
parameter is required for all support layers.

42

• thickness: Thickness of the support layers. This parameter is required for all support
layers.

• location: Location of the support layer. Either sensor to attach it to the sensor
(opposite to the readout chip/inactive silicon layer), chip to add the support layer
behind the chip/inactive layer or absolute to specify the offset in the z-direction
manually. Defaults to chip if not specified. If the parameter is equal to sensor or
chip, the support layers are stacked in the respective direction when multiple layers of
support are specified.

• offset: If the parameter location is equal to sensor or chip, an optional 2D offset
can be specified using this parameter, the offset in the z-direction is then automatically
determined. These support layers are by default centered around the middle of the
pixel matrix (the rotation center of the model). If the location is set to absolute, the
offset is a required parameter and should be provided as a 3D vector with respect to
the center of the model (thus the center of the active sensor). Care should be taken
to ensure that these support layers and the rest of the model do not overlap.

• hole_size: Adds an optional cut-out hole to the support with the 2D size provided.
The hole always cuts through the full support thickness. No hole will be added if this
parameter is not present.

• hole_offset: If present, the hole is by default placed at the center of the support
layer. A 2D offset with respect to its default position can be specified using this
parameter.

• material: Material of the support. Allpix2 does not provide a set of materials to
choose from, but it is up to the modules using the parameter to implement the
materials such that they can use it. Section 7 provides details about the materials
supported by the geometry builder module (GeometryBuilderGeant4).

The base parameters described above are the only set of parameters supported by the
monolithic model.

The hybrid model adds bump bonds between the chip and the sensor while automatically
making sure the chip and support layers are shifted appropriately. Furthermore, it allows
to specify the chip dimensions independently from the sensor size, as the readout chip
is treated as separate entity. The additional parameters for the hybrid model are the
following:

• chip_excess_direction : With direction either top, bottom, left or right. The chip
excess in the specific direction, similar to the sensor_excess_direction parameter
described above.

• chip_excess: Fallback for the excess width of the chip, defaults to zero and thus
to a chip size equal to the dimensions of the pixel matrix. See the sensor_excess
parameter above.

43

• bump_height: Height of the bump bonds (the separation distance between the chip
and the sensor)

• bump_sphere_radius: The individual bump bonds are simulated as union solids of a
sphere and a cylinder. This parameter sets the radius of the sphere to use.

• bump_cylinder_radius: The radius of the cylinder part of the bump. The height of
the cylinder is determined by the bump_height parameter.

• bump_offset: A 2D offset of the grid of bumps. The individual bumps are by default
positioned at the center of all the single pixels in the grid.

Accessing specific detector models within the framework
Some modules are written specific to a particular type of detector model. In order to ensure
receiving a specific detector model from the base class, the model should be downcast. The
downcast returns a null pointer if the class is not of the appropriate type. An example for
fetching an HybridPixelDetectorModel is the following:

1 // "detector" is a pointer to a Detector object
2 auto model = detector->getModel();
3 auto hybrid_model =

std::dynamic_pointer_cast<HybridPixelDetectorModel>(model);↪→

4 if(hybrid_model != nullptr) {
5 // The model of this Detector is a HybridPixelDetectorModel
6 }

Specializing detector models
A detector model contains default values for all parameters. Some parameters like the sensor
thickness can however vary between different detectors of the same model. To allow for easy
adjustment of these parameters, models can be specialized in the detector configuration
file introduced in 4.1.3. All model parameters, except the type parameter and the support
layers, can be changed by adding a parameter with the exact same key and the updated
value to the detector configuration. The framework will then automatically create a copy
of this model with the requested change.

Before re-implementing models, it should be checked if the desired change can be achieved
using the detector model specialization. For most cases this provides a quick and flexible
way to adapt detectors to different needs and setups.

44

Search order for models
To support different detector models and storage locations, the framework searches different
paths for model files in the following order:

1. If defined, the paths provided in the global models_path parameter are searched first.
Files are read and parsed directly. If the path is a directory, all files in the directory
are added (not recursing into subdirectories).

2. The location where the models are installed to (refer to the description of the
MODEL_DIRECTORY variable in Section 3.5).

3. The standard data paths on the system as given by the environmental variable
$XDG_DATA_DIRS with “Allpix” appended. The $XDG_DATA_DIRS variable
defaults to /usr/local/share/ (thus effectively /usr/local/share/Allpix) followed by
/usr/share/ (effectively /usr/share/Allpix).

5.5. Passing Objects using Messages

Communication between modules is established through messages. Messages are templated
instantiations of the Message class carrying a vector of objects. The list of objects available
in the Allpix2 objects library are discussed in Section 6. The messaging system has
a dispatching mechanism to send messages and a receiving part that fetches incoming
messages.

The dispatching module can specify an optional name for the messages, but modules should
normally not specify this name directly. If the name is not given (or equal to -) the output
parameter of the module is used to determine the name of the message, defaulting to an
empty string. Dispatching the message to their receivers is then performed following these
rules:

1. The receiving module the will only receive a message if it has the exact same type as
the message dispatched (thus carrying the same objects). If the receiver is however
listening to the BaseMessage type which does not specify the type of objects it is
carrying, it will receive all dispatched messages instead.

2. The receiving module will only receive messages with the exact name it is listening
for. The module uses the input parameter to determine to which message names the
module should listen. If the input parameter is equal to * the module should listen
to all messages. Every module by default listens to messages with no name specified
(thus receiving the messages of dispatching modules without output name specified).

3. If the receiving module is a detector module, it will only receive messages bound to
that specific detector or messages that are not bound to any detector.

45

An example how to dispatch a message containing an array of Object types bound to a
detector named dut is provided below. As usual, the message is dispatched at the end of
the run function of the module.

1 void run(unsigned int event_id) {
2 std::vector<Object> data;
3 // ..fill the data vector with objects ...
4

5 // The message is dispatched only for the module’s detector, stored
in "detector_"↪→

6 auto message = std::make_shared<Message<Object>>(data, detector_);
7

8 // Send the message using the Messenger object
9 messenger->dispatchMessage(this, message);

10 }

5.5.1. Methods to process messages

The message system has multiple methods to process received messages. The first three are
the most common methods and the fourth should only be used if necessary.

1. Bind a single message to a variable. This should usually be the preferred method
as most modules only expect one message to arrive per event, as a module should
typically send only one message containing the list of all relevant objects. The
following example binds to a message containing an array of object and is placed in
the constructor of a detector-type TestModule:

1 TestModule(Configuration, Messenger* messenger,
std::shared_ptr<Detector>) {↪→

2 messenger->bindSingle(this,
3 /* Pointer to the message variable */
4 &TestModule::message,
5 /* No special messenger flags */
6 MsgFlags::NONE);
7 }
8 std::shared_ptr<Message<Object>> message;

2. Bind a set of messages to a std::vector variable. This method should be used it
the module can (and expects to) receive the same message multiple times (possibly
because it wants to receive the same type of message for all detectors). An example
to bind multiple messages containing an array of objects in the constructor of a
unique-type TestModule would be:

46

1 TestModule(Configuration, Messenger* messenger, GeometryManager*
geo_manager) {↪→

2 messenger->bindMulti(this,
3 /* Pointer to the message vector */
4 &TestModule::messages,
5 /* No special messenger flags */
6 MsgFlags::NONE);
7 }
8 std::vector<std::shared_ptr<Message<Object>>> messages;

3. Add a dependency to keep messages in memory for retrieving objects from the
history. Several objects have related objects which can be retrieved as explained
in Section 6.1. Linked objects can only be retrieved (during the same event) if the
respective source objects remain in memory. Modules should explicitly mark objects
that are accessed indirectly through the history of the messages, to ensure these
objects are not deleted. This method can be used as follows in a detector-specific
TestModule, to keep PixelHitMessages in memory without having direct acces to
them (PixelHitMessage can be replaced here with any other type of message):

1 TestModule(Configuration, Messenger* messenger,
std::shared_ptr<Detector>) {↪→

2 messenger->addDependency<PixelHit>(this,
3 /* No special message flags

*/↪→

4 MsgFlags::NONE);
5 }

4. Listen to a particular message type and execute a listener function as soon as an
object is received. Can be used for more advanced strategies of retrieving messages,
but the other method should be preferred when possible. The listening module should
not do any heavy work in the listening function as this is supposed to take place in
their run method instead. Using a listener function can lead to unexpected behavior
because the function is executed during the run method of the dispatching module.
This means that logging is performed at the level of the dispatching module and
that the listener method can be accessed from multiple threads if the dispatching
module is parallelized. Listening to a message containing an array of objects in a
detector-specific TestModule could be performed as follows:

1 TestModule(Configuration, Messenger* messenger,
std::shared_ptr<Detector>) {↪→

2 messenger->registerListener(this,

47

3 /* Pointer to the listener method
*/↪→

4 &TestModule::listener,
5 /* No special message flags */
6 MsgFlags::NONE);
7 }
8 void listener(std::shared_ptr<Message<Object>> message) {
9 // Do something with the received message ...

10 }

5.5.2. Message flags

Flags can be added to the bind and listening methods which enable a particular behavior
of the framework.

• REQUIRED: Specifies that this message is required to be received. If the particular
type of message is not received before it is time to execute the module’s run function,
the execution of the method is automatically skipped by the framework for the current
event. This can be used to ignore modules which cannot perform any action without
received messages, for example charge carrier propagation without any deposited
charge carriers.

• NO_RESET: Messages are by default automatically reset after the run function
has been executed to prevent older messages from previous events to reappear.
This behavior can be disabled by setting this flag (this does not have any effect
for listening functions). Setting this flag for single bound messages (without AL-
LOW_OVERWRITE, see below) would cause an exception to be raised if the message
is overwritten in a later event.

• ALLOW_OVERWRITE: By default an exception is automatically raised if a
single bound message is overwritten (thus receiving it multiple times instead of once).
This flag prevents this behavior. It can only be used for variables bound to a single
message.

• IGNORE_NAME: If this flag is specified, the name of the dispatched message is
not considered. Thus, the input parameter is ignored and forced to the value *.

5.6. Logging and other Utilities

The Allpix2 framework provides a set of utilities which improve the usability of the framework
and extend the functionality provided by the C++ Standard Template Library (STL). The
former include a flexible and easy-to-use logging system, introduced in Section 5.6.1 and an

48

easy-to-use framework for units that supports converting arbitrary combinations of units
to common base units which can be used transparently through the framework and which
will be discussed in more detail in Section 5.6.2. The latter comprise tools which provide
functionality the C++14 standard does not contain. These utilities are used internally in
the framework and are only shortly discussed in Section 5.6.3 (file system support) and
Section 5.6.3 (string utilities).

5.6.1. Logging system

The logging system is build to handle input/output the same way as std::cin and
std::cout do. This approach is both very flexible and easy to read. The system is globally
configured, thus only one logger instance exists. In order to send a message to the logging
system at a level of LEVEL, the following can be used:

1 LOG(LEVEL) << "this is an example message with an integer and a double "
<< 1 << 2.0;↪→

A newline is added at the end of every log message. Multi-line log messages can also be
used: the logging system will automatically align every new line under the previous message
and will leave the header space empty on new lines.

The system also allows for producing a message which is updated on the same line for simple
progressbar-like functionality. It is enabled using the LOG_PROCESS(LEVEL, IDENTIFIER)
command. Here, the IDENTIFIER is a unique string identifying this output stream in order
not to mix different progress reports.

If the output is a terminal screen the logging output will be colored to make it prettier to
read. This will be disabled automatically for all non-terminal outputs.

More details about the logging levels and formats can be found in Section 4.6.

5.6.2. Unit system

Correctly handling units and conversions is of paramount importance. Having a separate
C++ type for all different kind of units would however be too cumbersome for a lot of
operations. Therefore, the units are stored in standard C++ floating point types in a
default unit which all code in the framework should use for calculations. In configuration
files as well as for logging it is however very useful to provide quantities in different units.

The unit system allows adding, retrieving, converting and displaying units. It is a global
system transparently used throughout the framework. Examples of using the unit system
are given below:

49

1 // Define the standard length unit and an auxiliary unit
2 Units::add("mm", 1);
3 Units::add("m", 1e3);
4 // Define the standard time unit
5 Units::add("ns", 1);
6 // Get the units given in m/ns in the defined framework unit (mm/ns)
7 Units::get(1, "m/ns");
8 // Get the framework unit (mm/ns) in m/ns
9 Units::convert(1, "m/ns");

10 // Return the unit in the best type (lowest number larger than one) as
string.↪→

11 // The input is in default units 2000mm/ns and the ’best’ output is
2m/ns (string)↪→

12 Units::display(2e3, {"mm/ns", "m/ns"});

More details about how the unit system is used within Allpix2 can be found in Section 4.1.1.

5.6.3. Internal utilities

The filesystem utilities provide functions to convert relative to absolute canonical paths,
to iterate through all files in a directory and to create new directories. These functions
should be replaced by the C++17 file system API [21] as soon as the framework minimum
standard is updated to C++17.

The STL only provides string conversions for standard types using std::stringstream
and std::to_string which do not allow to parse strings encapsulated in pairs of double
quote (") characters and neither does it allow to integrate different units. Furthermore
it does not provide wide flexibility to add custom conversions for other external types in
either way.

The Allpix2 to_string and from_string methods provied by its string utilities do
allow for these flexible conversions and are extensively used in the configuration system.
Conversions of numeric types with a unit attached are automatically resolved using the unit
system discussed in Section 5.6.2. The string utilities also include trim and split strings
functions missing in the STL.

Furthermore, the Allpix2 tool system contains extensions to allow automatic conversions
for ROOT and Geant4 types as explained in Section 10.1.1.

50

5.7. Error Reporting and Exceptions

Allpix2 generally follows the principle of throwing exceptions in all cases something is
definitely wrong. Exceptions are also thrown to signal for errors in the user configuration.
It does not attempt to circumvent problems or correct configuration mistakes. Error return
codes should not be used at all. The asset of this method is that errors cannot easily be
ignored and the code is more predictable in general.

For warnings and informational messages, the logging should be used extensively. This
helps both in following the progress of the simulation and in debugging problems. Care
should however be taken to limit the amount of messages in levels higher than DEBUG or
TRACE. More details about the logging levels and their usage can be found in Section 4.6.

The base exceptions in Allpix2 are available via the utilities. The most important exception
base classes are the following:

• ConfigurationError: All errors related to incorrect user configuration. This could
indicate a non-existing configuration file, a missing key or an invalid parameter value.

• RuntimeError: All other errors arising at run-time. Could be related to incorrect
configuration if messages are not correctly passed or non-existing detectors are specified.
Could also be raised if errors arise while loading a library or executing a module.

• LogicError: Problems related to modules which do not properly follow the specifica-
tions, for example if a detector module fails to pass the detector to the constructor.
These methods should never be raised for correctly implemented modules and should
therefore not be triggerable by users. Reporting this type of errors can help developers
during their development of new modules.

Outside the core framework, exceptions can also be used directly by the modules. There
are only two exceptions which should be used by typical modules to indicate errors:

• InvalidValueError: Derived from configuration exceptions. Signals any problem
with the value of a configuration parameter not related to parsing or conversion to
the required type. Can for example be used for parameters where the possible valid
values are limited, like the set of logging levels, or for paths that do not exist. An
example is shown below:

1 void run(unsigned int event_id) {
2 // Fetch a key from the configuration
3 std::string value = config.get("key");
4

5 // Check if it is a ’valid’ value
6 if(value != ’A’ && value != "B") {
7 // Raise an error if it the value is not valid

51

8 // provide the configuration object, key and an
explanation↪→

9 throw InvalidValueError(config, "key", "A and B are the only
allowed values");↪→

10 }
11 }

• ModuleError: Derived from module exceptions. Should be used to indicate any
runtime error in a module not directly caused by an invalid configuration value, for
example that it is not possible to write an output file. A reason should be given to
indicate what the source of problem is.

52

6. Objects

6.1. Object History

Objects can carry the history that was used to create them. For example, a
PropagatedCharge object could hold a link to the DepositedCharge object at which the
propagation started. Modules are not required, but recommended, to bind the history of
their created objects.

Object history is implemented using the ROOT TRef class [14], which acts as a special
reference. On construction, every object gets a unique identifier assigned, that can be
stored in other linked objects. This identifier can be used to retrieve the history, even
after the objects are written out to ROOT TTrees [13]. TRef objects are however not
automatically fetched and can only be retrieved if their linked objects are available in
memory, which has to be ensured explicitly. Outside the framework this means that the
relevant tree containing the linked objects should be retrieved and loaded at the same entry
as the object that request the history. Inside the framework an explicit dependency should
be added for all modules that use object history, as explained in section 5.5. Whenever
the related object is not in memory (either because it is not available or not fetched) a
MissingReferenceException will be thrown.

If no explicit dependency is added to a linked object in history, the module could misbehave
depending on other modules. Also take note that all intermediate objects need an explicit
dependency to fetch deeper history (like the MCParticles from an PixelHit). Finally, the
MissingReferenceException should be properly caught by modules to handle instances
where the history is not available or incomplete.

6.2. Object Types

Allpix2 provides a set of objects that should be used to transfer data between modules.
These objects can be send with the messaging system as explained in Section 5.5. A
typedef is added to every object in order to provide an alternative name for the message
which is directly indicating the carried object.

The list of currently supported objects comprises:

MCParticle
The Monte-Carlo truth information about the particle passage through the sensor. A start
and end point are stored in the object, to approximate the track. For events involving a
single MCParticle going through the sensor, the start and end point correspond to the
entry and exit point in the sensor. The exact handling of non-linear tracks due to multiple

53

scattering, is up to module. The MCParticle also stores an identifier of the particle type.
The recommended naming scheme are the PDG particle codes [22]. Finally, the MCParticle
stores a parent MCParticle object, if available.

DepositedCharge
Set of charge carriers deposited by an ionizing particle crossing the active material of the
sensor. The object stores the local position in the sensor together with the total number of
deposited charges in elementary charge units. Also the time (in ns as the internal framework
unit) of the deposition after the start of the event and the type of carrier (electron or hole)
is stored.

PropagatedCharge
Set of charge carriers propagated through the silicon sensor due to drift and/or diffusion
processes. The object should store the final local position of the propagation. This is either
on the pixel implant if the set of charge carriers are ready to be collected, or on any other
position in the sensor if the set of charge carriers got trapped or was lost in another process.
Timing information about the total time to arrive at the final location, from the start of
the event, can also be stored.

PixelCharge
Set of charge carriers collected at a single pixel. The pixel indices are stored in both the x
and y direction, starting from zero for the first pixel. Only the total number of charges at a
pixel is currently stored, the timing information of the individual charges can be retrieved
from the related PropagatedCharge objects.

PixelHit
Digitized hit of a pixel after processing of the information in the detector’s front-end
electronics. The object allows to store both the time and a signal value. The time can
be stored in an arbitrary unit used to timestamp the hits. The signal can hold different
kinds of information depending on the type of the digitizer used. Examples of the signal
information is the ’true’ information of a binary readout chip, the number of ADC counts
or the ToT (time-over-threshold).

54

7. Modules

This section describes all currently available Allpix2 modules in detail. This includes a
description of the physics implemented as well as possible configuration parameters along
with their defaults. For inquiries about certain modules or its documentation, the respective
maintainers should be contacted directly. The modules are listed in alphabetical order.

7.1. CorryvreckanWriter

Maintainer: Daniel Hynds (daniel.hynds@cern.ch)
Status: Functional
Input: PixelHit

Description

Takes all digitised pixel hits and converts them into Corryvrekan pixel format. These are
then written to an output file in the expected format to be read in by the reconstruction
software.

Parameters

• file_name : Output filename (appended with .root)

Usage

Typical usage is:
[CorryvreckanWriter]
file_name = corryvreckan

7.2. DefaultDigitizer

Maintainer: Simon Spannagel (simon.spannagel@cern.ch)
Status: Functional
Input: PixelCharge
Output: PixelHit

55

mailto:simon.spannagel@cern.ch

Description

Very simple digitization module which translates the collected charges into a digitized
signal proportional to the input charge. It simulates noise contributions from the readout
electronics as Gaussian noise and allows for a configurable threshold. Furthermore, the
linear response of an ADC with configurable resolution can be simulated.

In detail, the following steps are performed for every pixel charge:

• A Gaussian noise is added to the input charge value in order to simulate input noise
to the preamplifier circuit.

• A charge threshold is applied. Only if the threshold is surpassed, the pixel is accounted
for - for all values below the threshold, the pixel charge is discarded. The actually
applied threshold is smeared with a Gaussian distribution on an event-by-event basis
allowing for simulating fluctuations of the threshold level.

• An ADC with configurable resolution, given in bit, can be simulated. For this, first
an inaccuracy of the ADC is simulated using an additional Gaussian smearing which
allows to take ADC noise into account. Then, the charge is converted into ADC units
using the adc_slope and adc_offset parameters provided. Finally, the calculated
value is clamped to be contained within the ADC resolution, over- and underflows
are treated as saturation.

The ADC implementation also allows to simulate ToT (time-over-threshold) devices by
setting the adc_offset parameter to the negative threshold. Then, the ADC only converts
charge above threshold.

With the output_plots parameter activated, the module produces histograms of the charge
distribution at the different stages of the simulation, i.e. before processing, with electronics
noise, after threshold selection, and with ADC smearing applied. In addition, the distribution
of the actually applied threshold is provided as histogram.

Parameters

• electronics_noise : Standard deviation of the Gaussian noise in the electronics
(before applying the threshold). Defaults to 110 electrons.

• threshold : Threshold for considering the collected charge as a hit. Defaults to 600
electrons.

• threshold_smearing : Standard deviation of the Gaussian uncertainty in the threshold
charge value. Defaults to 30 electrons.

• adc_resolution : Resolution of the ADC in units of bits. Thus, a value of 8 would
translate to an ADC range of 0 – 255. A value of 0bit switches off the ADC simulation
and returns the actual charge in electrons. Defaults to 0.

• adc_smearing : Standard deviation of the Gaussian noise in the ADC conversion
(after applying the threshold). Defaults to 300 electrons.

56

• adc_slope : Slope of the ADC calibration in electrons per ADC unit (unit: “e”).
Defaults to 10e.

• adc_offset : Offset of the ADC calibration in electrons. In order to simulate a ToT
(time-over-threshold) device, this offset should be configured to the negative value of
the threshold. Defaults to 0.

• output_plots : Enables output histograms to be be generated from the data in every
step (slows down simulation considerably). Disabled by default.

• output_plots_scale : Set the x-axis scale of the output plot, defaults to 30ke.

Usage

The default configuration is equal to the following:
[DefaultDigitizer]
electronics_noise = 110e
threshold = 600e
threshold_smearing = 30e
adc_smearing = 300e

7.3. DepositionGeant4

Maintainer: Koen Wolters (koen.wolters@cern.ch)
Status: Functional
Output: DepositedCharge, MCParticle

Description

Module which deposits charge carriers in the active volume of all detectors. It acts as
wrapper around the Geant4 logic and depends on the global geometry constructed by the
GeometryBuilderGeant4 module. It initializes the physical processes to simulate a particle
beam that will deposit charges in every event.

The particle type can be set via a string (particle_type) or by the respective PDG code
(particle_code). Refer to the Geant4 webpage [23] for information about the available types
of particles and the PDG particle code definition [22] for a list of the available particles
and PDG codes.

For all particles passing the sensitive device of the detectors, the energy loss is converted
into deposited charge carriers in every step of the Geant4 simulation. The information
about the truth particle passage is also fully available, with every deposit linked to a
MCParticle. The parental hierarchy of the MCParticles is not always available in the
current implementation.

57

mailto:koen.wolters@cern.ch

Dependencies

This module requires an installation Geant4.

Parameters

• physics_list: Geant4-internal list of physical processes to simulate, defaults to
FTFP_BERT_LIV. More information about possible physics list and recommenda-
tions for defaults are available on the Geant4 website [24].

• enable_pai: Determines if the Photoabsorption Ionization model is enabled in the
sensors of all detectors. Defaults to false.

• ‘pai_model’: Model can be pai for the normal Photoabsorption Ionization model or
paiphoton for the photon model. Default is pai. Only used if enable_pai is set to
true.

• charge_creation_energy : Energy needed to create a charge deposit. Defaults to the
energy needed to create an electron-hole pair in silicon (3.64 eV).

• max_step_length : Maximum length of a simulation step in every sensitive device.
Defaults to 1um.

• particle_type : Type of the Geant4 particle to use in the source (string). Refer to
the Geant4 documentation [23] for information about the available types of particles.

• particle_code : PDG code of the Geant4 particle to use in the source.
• beam_energy : Mean energy of the generated particles.
• beam_energy_spread : Energy spread of the generated particle beam.
• beam_position : Position of the particle beam/source in the world geometry.
• beam_size : Width of the Gaussian beam profile.
• beam_divergence : Standard deviation of the particle angles in x and y from the

particle beam
• beam_direction : Direction of the particle as a unit vector.
• number_of_particles : Number of particles to generate in a single event. Defaults to

one particle.

Usage

A possible default configuration to use, simulating a beam of 120 GeV pions with a divergence
in x, is the following:
[DepositionGeant4]
physics_list = FTFP_BERT_LIV
particle_type = "pi+"
beam_energy = 120GeV
beam_position = 0 0 -1mm
beam_direction = 0 0 1
beam_divergence = 3mrad 0mrad
number_of_particles = 1

58

7.4. DetectorHistogrammer

Maintainer: Koen Wolters (koen.wolters@cern.ch), Paul Schuetze (paul.schuetze@desy.de)
Status: Functional
Input: PixelHit

Description

This module provides an overview of the produced simulation data for a quick inspection
and simple checks. For more sophisticated analyses, the output from one of the output
writers should be used to make the necessary information available.

Within the module, clustering of the input hits is performed. Looping over the PixelHits,
hits being adjacent to an existing cluster are added to this cluster. Clusters are merged
if there are multiple adjacent clusters. If the PixelHit is free-standing, a new cluster is
created.

The module creates the following histograms:

• A hitmap of all pixels in the pixel grid, displaying the number of times a pixel has
been hit during the simulation run.

• A cluster map indicating the cluster positions for the whole simulation run.
• Total number of pixel hits (event size) per event (an event can have multiple particles).
• Cluster sizes in x, y and total per cluster.

Parameters

No parameters

Usage

This module is normally bound to a specific detector to plot, for example to the ‘dut’:
[DetectorHistogrammer]
name = "dut"

7.5. ElectricFieldReader

Maintainer: Koen Wolters (koen.wolters@cern.ch)
Status: Functional

59

mailto:koen.wolters@cern.ch
mailto:paul.schuetze@desy.de
mailto:koen.wolters@cern.ch

Description

Adds an electric field to the detector from one of the supported sources. By default,
detectors do not have an electric field applied.

The reader provides the following models for electric fields:

• For constant electric fields it add a constant electric field in the z-direction towards
the pixel implants. This is not very physical but might aid in developing and testing
new charge propagation algorithms.

• For linear electric fields, the field has a constant slope determined by the bias voltage
and the depletion voltage. The sensor is always depleted from the implant side, the
direction of the electric field depends on the sign of the bias voltage (with negative
bias voltage the electric field vector points towards the backplane and vice versa).
The electric field is calculated using the formula ‘E(z) = Ubias−Udepl

d
+ 2Udepl

d

(
1 − z

d

)
‘,

where d is the thickness of the sensor, and ‘Udepl‘, ‘Ubias‘ are the depletion and bias
voltages, respectively.

• For electric fields in the INIT format it parses a file containing an electric field map in
the INIT format also used by the PixelAV software [25]. An example of a electric field
in this format can be found in etc/example_electric_field.init in the repository. An
explanation of the format is available in the source code of this module, a converter
tool for electric fields from adaptive TCAD meshes is provided with the framework.

Furthermore the module can produce a plot the electric field profile on an projection axis
normal to the x,y or z-axis at a particular plane in the sensor.

Parameters

• model : Type of the electric field model, either linear, constant or init.
• bias_voltage : Voltage over the whole sensor thickness. Used to calculate the electric

field if the model parameter is equal to constant or linear.
• depletion_voltage : Indicates the voltage at which the sensor is fully depleted. Used

to calculate the electric field if the model parameter is equal to linear.
• file_name : Location of file containing the electric field in the INIT format. Only

used if the model parameter has the value init.
• output_plots : Determines if output plots should be generated. Disabled by default.
• output_plots_steps : Number of bins in both x- and y-direction in the 2D histogram

used to plot the electric field in the detectors. Only used if output_plots is enabled.
• output_plots_project : Axis to project the 3D electric field on to create the 2D

histogram. Either x, y or z. Only used if output_plots is enabled.
• output_plots_projection_percentage : Percentage on the projection axis to plot the

electric field profile. For example if output_plots_project is x and this parameter is
set to 0.5, the profile is plotted in the Y,Z-plane at the X-coordinate in the middle of
the sensor. Default is 0.5.

60

• output_plots_single_pixel: Determines if the whole sensor has to be plotted or only
a single pixel. Defaults to true (plotting a single pixel).

Usage

An example to add a linear field with a bias voltage of -150 V and a full depletion voltage
of -50 V to all the detectors, apart from the detector named ‘dut’ where a specific INIT
field is added, is given below
[ElectricFieldReader]
model = "linear"
bias_voltage = -150V
depletion_voltage = -50V

[ElectricFieldReader]
name = "dut"
model = "init"
Should point to the example electric field in the repositories etc directory
file_name = "example_electric_field.init"

7.6. GenericPropagation

Maintainer: Koen Wolters (koen.wolters@cern.ch), Simon Spannagel (simon.spannagel@
cern.ch)
Status: Functional
Input: DepositedCharge
Output: PropagatedCharge

Description

Simulates the propagation of electrons and/or holes through the sensitive sensor volume of
the detector. It allows to propagate sets of charge carriers together in order to speed up
the simulation while maintaining the required accuracy. The propagation process for these
sets is fully independent and no interaction is simulated. The maximum size of the set of
propagated charges and thus the accuracy of the propagation can be controlled.

The propagation consists of a combination of drift and diffusion simulation. The drift
is calculated using the charge carrier velocity derived from the charge carrier mobility
parameterization by C. Jacoboni et al. [26]. The correct mobility for either electrons or
holes is automatically chosen, based on the type of the charge carrier under consideration.
Thus, also input with both electrons and holes is treated properly.

61

mailto:koen.wolters@cern.ch
mailto:simon.spannagel@cern.ch
mailto:simon.spannagel@cern.ch

The two parameters propagate_electrons and propagate_holes allow to control which
type of charge carrier is propagated to their respective electrodes. Either one of the carrier
types can be selected, or both can be propagated. It should be noted that this will slow
down the simulation considerably since twice as many carriers have to be handled and
it should only be used where sensible. The direction of the propagation depends on the
electric field configured, and it should be ensured that the carrier types selected are actually
transported to the implant side. For linear electric fields, a warning is issued if a possible
misconfiguration is detected.

A fourth-order Runge-Kutta-Fehlberg method with fifth-order error estimation is used to
integrate the electric field. After every Runge-Kutta step, the diffusion is accounted for
by applying an offset drawn from a Gaussian distribution calculated from the Einstein
relation

‘σ =
√

2kbT
e
µt‘

using the carrier mobility ‘µ‘, the temperature ‘T ‘ and the time step ‘t‘. The propagation
stops when the set of charges reaches any surface of the sensor.

The propagation module also produces a variety of output plots. These include a 3D
line plot of the path of all separately propagated charge carrier sets from their point of
deposition to the end of their drift, with nearby paths having different colors. In this
coloring scheme, electrons are marked in blue colors, while holes are presented in different
shades of orange. In addition, a 3D GIF animation for the drift of all individual sets of
charges (with the size of the point proportional to the number of charges in the set) can be
produced. Finally, the module produces 2D contour animations in all the planes normal to
the X, Y and Z axis, showing the concentration flow in the sensor. It should be noted that
generating the animations is very time-consuming and should be switched off even when
investigating drift behavior.

Dependencies

This module requires an installation of Eigen3.

Parameters

• temperature : Temperature of the sensitive device, used to estimate the diffusion
constant and therefore the strength of the diffusion. Defaults to room temperature
(293.15K).

• charge_per_step : Maximum number of charge carriers to propagate together. Divides
the total number of deposited charge carriers at a specific point into sets of this
number of charge carriers and a set with the remaining charge carriers. A value of 10
charges per step is used by default if this value is not specified.

62

• spatial_precision : Spatial precision to aim for. The timestep of the Runge-Kutta
propagation is adjusted to reach this spatial precision after calculating the uncertainty
from the fifth-order error method. Defaults to 0.1nm.

• timestep_start : Timestep to initialize the Runge-Kutta integration with. Appropri-
ate initialization of this parameter reduces the time to optimize the timestep to the
spatial_precision parameter. Default value is 0.01ns.

• timestep_min : Minimum step in time to use for the Runge-Kutta integration regard-
less of the spatial precision. Defaults to 0.5ps.

• timestep_max : Maximum step in time to use for the Runge-Kutta integration
regardless of the spatial precision. Defaults to 0.1ns.

• integration_time : Time within which charge carriers are propagated. After exceed-
ing this time, no further propagation is performed for the respective carriers. Defaults
to the LHC bunch crossing time of 25ns.

• propagate_electrons : Select whether electron-type charge carriers should be propa-
gated to the electrodes. Defaults to true.

• propagate_holes : Select whether hole-type charge carriers should be propagated to
the electrodes. Defaults to false.

• output_plots : Determines if output plots should be generated for every event. This
causes a significant slow down of the simulation, it is not recommended to enable this
option for runs with more than a couple of events. Disabled by default.

• output_plots_step : Timestep to use between two points plotted. Indirectly de-
termines the amount of points plotted. Defaults to timestep_max if not explicitly
specified.

• output_plots_theta : Viewpoint angle of the 3D animation and the 3D line graph
around the world X-axis. Defaults to zero.

• output_plots_phi : Viewpoint angle of the 3D animation and the 3D line graph
around the world Z-axis. Defaults to zero.

• output_plots_use_pixel_units : Determines if the plots should use pixels as unit
instead of metric length scales. Defaults to false (thus using the metric system).

• output_plots_use_equal_scaling : Determines if the plots should be produced with
equal distance scales on every axis (also if this implies that some points will fall out
of the graph). Defaults to true.

• output_plots_align_pixels : Determines if the plot should be aligned on pixels,
defaults to false. If enabled the start and the end of the axis will be at the split point
between pixels.

• output_animations : In addition to the other output plots, also write a GIF animation
of the charges drifting towards the electrodes. This is very slow and writing the
animation takes a considerable amount of time, therefore defaults to false. This option
also requires output_plots to be enabled.

• output_animations_time_scaling : Scaling for the animation used to convert the
actual simulation time to the time step in the animation. Defaults to 1.0e9, meaning
that every nanosecond of the simulation is equal to an animation step of a single
second.

63

• output_animations_marker_size : Scaling for the markers on the animation, defaults
to one. The markers are already internally scaled to the charge of their step, normalized
to the maximum charge.

• output_animations_contour_max_scaling : Scaling to use for the contour color axis
from the theoretical maximum charge at every single plot step. Default is 10, meaning
that the maximum of the color scale axis is equal to the total amount of charges divided
by ten (values above this are displayed in the same maximum color). Parameter can
be used to improve the color scale of the contour plots.

• output_animations_color_markers: Determines if colors should be for the markers
in the animations, defaults to false.

Usage

A example of generic propagation for all sensors of type “Timepix” at room temperature
using packets of 25 charges is the following:
[GenericPropagation]
type = "timepix"
temperature = 293K
charge_per_step = 25

7.7. GeometryBuilderGeant4

Maintainer: Koen Wolters (koen.wolters@cern.ch)
Status: Functional

Description

Constructs the Geant4 geometry from the internal geometry description. First constructs
the world frame with a configurable margin and material. Then continues to create all the
detectors using their internal detector models and to place them within the world frame.

All available detector models are fully supported. This builder can create extra support
layers of the following materials:

• Silicon
• Plexiglass
• Kapton (using the G4_KAPTON definition)
• Copper
• Epoxy
• Carbonfiber (a mixture of carbon and epoxy)
• G10 (PCB material)
• Solder (a mixture of tin and lead)

64

mailto:koen.wolters@cern.ch

Dependencies

This module requires an installation Geant4.

Parameters

• world_material : Material of the world, should either be air or vacuum. Defaults
to air if not specified.

• world_margin_percentage : Percentage of the world size to add to every dimension
compared to the internally calculated minimum world size. Defaults to 0.1, thus 10%.

• world_minimum_margin : Minimum absolute margin to add to all sides of the internally
calculated minimum world size. Defaults to zero for all axis, thus not requiring any
minimum margin.

• GDML_output_file : Optional file to write the geometry to in GDML format. Can
only be used if this Geant4 version is built with GDML support enabled and will
throw an error otherwise. This feature is to be considered experimental as the GDML
implementation of Geant4 is incomplete.

Usage

To create a Geant4 geometry using vacuum as world material and with always exactly one
meter added to the minimum world size in every dimension, the following configuration
could be used:
[GeometryBuilderGeant4]
world_material = "vacuum"
world_margin_percentage = 0
world_minimum_margin = 1m 1m 1m

7.8. LCIOWriter

Maintainer: Andreas Nurnberg (andreas.nurnberg@cern.ch)
Status: Functional
Input: PixelHit

Description

Writes pixel hit data to LCIO file, compatible with the EUTelescope analysis framework
[27].

65

mailto:andreas.nurnberg@cern.ch

Parameters

• file_name: name of the LCIO file to write, relative to the output directory of the
framework. The extension .slcio should be added. Defaults to output.slcio.

• pixel_type: EUtelescope pixel type to create. Options: EUTelSimpleSparsePixelDe-
fault = 1, EUTelGenericSparsePixel = 2, EUTelTimepix3SparsePixel = 5 (Default:
EUTelGenericSparsePixel)

• detector_name: Detector name written to the run header. Default: “EUTelescope”
• output_collection_name: Name of the LCIO collection containing the pixel data.

Default: “zsdata_m26”

Usage
[LCIOWriter]
file_name = "run000123-converter.slcio"

7.9. ProjectionPropagation

Maintainer: Simon Spannagel (simon.spannagel@cern.ch), Paul Schuetze (paul.schuetze@
desy.de)
Status: Functional
Input: DepositedCharge
Output: PropagatedCharge

Description

The module projects the deposited electrons (holes are ignored) to the sensor surface and
applies a randomized diffusion. It can be used as a replacement for a charge propagation
(e.g. the GenericPropagation module) for saving computing time at the cost of precision.

The diffusion of the charge carriers is realized by placing sets of a configurable number
of electrons in positions drawn as a random number from a two-dimensional gaussian
distribution around the projected position at the sensor surface. The diffusion width is
based on an approximation of the drift time, using an analytical approximation for the
integral of the mobility in a linear electric field. The integral is calculated as follows, with
‘µ0 = Vm/Ec‘:

‘t =
∫ 1
v
ds =

∫ 1
µ(s)E(s)ds =

∫ (1+(E(S)
Ec

)β
)1/β

µ0E(s) ds‘

Here, ‘β‘ is set to 1, inducing systematic errors less than 10%, depending on the sensor
temperature configured. With the linear approximation to the electric field as ‘E(s) =
ks+ E0‘ it is

66

mailto:simon.spannagel@cern.ch
mailto:paul.schuetze@desy.de
mailto:paul.schuetze@desy.de

‘t = 1
µ0

∫ (1
E(s) + 1

Ec

)
ds = 1

µ0

∫ (1
ks+E0

+ 1
Ec

)
ds = 1

µ0

[
ln(ks+E0)

k
+ s

Ec

]b
a

= 1
µ0

[
ln(E(s))

k
+ s

Ec

]b
a

‘.

Since the approximation of the drift time assumes a linear electric field, this module cannot
be used with any other electric field configuration.

Parameters

• temperature: Temperature in the sensitive device, used to estimate the diffusion
constant and therefore the width of the diffusion distribution.

• charge_per_step: Maximum number of electrons placed for which the randomized
diffusion is calculated together, i.e. they are placed at the same position. Defaults to
10.

• propagate_holes: If set to true, holes are propagated instead of electrons. Defaults to
false. Only one carrier type can be selected since all charges are propagated towards
the implants.

• output_plots: Determines if plots should be generated.

Usage
[ProjectionPropagation]
temperature = 293K
charge_per_step = 10
output_plots = 1

7.10. RCEWriter

Maintainer: Salman Maqbool (salman.maqbool@cern.ch)
Status: Functional
Input: PixelHit

Description

Reads in the PixelHit messages and saves track data in the RCE format, appropriate for
the Proteus telescope reconstruction software [28]. An event tree and a sensor tree and
their branches are initialized in the module’s init() method. The event tree is initialized
with the appropriate branches, while a sensor tree is created for each detector and the
branches initialized from a struct storing the tree and branch information for every sensor.
Initially, the program loops over all PixelHit messages and then over all the hits within the
message, and writes data to the tree branches in the RCE format. If there are no hits, the
event is saved with nHits = 0, with the other fields empty.

67

mailto:salman.maqbool@cern.ch

Parameters

• file_name : Name of the data file (without the .root suffix) to create, relative to the
output directory of the framework. The default filename is rce_data.root

Usage

To create the default file (with the name rce_data.root) an instantiation without arguments
can be placed at the end of the main configuration:
[RCEWriter]

7.11. ROOTObjectReader

Maintainer: Koen Wolters (koen.wolters@cern.ch)
Status: Functional
Output: all objects in input file

Description

Converts all object data stored in the ROOT data file produced by the ROOTObjectWriter
module back in to messages (see the description of ROOTObjectWriter for more information
about the format). Reads all trees defined in the data file that contain Allpix objects.
Creates a message from the objects in the tree for every event.

If the requested number of events for the run is less than the number of events the data
file contains, all additional events in the file are skipped. If more events than available are
requested, a warning is displayed and the other events of the run are skipped.

Currently it is not yet possible to exclude objects from being read. In case not all objects
should be converted to messages, these objects need to be removed from the file before the
simulation is started.

Parameters

• file_name : Location of the ROOT file containing the trees with the object data.
• include : Array of object names (without allpix:: prefix) to be read from the ROOT
trees, all other object names are ignored (cannot be used simulateneously with the
exclude parameter).

• exclude: Array of object names (without allpix:: prefix) not to be read from the
ROOT trees (cannot be used simulateneously with the include parameter).

68

mailto:koen.wolters@cern.ch

Usage

This module should be placed at the beginning of the main configuration. An example to
read only PixelCharge and PixelHit objects from the file data.root is:
[ROOTObjectReader]
file_name = "data.root"
include = "PixelCharge", "PixelHit"

7.12. ROOTObjectWriter

Maintainer: Koen Wolters (koen.wolters@cern.ch)
Status: Functional
Input: all objects in simulation

Description

Reads all messages dispatched by the framework that contain Allpix objects. Every message
contains a vector of objects, which is converted to a vector to pointers of the object base
class. The first time a new type of object is received, a new tree is created bearing the class
name of this object. For every combination of detector and message name, a new branch is
created within this tree. A leaf is automatically created for every member of the object.
The vector of objects is then written to the file for every event it is dispatched, saving an
empty vector if an event does not include the specific object.

If the same type of messages is dispatched multiple times, it is combined and written to
the same tree. Thus, the information that they were separate messages is lost. It is also
currently not possible to limit the data that is written to file. If only a subset of the objects
is needed, the rest of the data should be discarded afterwards.

In addition to the objects, both the configuration and the geometry setup are written to
the ROOT file. The main configuration file is copied directly and all key/value pairs are
written to a directory config in a subdirectory with the name of the corresponding module.
All the detectors are written to a subdirectory with the name of the detector in the top
directory detectors. Every detector contains the position, rotation matrix and the detector
model (with all key/value pairs stored in a similar way as the main configuration).

Parameters

• file_name : Name of the data file (without the .root suffix) to create, relative to the
output directory of the framework.

69

mailto:koen.wolters@cern.ch

• include : Array of object names (without allpix:: prefix) to write to the ROOT
trees, all other object names are ignored (cannot be used together simulateneously
with the exclude parameter).

• exclude: Array of object names (without allpix:: prefix) that are not written to the
ROOT trees (cannot be used together simulateneously with the include parameter).

Usage

To create the default file (with the name data.root) containing trees for all objects except
for PropagatedCharges, the following configuration can be placed at the end of the main
configuration:
[ROOTObjectWriter]
exclude = "PropagatedCharge"

7.13. SimpleTransfer

Maintainer: Koen Wolters (koen.wolters@cern.ch)
Status: Functional
Input: PropagatedCharge
Output: PixelCharge

Description

Combines individual sets of propagated charges together to a set of charges on the sensor
pixels and thus prepares them for processing by the detector front-end electronics. The
module does a simple direct mapping to the nearest pixel, ignoring propagated charges that
are too far away from the implants or outside the pixel grid. Timing information for the
pixel charges is currently not yet produced, but can be fetched from the linked propagated
charges.

Parameters

• max_depth_distance : Maximum distance in depth, i.e. normal to the sensor surface
at the implant side, for a propagated charge to be taken into account. Defaults to
5um.

70

mailto:koen.wolters@cern.ch

Usage

For a typical simulation, a max_depth_distance a few micro meters should be sufficient,
leading to the following configuration:
[SimpleTransfer]
max_depth_distance = 5um

7.14. VisualizationGeant4

Maintainer: Koen Wolters (koen.wolters@cern.ch)
Status: Functional

Description

Constructs a visualization viewer to display the constructed Geant4 geometry. The module
supports all type of viewers included in Geant4, but the default Qt visualization with the
OpenGL viewer is recommended as long as the installed Geant4 version supports it.

The module allows for changing a variety of parameters to control the output visualization
both for the different detector components and the particle beam.

Dependencies

This module requires an installation Geant4.

Parameters

• mode : Determines the mode of visualization. Options are gui which starts a Qt
visualization window containing the driver (as long as the chosen driver supports
it), terminal starts both the visualization viewer and a Geant4 terminal or none
which only starts the driver itself (and directly closes it if the driver is asynchronous).
Defaults to gui.

• driver : Geant4 driver used to visualize the geometry. All the supported options can
be found online [29] and depend on the build options of the Geant4 version used. The
default OGL should normally be used with the gui option if the visualization should
be accumulated, otherwise terminal is the better option. Other than this, only the
VRML2FILE driver has been tested. This driver should be used with mode equal
to none. Defaults to the OpenGL driver OGL.

• accumulate : Determines if all events should be accumulated and displayed at the end,
or if only the last event should be kept and directly visualized (if the driver supports
it). Defaults to true, thus accumulating events and only displaying the final result.

71

mailto:koen.wolters@cern.ch

• accumulate_time_step : Time step to sleep between events to allow for time to display
if events are not accumulated. Only used if accumulate is disabled. Default value is
100ms.

• simple_view : Determines if the visualization should be simplified, not displaying the
pixel matrix and other parts which are replicated multiple times. Default value is
true. This parameter should normally not be changed as it will cause a considerable
slowdown of the visualization for a sensor with a typical number of channels.

• background_color : Color of the background of the viewer. Defaults to white.
• view_style : Style to use to display the elements in the geometry. Options are
wireframe and surface. By default, all elements are displayed as solid surface.

• transparency : Default transparency percentage of all detector elements, only used
if the view_style is set to display solid surfaces. The default value is 0.4, giving a
moderate amount of transparency.

• display_trajectories : Determines if the trajectories of the primary and secondary
particles should be displayed. Defaults to true.

• hidden_trajectories : Determines if the trajectories should be hidden inside the
detectors. Only used if the display_trajectories is enabled. Default value of the
parameter is true.

• trajectories_color_mode : Configures the way, trajectories are colored. Options are
either generic which colors all trajectories in the same way, charge which bases the
color on the particle’s charge, or particle which colors the trajectory based on the
type of the particle. The default setting is charge.

• trajectories_color : Color of the trajectories if trajectories_color_mode is set to
generic. Default value is blue.

• trajectories_color_positive : Visualization color for positively charged particles.
Only used if trajectories_color_mode is equal to charge. Default is blue.

• trajectories_color_neutral : Visualization color for neutral particles. Only used if
trajectories_color_mode is equal to charge. Default is green.

• trajectories_color_negative : Visualization color for negatively charged particles.
Only used if trajectories_color_mode is equal to charge. Default is red.

• trajectories_particle_colors : Array of combinations of particle ID and color used
to determine the particle colors if trajectories_color_mode is equal to particle. Refer
to the Geant4 documentation [23] for details about the IDs of particles.

• trajectories_draw_step : Determines if the steps of the trajectories should be plotted.
Enabled by default. Only used if display_trajectories is enabled.

• trajectories_draw_step_size : Size of the markers used to display a trajectory step.
Defaults to 2 points. Only used if trajectories_draw_step is enabled.

• trajectories_draw_step_color : Color of the markers used to display a trajectory
step. Default value red. Only used if trajectories_draw_step is enabled.

• draw_hits : Determines if hits in the detector should be displayed. Defaults to false.
Option is only useful if Geant4 hits are generated in a module.

• macro_init : Optional Geant4 macro to execute during initialization. Whenever
possible, the configuration parameters above should be used instead of this option.

72

Usage

An example configuration providing a wireframe viewing style with the same color for every
particle and displaying the result after every event for 2s, is the following:
[VisualizationGeant4]
mode = "none"
view_style = "wireframe"
trajectories_color_mode = "generic"
accumulate = 0
accumulate_time_step = 2s

73

8. Module & Detector Development

The following sections provide brief recipes for developing new simulations modules
and detector models for the Allpix2 framework. Before starting the development, the
CONTRIBUTING.md file in the repository should be consulted for further information on the
development process, code contributions and the preferred coding style for Allpix2.

8.1. Implementing a New Module

It is essential to carefully read the framework module manager documentation in Section 5.3,
the information about the directory structure in Section 5.3.1 and the details of the module
structure in Section 5.3.2 before creating a new module. Thereafter, the steps below should
provide enough details for starting with a new module, hereafter called ModuleName:

1. Run the module initialization script at etc/scripts/make_module.sh in the repository.
The script will ask for the name of the model and the type (unique or detector-specific).
It creates the directory with a minimal example to get started together with the
rough outline of its documentation in README.md.

2. Before starting to implement the actual module, it is recommended to update the
introductory documentation in README.md. No additional documentation in LaTeX
has to be provided, as this Markdown-formatted file [17] is automatically converted
and included in the user manual. Formulas can be included by enclosing it in
Dollar-backtick markers, i.e. ‘‘E(z) = 0‘‘. Also the Doxygen documentation in
ModuleName.hpp should be extended to provide a basic description of the module.

3. Finally the constructor, the init, run and/or finalize methods can be written,
depending on the requirements of the new module.

After this, it is up to the developer to implement all required functionality.

It should be kept in mind that writing more generic modules, which are not tied to a
specific detector type or simulation, might allow other users to benefit from the development.
Furthermore, it may be beneficial to split up modules to support the modular design of
Allpix2. Additional sources of documentation which may be useful during the development
of a module include:

• The framework documentation in Section 5 for an introduction to the different parts
of the framework.

• The module documentation in Section 7 for a description of functionality other
modules already provide and to look for similar modules which can help during
development.

• The Doxygen (core) reference documentation included in the framework [30].

74

• The latest version of the source code of all modules and the Allpix2 core itself.

Any module potentially useful for other people should be contributed back to the main
repository. It is strongly encouraged to send a merge-request through the mechanism
provided by the software repository [9].

8.2. Adding a New Detector Model

Custom detector models based on the detector classes provided with Allpix2 can easily be
added to the framework. Crucial information to read before writing the model is provided
in Section 5.2.1, which describes the file format, Section 4.1.1 for information about the
units used in Allpix2 and Section 5.4, which describes the geometry and detector models. In
particular Section 5.4.3 explains all parameters of the detector models currently available.
The default models provided in the models directory of the repository can serve as examples.
To create a new detector model, the following steps should be considered:

1. Create a new file with the name of the model followed by the .conf suffix (for example
your_model.conf).

2. Add a configuration parameter type with the type of the model, at the moment
either ’monolithic’ or ’hybrid’ for respectively monolithic sensors or hybrid models
with bump bonds and a separate readout chip.

3. Add all required parameters and possibly optional parameters as explained in Section
5.4.3.

4. Include the detector model in the search path of the framework by adding the
model_path parameter to the general setting of the main configuration (see Section
4.2) pointing to either directly to the detector model file or the directory containing
it. It should be noted, that files in this path will overwrite models with the same
name in the default model folder.

Models should be contributed to the main repository to make them available to other
users of the framework. To add the detector model to the framework the configuration file
should be moved to the models folder of the repository. Then the file should be added to
the installation target in the CMakeLists.txt file of the models directory. Afterwards, a
merge-request can be created via the mechanism provided by the software repository [9].

75

9. Frequently Asked Questions

How do I run a module only for one detector?
This is only possible for detector modules (which are constructed to work on individual
detectors). To run it on a single detector, one should add a parameter name specifying
the name of the detector (as defined in the detector configuration file).

How do I run a module only for a specific detector type?
This is only possible for detector modules (which are constructed to work on individual
detectors). To run it for a specific type of detector, one should add a parameter type
with the type of the detector model (as set in the detector configuration file by the
model parameter).

How can I run the exact same type of module with different settings?
This is possible by using the input and output parameters of a module that specialize
the messages of the module. By default, both the input and the output of module
are messages with an empty name. Please refer to Section 5.5 for more information.

How can I temporarily ignore a module during development?
The section header of a particular module in the configuration file can be replaced by
the string Ignore. The section and all of its key/value pairs are then ignored.

Can I get a high verbosity level only for a specific module?
Yes, it is possible to specify verbosity levels and log formats per module. This can
be done by adding the log_level and/or log_format key to a specific module to
replace the parameter in the global configuration sections.

I want to use a detector model with one or several small changes, do I have to create
a whole new model for this?
No, models can be specialized in the detector configuration file. To specialize a
detector model, the key that should be changed in the standard detector model,
e.g. like sensor_thickness, should be added as key to the section of the detector
configuration (which already contains the position, orientation and the base model of
the detector). Only parameters in the header of detector models can be changed. If
support layers should be changed, or new support layers are needed, a new model
should be created instead.

How do I access the history of a particular object?
Many objects can include an internal link to related other objects (for example
getPropagatedCharges in the PixelCharge object), containing the history of the
object (thus the objects that were used to construct the current object). These
referenced objects are stored as special ROOT pointers inside the object, which
can only be accessed if the referenced object is available in memory. In Allpix2 this
requirement can be automatically fulfilled by also binding the history object of interest
in a module. During analysis, the tree holding the referenced object should be loaded

76

and pointing to the same event entry as the object that requests the reference. If the
referenced object can not be loaded, an exception is thrown by the retrieving method.

How do I access the Monte Carlo truth of a specific PixelHit?
The Monte Carlo truth is part of the history of a PixelHit. This means that the
Monte Carlo truth can be retrieved as described in the question above. However
take notice that there are multiple layers between a PixelHit and its MCParticles,
which are the PixelCharge, PropagatedCharge and DepositedCharge. These should
all be loaded in memory to make it possible to fetch the history. Because getting the
Monte Carlo truth of a PixelHit is quite a common thing a getMCParticles method
is available which searches all layers of the history and returns an exception if any of
the in between steps is not available or not loaded.

Can I import an electric field from TCAD and use it for simulating propagation?
Yes, the framework includes a tool to convert DF-ISE files from TCAD to an internal
format which Allpix2 can parse. More information about this tool can be found in
Section 10.2, instructions to import the generated field are provided in Section 4.4.

77

10. Additional Tools & Resources

The following section briefly describes tools provided with the Allpix2 framework, which
might be re-used in new modules or in standalone code.

10.1. Framework Tools

10.1.1. ROOT and Geant4 utilities

The framework provides a set of methods to ease the integration of ROOT and Geant4 in
the framework. An important part is the extension of the custom conversion to_string
and from_string methods from the internal string utilities (see Section 5.6.3) to support
internal ROOT and Geant4 classes. This allows to directly read configuration parameters
to these types, making the code in the modules both shorter and cleaner. In addition, more
conversions functions are provided together with other useful utilities such as the possibility
to display a ROOT vector with units.

10.1.2. Runge-Kutta integrator

A fast Eigen-powered [3] Runge-Kutta integrator is provided as a tool to solve differential
equations. The Runge-Kutta integrator is build generically and supports multiple methods
using different tableaus. It allows to integrate every system of equations in several steps
with customizable step size. The step size can also be updated during the integration
depending on the error of the Runge-Kutta method (if a tableau with error estimation is
used).

10.2. TCAD DF-ISE mesh converter

This code takes the .grd and .dat files of the DF-ISE format from TCAD simulations
as input. The .grd file contains the vertex coordinates (3D or 2D) of each mesh node
and the .dat file contains the value of each electric field vector component for each mesh
node, grouped by model regions (such as silicon bulk or metal contacts). The regions are
defined in the .grd file by grouping vertices into edges, faces and, consecutively, volumes or
elements.

A new regular mesh is created by scanning the model volume in regular X Y and Z steps
(not necessarily coinciding with original mesh nodes) and using a barycentric interpolation
method to calculate the respective electric field vector on the new point. The interpolation

78

uses the four closest, no-coplanar, neighbor vertex nodes such, that the respective tetra-
hedron encloses the query point. For the neighbors search, the software uses the Octree
implementation [31] (see below).

The output .init file (with the same name as the .grd and .dat files) can be imported into
Allpix Squared. The INIT file has a header followed by a list of columns organized as
node.x node.y node.z e-field.x e-field.y e-field.z

Features

• TCAD DF-ISE file format reader.
• Fast radius neighbor search for three-dimensional point clouds.
• Barycentric interpolation between non-regular mesh points.
• Several cuts available on the interpolation algorithm variables.
• Interpolated data visualization tool.

Usage

To run the program, the following should be executed from the installation folder:
bin/tcad_dfise_converter/dfise_converter -f <file_name_prefix> [<options>] [<arguments>]

The list with options can be accessed using the -h option. Default values are assumed for
the options not used. Possible options are:
-R <region> = "bulk"
-r <search radius> = 1 um
-r <radius step> = 0.5 um
-m <max radius> = 10 um
-c <volume cut> = std::numeric_limits<double>::min()
-x,y,z <mesh binning> = 100 (option should be set using -x, -y and -z)

The output INIT file will be saved with the same file_name_prefix as the .grd and .dat
files.

The mesh_plotter tool can be used from the installation folder as follows:
bin/tcad_dfise_converter/mesh_plotter -f <file_name> [<options>] [<arguments>]

The list with options and defaults is displayed with the -h option. A default value of 100 is
used for the binning, but this can be changed. In a 3D mesh, the plane to be plotted must
be identified by using the option -p with argument xy, yz or zx, defaulting to yz. The data
to be plotted can be selected with the -d option, the arguments are ex, ey, ez for the vector
components or the default value n for the norm of the electric field.

79

Octree

J. Behley, V. Steinhage, A.B. Cremers. Efficient Radius Neighbor Search in Three-
dimensional Point Clouds, Proc. of the IEEE International Conference on Robotics and
Automation (ICRA), 2015 [31].

Copyright 2015 Jens Behley, University of Bonn. This project is free software made available
under the MIT License. For details see the LICENSE.md file.

10.3. ROOT Analysis Macros

Collection of macros demonstrating how to analyze data generated by the framework.
Currently contains a single macro to convert the TTree of objects to a tree containing
typical standard data users are interested in. This is useful for simple comparisons with
other frameworks.

Comparison tree

Reads all required trees from the given file and binds their content to the objects defined by
the framework. Then creates an output tree and binds every branch to a simple arithmetic
type. Continues to loop over all events in the tree and converting the stored data from the
various trees to the output tree. The final output tree contains branches for the cluster
sizes, aspect ratios, accumulated charge per event, the track position from the Monte Carlo
truth and the reconstructed track using a simple direct center of gravity calculation using
the charges without any corrections.

To construct a comparison tree using this macro, follow these steps:

• Open root with the data file attached like root -l /path/to/data.root
• Load the current library of objects with .L path/to/libAllpixObjects.so
• Build the macro with .L path/to/constructComparisonTree.C++
• Run the macro with auto tree = constructComparisonTree(_file0, "name_of_dut")
• Open a new file with auto file = new TFile("output.root", "RECREATE")
• Write the tree with tree->Write()

Remake project

Simple macro to show the possibility to recreate source files for legacy objects stored in
ROOT data files from older versions of the framework. Can be used if the corresponding
dynamic library for that particular version is not accessible anymore. It is however not
possible to recreate methods of the objects and it is therefore not easily possible to
reconstruct the stored history.

To recreate the project source files, the following commands should be done:

80

• Open root with the data file attached like root -l /path/to/data.root
• Build the macro with .L path/to/remakeProject.C++
• Recreate the source files using remakeProject(_file0, "output_dir")

81

11. Acknowledgments

Allpix2 has been developed and is maintained by

• Koen Wolters, CERN

• Daniel Hynds, CERN

• Simon Spannagel, CERN

The following authors, in alphabetical order, have contributed to Allpix2:

• Neal Gauvin, Université de Genève

• Moritz Kiehn, Université de Genève

• Salman Maqbool, CERN Summer Student

• Andreas Matthias Nürnberg, CERN

• Marko Petric, CERN

• Edoardo Rossi, DESY

• Paul Schütze, DESY

• Mateus Vicente Barreto Pinto, Université de Genève

The authors would also like to express their thanks to the developers of AllPix [4, 5].

82

A. Output of Example Simulation

Possible output for the example simulation in Section 4.3 is given below:
(S) Welcome to Allpix^2 v1.0beta1+110^gc065eb9
(S) Initialized PRNG with system entropy seed 11350876086373902512
(S) Loaded 8 modules
(S) Initializing 15 module instantiations
(I) [I:DepositionGeant4] Using G4 physics list "QGSP_BERT"
(I) [I:ElectricFieldReader:telescope1] Setting linear electric field from -100V

bias voltage and -50V depletion voltage
(I) [I:ElectricFieldReader:dut] Setting linear electric field from -100V bias

voltage and -50V depletion voltage
(I) [I:ElectricFieldReader:telescope2] Setting linear electric field from -100V

bias voltage and -50V depletion voltage
(S) Initialized 15 module instantiations
(S) Running event 1 of 5
(I) [R:DepositionGeant4] Deposited 87334 charges in sensor of detector

telescope1
(I) [R:DepositionGeant4] Deposited 45780 charges in sensor of detector dut
(I) [R:DepositionGeant4] Deposited 49552 charges in sensor of detector

telescope2
(I) [R:GenericPropagation:dut] Propagated 22890 charges in 458 steps in average

time of 3.48832ns
(I) [R:GenericPropagation:telescope2] Propagated 24776 charges in 496 steps in

average time of 3.49675ns
(I) [R:SimpleTransfer:dut] Transferred 22890 charges to 4 pixels
(I) [R:SimpleTransfer:telescope2] Transferred 24776 charges to 4 pixels
(I) [R:DefaultDigitizer:dut] Digitized 2 pixel hits
(I) [R:DefaultDigitizer:telescope2] Digitized 4 pixel hits
(S) Running event 2 of 5
(I) [R:DepositionGeant4] Deposited 72234 charges in sensor of detector

telescope1
(I) [R:DepositionGeant4] Deposited 56736 charges in sensor of detector dut
(I) [R:DepositionGeant4] Deposited 55882 charges in sensor of detector

telescope2
(I) [R:GenericPropagation:dut] Propagated 28368 charges in 568 steps in average

time of 3.49392ns
(I) [R:GenericPropagation:telescope2] Propagated 27941 charges in 559 steps in

average time of 3.49617ns
(I) [R:SimpleTransfer:dut] Transferred 28368 charges to 4 pixels
(I) [R:SimpleTransfer:telescope2] Transferred 27941 charges to 4 pixels
(I) [R:DefaultDigitizer:dut] Digitized 2 pixel hits
(I) [R:DefaultDigitizer:telescope2] Digitized 4 pixel hits
(S) Running event 3 of 5

83

(I) [R:DepositionGeant4] Deposited 66248 charges in sensor of detector
telescope1

(I) [R:DepositionGeant4] Deposited 57228 charges in sensor of detector dut
(I) [R:DepositionGeant4] Deposited 59420 charges in sensor of detector

telescope2
(I) [R:GenericPropagation:dut] Propagated 28614 charges in 573 steps in average

time of 3.49467ns
(I) [R:GenericPropagation:telescope2] Propagated 29710 charges in 595 steps in

average time of 3.49148ns
(I) [R:SimpleTransfer:dut] Transferred 28614 charges to 3 pixels
(I) [R:SimpleTransfer:telescope2] Transferred 29710 charges to 4 pixels
(I) [R:DefaultDigitizer:dut] Digitized 2 pixel hits
(I) [R:DefaultDigitizer:telescope2] Digitized 4 pixel hits
(S) Running event 4 of 5
(I) [R:DepositionGeant4] Deposited 65206 charges in sensor of detector

telescope1
(I) [R:DepositionGeant4] Deposited 70198 charges in sensor of detector dut
(I) [R:DepositionGeant4] Deposited 41846 charges in sensor of detector

telescope2
(I) [R:GenericPropagation:dut] Propagated 35099 charges in 702 steps in average

time of 3.49416ns
(I) [R:GenericPropagation:telescope2] Propagated 20923 charges in 419 steps in

average time of 3.48176ns
(I) [R:SimpleTransfer:dut] Transferred 35099 charges to 4 pixels
(I) [R:SimpleTransfer:telescope2] Transferred 20923 charges to 4 pixels
(I) [R:DefaultDigitizer:dut] Digitized 2 pixel hits
(I) [R:DefaultDigitizer:telescope2] Digitized 4 pixel hits
(S) Running event 5 of 5
(I) [R:DepositionGeant4] Deposited 62782 charges in sensor of detector

telescope1
(I) [R:DepositionGeant4] Deposited 47698 charges in sensor of detector dut
(I) [R:DepositionGeant4] Deposited 53766 charges in sensor of detector

telescope2
(I) [R:GenericPropagation:dut] Propagated 23849 charges in 477 steps in average

time of 3.49966ns
(I) [R:GenericPropagation:telescope2] Propagated 26883 charges in 538 steps in

average time of 3.49897ns
(I) [R:SimpleTransfer:dut] Transferred 23849 charges to 3 pixels
(I) [R:SimpleTransfer:telescope2] Transferred 26883 charges to 4 pixels
(I) [R:DefaultDigitizer:dut] Digitized 2 pixel hits
(I) [R:DefaultDigitizer:telescope2] Digitized 4 pixel hits
(S) Finished run of 5 events
(I) [F:DepositionGeant4] Deposited total of 1783820 charges in 6 sensor(s) (

average of 59460 per sensor for every event)

84

(I) [F:GenericPropagation:dut] Propagated total of 138820 charges in 2778 steps
in average time of 3.4942ns

(I) [F:GenericPropagation:telescope2] Propagated total of 130233 charges in 2607
steps in average time of 3.49347ns

(I) [F:SimpleTransfer:telescope1] Transferred total of 0 charges to 0 different
pixels

(I) [F:SimpleTransfer:dut] Transferred total of 138820 charges to 4 different
pixels

(I) [F:SimpleTransfer:telescope2] Transferred total of 130233 charges to 4
different pixels

(I) [F:DefaultDigitizer:telescope1] Digitized 0 pixel hits in total
(I) [F:DefaultDigitizer:dut] Digitized 10 pixel hits in total
(I) [F:DefaultDigitizer:telescope2] Digitized 20 pixel hits in total
(I) [F:DetectorHistogrammer:dut] Plotted 10 hits in total, mean position is

(126,125.5)
(S) [F:ROOTObjectWriter] Wrote 5498 objects to 12 branches in file:

/tmp/output/allpix-squared_output.root
(S) Finalization completed
(S) Executed 15 instantiations in 2 seconds, spending 58% of time in slowest

instantiation DepositionGeant4
(I) Module GeometryBuilderGeant4 took 0.0356574 seconds
(I) Module DepositionGeant4 took 0.888584 seconds
(I) Module ElectricFieldReader:telescope1 took 0.000102932 seconds
(I) Module ElectricFieldReader:dut took 6.3408e-05 seconds
(I) Module ElectricFieldReader:telescope2 took 5.5951e-05 seconds
(I) Module DefaultDigitizer:telescope1 took 5.6189e-05 seconds
(I) Module DefaultDigitizer:dut took 0.000543031 seconds
(I) Module DefaultDigitizer:telescope2 took 0.000312817 seconds
(I) Module DetectorHistogrammer:dut took 0.0237165 seconds
(I) Module ROOTObjectWriter took 0.180625 seconds
(I) Module SimpleTransfer:telescope1 took 6.8943e-05 seconds
(I) Module SimpleTransfer:dut took 0.00504597 seconds
(I) Module SimpleTransfer:telescope2 took 0.00274271 seconds
(I) Module GenericPropagation:dut took 0.206209 seconds
(I) Module GenericPropagation:telescope2 took 0.188115 seconds
(S) Average processing time is 306 ms/event, event generation at 3 Hz

85

References

[1] S. Agostinelli et al. “Geant4 - a simulation toolkit”. In: Nuclear Instruments and
Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment 506.3 (2003), pp. 250–303. issn: 0168-9002. doi: https://doi.
org/10.1016/S0168-9002(03)01368-8.

[2] ROOT - An Object Oriented Data Analysis Framework. Vol. 389. Sept. 1996, pp. 81–
86.

[3] Gaël Guennebaud, Benoît Jacob, et al. Eigen v3. 2010. url: http://eigen.tuxfamily.org.
[4] Mathieu Benoit et al. The AllPix Simulation Framework. Mar. 21, 2017. url: https:

//twiki.cern.ch/twiki/bin/view/Main/AllPix.
[5] Mathieu Benoit, John Idarraga, and Samir Arfaoui. AllPix. Generic simulation for

pixel detectors. url: https://github.com/ALLPix/allpix.
[6] Daniel Hynds, Simon Spannagel, and Koen Wolters. The Allpix2 Project Issue Tracker.

July 27, 2017. url: https://gitlab.cern.ch/simonspa/allpix-squared/issues.
[7] Rene Brun and Fons Rademakers. Building ROOT. url: https://root.cern.ch/building-

root.
[8] Geant4 Collaboration. Geant4 Installation Guide. Building and Installing Geant4

for Users and Developers. 2016. url: http : / / geant4 . web . cern . ch / geant4 /
UserDocumentation/UsersGuides/InstallationGuide/html/.

[9] Daniel Hynds, Simon Spannagel, and Koen Wolters. The Allpix2 Project Repository.
Aug. 2, 2017. url: https://gitlab.cern.ch/simonspa/allpix-squared/.

[10] S. Aplin et al. “LCIO: A persistency framework and event data model for HEP”.
In: Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), IEEE.
Anaheim, CA, Oct. 2012, pp. 2075–2079. doi: 10.1109/NSSMIC.2012.6551478.

[11] X. Llopart et al. “Timepix, a 65k programmable pixel readout chip for arrival
time, energy and/or photon counting measurements”. In: Nuclear Instruments and
Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment 581.1 (2007). VCI 2007, pp. 485–494. issn: 0168-9002. doi:
http://dx.doi.org/10.1016/j.nima.2007.08.079.

[12] Geant4 Collaboration. Geant4 User’s Guide for Application Developers. Visualization.
2016. url: https://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/
ForApplicationDeveloper/html/ch08.html.

[13] Rene Brun and Fons Rademakers. ROOT User’s Guide. Trees. url: https://root.
cern.ch/root/htmldoc/guides/users-guide/Trees.html.

[14] Rene Brun and Fons Rademakers. ROOT User’s Guide. Input/Output. url: https:
//root.cern.ch/root/htmldoc/guides/users-guide/InputOutput.html.

86

http://dx.doi.org/https://doi.org/10.1016/S0168-9002(03)01368-8
http://dx.doi.org/https://doi.org/10.1016/S0168-9002(03)01368-8
http://eigen.tuxfamily.org
https://twiki.cern.ch/twiki/bin/view/Main/AllPix
https://twiki.cern.ch/twiki/bin/view/Main/AllPix
https://github.com/ALLPix/allpix
https://gitlab.cern.ch/simonspa/allpix-squared/issues
https://root.cern.ch/building-root
https://root.cern.ch/building-root
http://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/InstallationGuide/html/
http://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/InstallationGuide/html/
https://gitlab.cern.ch/simonspa/allpix-squared/
http://dx.doi.org/10.1109/NSSMIC.2012.6551478
http://dx.doi.org/http://dx.doi.org/10.1016/j.nima.2007.08.079
https://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/ForApplicationDeveloper/html/ch08.html
https://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/ForApplicationDeveloper/html/ch08.html
https://root.cern.ch/root/htmldoc/guides/users-guide/Trees.html
https://root.cern.ch/root/htmldoc/guides/users-guide/Trees.html
https://root.cern.ch/root/htmldoc/guides/users-guide/InputOutput.html
https://root.cern.ch/root/htmldoc/guides/users-guide/InputOutput.html

[15] Rainer Bartholdus, Su Dong, et al. ATLAS RCE Development Lab. url: https :
//twiki.cern.ch/twiki/bin/view/Atlas/RCEDevelopmentLab.

[16] Tom Preston-Werner. TOML. Tom’s Obvious, Minimal Language. url: https://
github.com/toml-lang/toml.

[17] John Gruber and Aaron Swartz. Markdown. url: https://daringfireball.net/projects/
markdown/.

[18] John MacFarlane. Pandoc. A universal document converter. url: http://pandoc.org/.
[19] Michael Kerrisk. Linux Programmer’s Manual. ld.so, ld-linux.so - dynamic link-

er/loader. url: http://man7.org/linux/man-pages/man8/ld.so.8.html.
[20] Eric W. Weisstein. Euler Angles. From MathWorld – A Wolfram Web Resource. url:

http://mathworld.wolfram.com/EulerAngles.html.
[21] Beman Dawes. Adopt the File System TS for C++17. Feb. 2016. url: http://www.

open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0218r0.html.
[22] L. Garren et al. Monte Carlo Particle Numbering Scheme. 2015. url: http://hepdata.

cedar.ac.uk/lbl/2016/reviews/rpp2016-rev-monte-carlo-numbering.pdf.
[23] Geant4 Particles. url: http://geant4.cern.ch/G4UsersDocuments/UsersGuides/

ForApplicationDeveloper/html/TrackingAndPhysics/particle.html.
[24] Geant4 Physics Lists. url: http://geant4.cern.ch/support/proc_mod_catalog/

physics_lists/referencePL.shtml.
[25] Morris Swartz. A detailed simulation of the CMS pixel sensor. Tech. rep. 2002.
[26] C. Jacoboni et al. “A review of some charge transport properties of silicon”. In: Solid

State Electronics 20 (Feb. 1977), pp. 77–89. doi: 10.1016/0038-1101(77)90054-5.
[27] The EUTelescope Developers. The EUTelescope Analysis Framework. url: http :

//eutelescope.web.cern.ch/.
[28] The Proteus Developers. The Proteus Testbeam Reconstruction Framework. url:

https://gitlab.cern.ch/unige-fei4tel/proteus/.
[29] Geant4 Visualization Drivers. url: https : / / geant4 . web . cern . ch / geant4 /

UserDocumentation/UsersGuides/ForApplicationDeveloper/html/ch08s03.html.
[30] Daniel Hynds, Simon Spannagel, and Koen Wolters. The Allpix2 Code Documentation.

Aug. 22, 2017. url: http://cern.ch/allpix-squared/reference/.
[31] J. Behley, V. Steinhage, and A. B. Cremers. “Efficient radius neighbor search in

three-dimensional point clouds”. In: 2015 IEEE International Conference on Robotics
and Automation (ICRA). May 2015, pp. 3625–3630. doi: 10.1109/ICRA.2015.7139702.

87

https://twiki.cern.ch/twiki/bin/view/Atlas/RCEDevelopmentLab
https://twiki.cern.ch/twiki/bin/view/Atlas/RCEDevelopmentLab
https://github.com/toml-lang/toml
https://github.com/toml-lang/toml
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
http://pandoc.org/
http://man7.org/linux/man-pages/man8/ld.so.8.html
http://mathworld.wolfram.com/EulerAngles.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0218r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0218r0.html
http://hepdata.cedar.ac.uk/lbl/2016/reviews/rpp2016-rev-monte-carlo-numbering.pdf
http://hepdata.cedar.ac.uk/lbl/2016/reviews/rpp2016-rev-monte-carlo-numbering.pdf
http://geant4.cern.ch/G4UsersDocuments/UsersGuides/ForApplicationDeveloper/html/TrackingAndPhysics/particle.html
http://geant4.cern.ch/G4UsersDocuments/UsersGuides/ForApplicationDeveloper/html/TrackingAndPhysics/particle.html
http://geant4.cern.ch/support/proc_mod_catalog/physics_lists/referencePL.shtml
http://geant4.cern.ch/support/proc_mod_catalog/physics_lists/referencePL.shtml
http://dx.doi.org/10.1016/0038-1101(77)90054-5
http://eutelescope.web.cern.ch/
http://eutelescope.web.cern.ch/
https://gitlab.cern.ch/unige-fei4tel/proteus/
https://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/ForApplicationDeveloper/html/ch08s03.html
https://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/ForApplicationDeveloper/html/ch08s03.html
http://cern.ch/allpix-squared/reference/
http://dx.doi.org/10.1109/ICRA.2015.7139702

	Quick Start
	Introduction
	Scope of this Manual
	Support and Reporting Issues
	Contributing Code

	Installation
	Supported Operating Systems
	Prerequisites
	Downloading the source code
	Initializing the dependencies
	Configuration via CMake
	Compilation and installation
	Testing

	Getting Started
	Configuration Files
	Parsing types and units
	Main configuration
	Detector configuration

	Framework parameters
	Setting up the Simulation Chain
	Adding More Modules
	Redirect Module Inputs and Outputs
	Logging and Verbosity Levels
	Storing Output Data

	The Allpix2 Framework
	Architecture of the Core
	Configuration and Parameters
	File format
	Accessing parameters

	Modules and the Module Manager
	Files of a Module
	Module structure
	Module instantiation
	Parallel execution of modules

	Geometry and Detectors
	Changing and accessing the geometry
	Coordinate systems
	Detector models

	Passing Objects using Messages
	Methods to process messages
	Message flags

	Logging and other Utilities
	Logging system
	Unit system
	Internal utilities

	Error Reporting and Exceptions

	Objects
	Object History
	Object Types

	Modules
	CorryvreckanWriter
	DefaultDigitizer
	DepositionGeant4
	DetectorHistogrammer
	ElectricFieldReader
	GenericPropagation
	GeometryBuilderGeant4
	LCIOWriter
	ProjectionPropagation
	RCEWriter
	ROOTObjectReader
	ROOTObjectWriter
	SimpleTransfer
	VisualizationGeant4

	Module & Detector Development
	Implementing a New Module
	Adding a New Detector Model

	Frequently Asked Questions
	Additional Tools & Resources
	Framework Tools
	ROOT and Geant4 utilities
	Runge-Kutta integrator

	TCAD DF-ISE mesh converter
	ROOT Analysis Macros

	Acknowledgments
	Output of Example Simulation
	References

