
Allpix2 User Manual

Koen Wolters (koen.wolters@cern.ch)
Simon Spannagel (simon.spannagel@cern.ch)

Daniel Hynds (daniel.hynds@cern.ch)

July 6, 2022

Version v1.3.3

mailto:koen.wolters@cern.ch
mailto:simon.spannagel@cern.ch
mailto:daniel.hynds@cern.ch

cb This manual is licensed under the Creative Commons Attribution 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

http://creativecommons.org/licenses/by/4.0/

Contents

1 Introduction 1
1.1 Scope of this Manual . 2
1.2 Support and Reporting Issues . 2
1.3 Contributing Code . 2

2 Quick Start 5

3 Installation 7
3.1 Supported Operating Systems . 7
3.2 Prerequisites . 7
3.3 Downloading the source code . 8
3.4 Initializing the dependencies . 8
3.5 Configuration via CMake . 9
3.6 Compilation and installation . 10
3.7 Docker images . 10

4 Getting Started 13
4.1 Configuration Files . 13

4.1.1 Parsing types and units . 14
4.1.2 Main configuration . 16
4.1.3 Detector configuration . 18

4.2 Framework parameters . 20
4.3 The allpix Executable . 21
4.4 Setting up the Simulation Chain . 23
4.5 Extending the Simulation Chain . 25
4.6 Logging and Verbosity Levels . 27
4.7 Storing Output Data . 29

5 Structure & Components of the Framework 31
5.1 Architecture of the Core . 32
5.2 Configuration and Parameters . 32

5.2.1 File format . 33
5.2.2 Accessing parameters . 34

5.3 Modules and the Module Manager . 35
5.3.1 Files of a Module . 35
5.3.2 Module structure . 38
5.3.3 Module instantiation . 39
5.3.4 Parallel execution of modules . 40

5.4 Geometry and Detectors . 40
5.4.1 Coordinate systems . 42

V

Contents

5.4.2 Changing and accessing the geometry 43
5.4.3 Detector models . 43

5.5 Passing Objects using Messages . 47
5.5.1 Methods to process messages . 48
5.5.2 Message flags . 49
5.5.3 Persistency . 49

5.6 Redirect Module Inputs and Outputs . 50
5.7 Logging and other Utilities . 51

5.7.1 Logging system . 51
5.7.2 Unit system . 51
5.7.3 Internal utilities . 52

5.8 Error Reporting and Exceptions . 52

6 Objects 55
6.1 Object Types . 55
6.2 Object History . 56

7 Modules 57
7.1 CapacitiveTransfer . 57
7.2 CorryvreckanWriter . 59
7.3 DefaultDigitizer . 60
7.4 DepositionGeant4 . 61
7.5 DetectorHistogrammer . 65
7.6 ElectricFieldReader . 67
7.7 GenericPropagation . 69
7.8 GeometryBuilderGeant4 . 72
7.9 LCIOWriter . 73
7.10 MagneticFieldReader . 74
7.11 ProjectionPropagation . 75
7.12 RCEWriter . 76
7.13 ROOTObjectReader . 77
7.14 ROOTObjectWriter . 78
7.15 SimpleTransfer . 79
7.16 TextWriter . 80
7.17 VisualizationGeant4 . 81

8 Examples 85
8.1 CapacitiveTransfer example files . 85
8.2 Fast Simulation Example . 85
8.3 Magnetic Field Example . 86
8.4 Precise DUT Simulation Example . 86
8.5 Example for Replaying a Simulation . 87
8.6 Source Measurement with Shielding . 87
8.7 TCAD Field Simulation Example . 88

9 Module & Detector Development 89
9.1 Implementing a New Module . 89

VI

Contents

9.2 Adding a New Detector Model . 90

10 Development Tools & Continuous Integration 91
10.1 Additional Targets . 91
10.2 Packaging . 92
10.3 Continuous Integration . 93
10.4 Automatic Deployment . 95

10.4.1 Software deployment to CVMFS . 95
10.4.2 Documentation deployment to EOS 96
10.4.3 Release tarball deployment to EOS . 96
10.4.4 Building Docker images . 96

10.5 Tests . 97

11 Frequently Asked Questions 105
11.1 Installation & Usage . 105
11.2 Configuration . 105
11.3 Detector Models . 107
11.4 Data Analysis . 107
11.5 Development . 108
11.6 Miscellaneous . 109

12 Additional Tools & Resources 111
12.1 Framework Tools . 111

12.1.1 ROOT and Geant4 utilities . 111
12.1.2 Runge-Kutta integrator . 111

12.2 TCAD DF-ISE mesh converter . 111
12.3 ROOT Analysis & Helper Macros . 114

A Appendix 117
A.1 Output of Example Simulation . 117

Acknowledgments 121

References 123

VII

1 Introduction

Allpix2 is a generic simulation framework for silicon tracker and vertex detectors written in
modern C++, following the C++11 and C++14 standards. The goal of the Allpix2 framework
is to provide an easy-to-use package for simulating the performance of Silicon detectors,
starting with the passage of ionizing radiation through the sensor and finishing with the
digitization of hits in the readout chip.

The framework builds upon other packages to perform tasks in the simulation chain, most
notably Geant4 [1] for the deposition of charge carriers in the sensor and ROOT [2] for
producing histograms and storing the produced data. The core of the framework focuses on
the simulation of charge transport in semiconductor detectors and the digitization to hits in
the frontend electronics.

Allpix2 is designed as a modular framework, allowing for an easy extension to more complex
and specialized detector simulations. The modular setup also allows to separate the core of the
framework from the implementation of the algorithms in the modules, leading to a framework
which is both easier to understand and to maintain. Besides modularity, the Allpix2 framework
was designed with the following main design goals in mind:

1. Reflect the physics

• A run consists of several sequential events. A single event here refers to an
independent passage of one or multiple particles through the setup

• Detectors are treated as separate objects for particles to pass through

• All relevant information must be contained at the end of processing every single
event (sequential events)

2. Ease of use (user-friendly)

• Simple, intuitive configuration and execution ("does what you expect")

• Clear and extensive logging and error reporting capabilities

• Implementing a new module should be feasible without knowing all details of the
framework

3. Flexibility

• Event loop runs sequence of modules, allowing for both simple and complex user
configurations

• Possibility to run multiple different modules on different detectors

• Limit flexibility for the sake of simplicity and ease of use

1

1 Introduction

Allpix2 has been designed following some ideas previously implemented in the AllPix [3, 4]
project. Originally written as a Geant4 user application, AllPix has been successfully used for
simulating a variety of different detector setups.

1.1 Scope of this Manual

This document is meant to be the primary User’s Guide for Allpix2. It contains both an
extensive description of the user interface and configuration possibilities, and a detailed
introduction to the code base for potential developers. This manual is designed to:

• Guide new users through the installation;

• Introduce new users to the toolkit for the purpose of running their own simulations;

• Explain the structure of the core framework and the components it provides to the
simulation modules;

• Provide detailed information about all modules and how to use and configure them;

• Describe the required steps for adding new detector models and implementing new
simulation modules.

Within the scope of this document, only an overview of the framework can be provided and
more detailed information on the code itself can be found in the Doxygen reference manual [5]
available online. No programming experience is required from novice users, but knowledge
of (modern) C++ will be useful in the later chapters and might contribute to the overall
understanding of the mechanisms.

1.2 Support and Reporting Issues

As for most of the software used within the high-energy particle physics community, only limited
support on best-effort basis for this software can be offered. The authors are, however, happy
to receive feedback on potential improvements or problems arising. Reports on issues, questions
concerning the software as well as the documentation and suggestions for improvements are
very much appreciated. These should preferably be brought up on the issues tracker of the
project which can be found in the repository [6].

1.3 Contributing Code

Allpix2 is a community project that benefits from active participation in the development
and code contributions from users. We encourage users to discuss their needs either via the
issue tracker of the repository [6] or the developer’s mailing list to receive ideas and guidance
on how to implement a specific feature. Getting in touch with other developers early in the
development cycle avoids spending time on features which already exist or are currently under
development by other users.

2

1.3 Contributing Code

The repository contains a few tools to facilitate contributions and to ensure code quality as
detailed in Chapter 10.

3

2 Quick Start

This chapter serves as a swift introduction to Allpix2 for users who prefer to start quickly
and learn the details while simulating. The typical user should skip the next paragraphs and
continue reading the following chapters instead.

Allpix2 is a generic simulation framework for pixel detectors. It provides a modular, flexible and
user-friendly structure for the simulation of independent detectors in arbitrary configurations.
The framework currently relies on the Geant4 [1], ROOT [2] and Eigen3 [7] libraries which
need to be installed and loaded before using Allpix2.

The minimal, default installation can be obtained by executing the commands listed below.
More detailed installation instructions can be found in Chapter 3.

$ git clone https://gitlab.cern.ch/allpix-squared/allpix-squared
$ cd allpix-squared
$ mkdir build && cd build/
$ cmake ..
$ make install
$ cd ..

The binary can then be executed with the provided example configuration file as follows:

$ bin/allpix -c examples/example.conf

Hereafter, the example configuration can be copied and adjusted to the needs of the user.
This example contains a simple setup of two test detectors. It simulates the whole chain,
starting from the passage of the beam, the deposition of charges in the detectors, the carrier
propagation and the conversion of the collected charges to digitized pixel hits. All generated
data is finally stored on disk in ROOT TTrees for later analysis.

After this quick start it is very much recommended to proceed to the other chapters of this user
manual. For quickly resolving common issues, the Frequently Asked Questions in Chapter 11
may be particularly useful.

5

3 Installation

This section aims to provide details and instructions on how to build and install Allpix2. An
overview of possible build configurations is given. After installing and loading the required
dependencies, there are various options to customize the installation of Allpix2. This chapter
contains details on the standard installation process and information about custom build
configurations.

3.1 Supported Operating Systems

Allpix2 is designed to run without issues on either a recent Linux distribution or Mac OSX.
Furthermore, the continuous integration of the project ensures correct building and functioning
of the software framework on CentOS 7 (with GCC and LLVM), SLC6 (with GCC and LLVM)
and Mac OS Sierra (OS X 10.12, with AppleClang).

3.2 Prerequisites

If the framework is to be compiled and executed on CERN’s LXPLUS service, all build
dependencies can be loaded automatically from the CVMFS file system as described in
Section 3.4.

The core framework is compiled separately from the individual modules and Allpix2 has
therefore only one required dependency: ROOT 6 (versions below 6 are not supported) [2].
Please refer to [8] for instructions on how to install ROOT. ROOT has several components
of which the GenVector package is required to run Allpix2. This package is included in the
default build.

For some modules, additional dependencies exist. For details about the dependencies and
their installation see the module documentation in Chapter 7. The following dependencies are
needed to compile the standard installation:

• Geant4 [1]: Simulates the desired particles and their interactions with matter, depositing
charges in the detectors with the help of the constructed geometry. See the instructions
in [9] for details on how to install the software. All Geant4 data sets are required to
run the modules successfully. It is recommended to enable the Geant4 Qt extensions to
allow visualization of the detector setup and the simulated particle tracks. A useful set
of CMake flags to build a functional Geant4 package would be:

7

3 Installation

-DGEANT4_INSTALL_DATA=ON
-DGEANT4_USE_GDML=ON
-DGEANT4_USE_QT=ON
-DGEANT4_USE_XM=ON
-DGEANT4_USE_OPENGL_X11=ON
-DGEANT4_USE_SYSTEM_CLHEP=OFF

• Eigen3 [7]: Vector package used to perform Runge-Kutta integration in the generic
charge propagation module. Eigen is available in almost all Linux distributions through
the package manager. Otherwise it can be easily installed, comprising a header-only
library.

Extra flags need to be set for building an Allpix2 installation without these dependencies.
Details about these configuration options are given in Section 3.5.

3.3 Downloading the source code

The latest version of Allpix2 can be downloaded from the CERN Gitlab repository [10]. For
production environments it is recommended to only download and use tagged software versions,
as many of the available git branches are considered development versions and might exhibit
unexpected behavior.

For developers, it is recommended to always use the latest available version from the git
master branch. The software repository can be cloned as follows:

$ git clone https://gitlab.cern.ch/allpix-squared/allpix-squared
$ cd allpix-squared

3.4 Initializing the dependencies

Before continuing with the build, the necessary setup scripts for ROOT and Geant4 (unless a
build without Geant4 modules is attempted) should be executed. In a Bash terminal on a
private Linux machine this means executing the following two commands from their respec-
tive installation directories (replacing <root_install_dir> with the local ROOT installation
directory and likewise for Geant):

$ source <root_install_dir>/bin/thisroot.sh
$ source <geant4_install_dir>/bin/geant4.sh

On the CERN LXPLUS service, a standard initialization script is available to load all
dependencies from the CVMFS infrastructure. This script should be executed as follows (from
the main repository directory):

$ source etc/scripts/setup_lxplus.sh

8

3.5 Configuration via CMake

3.5 Configuration via CMake

Allpix2 uses the CMake build system to configure, build and install the core framework as
well as all modules. An out-of-source build is recommended: this means CMake should not
be directly executed in the source folder. Instead, a build folder should be created, from
which CMake should be run. For a standard build without any additional flags this implies
executing:

$ mkdir build
$ cd build
$ cmake ..

CMake can be run with several extra arguments to change the type of installation. These
options can be set with -Doption (see the end of this section for an example). Currently the
following options are supported:

• CMAKE_INSTALL_PREFIX: The directory to use as a prefix for installing the binaries,
libraries and data. Defaults to the source directory (where the folders bin/ and lib/ are
added).

• CMAKE_BUILD_TYPE: Type of build to install, defaults to RelWithDebInfo (compiles
with optimizations and debug symbols). Other possible options are Debug (for compiling
with no optimizations, but with debug symbols and extended tracing using the Clang
Address Sanitizer library) and Release (for compiling with full optimizations and no
debug symbols).

• MODEL_DIRECTORY: Directory to install the internal models to. Defaults to not
installing if the CMAKE_INSTALL_PREFIX is set to the directory containing the
sources (the default). Otherwise the default value is equal to the directory
<CMAKE_INSTALL_PREFIX>/share/allpix/. The install directory is automatically
added to the model search path used by the geometry model parsers to find all of the
detector models.

• BUILD_ModuleName : If the specific module ModuleName should be installed or not. De-
faults to ON for most modules, however some modules with large additional dependencies
such as LCIO [11] are disabled by default. This set of parameters allows to configure
the build for minimal requirements as detailed in Section 3.2.

• BUILD_ALL_MODULES: Build all included modules, defaulting to OFF. This overwrites
any selection using the parameters described above.

An example of a custom debug build, without the GeometryBuilderGeant4 module and with
installation to a custom directory is shown below:

$ mkdir build
$ cd build
$ cmake -DCMAKE_INSTALL_PREFIX=../install/ \

-DCMAKE_BUILD_TYPE=DEBUG \
-DBUILD_GeometryBuilderGeant4=OFF ..

9

3 Installation

3.6 Compilation and installation

Compiling the framework is now a single command in the build folder created earlier (replacing
<number_of_cores> > with the number of cores to use for compilation):

$ make -j<number_of_cores>

The compiled (non-installed) version of the executable can be found at src/exec/allpix in the
build folder. Running Allpix2 directly without installing can be useful for developers. It is
not recommended for normal users, because the correct library and model paths are only fully
configured during installation.

To install the library to the selected installation location (defaulting to the source directory of
the repository) requires the following command:

$ make install

The binary is now available as bin/allpix in the installation directory. The example config-
uration files are not installed as they should only be used as a starting point for your own
configuration. They can however be used to check if the installation was successful. Running the
allpix binary with the example configuration using bin/allpix -c examples/example.conf
should pass the test without problems if a standard installation is used.

3.7 Docker images

Docker images are provided for the framework to allow anyone to run simulations without
the need of installing Allpix2 on their system. The only required program is the Docker
executable, all other dependencies are provided within the Docker images. In order to exchange
configuration files and output data between the host system and the Docker container, a folder
from the host system should be mounted to the container’s data path /data, which also acts
as the Docker WORKDIR location.

The following command creates a container from the latest Docker image in the project registry
and start an interactive shell session with the allpix executable already in the $PATH. Here,
the current host system path is mounted to the /data directory of the container.

$ docker run --interactive --tty \
--volume "$(pwd)":/data \
--name=allpix-squared \
gitlab-registry.cern.ch/allpix-squared/allpix-squared \
bash

Alternatively it is also possible to directly start the simulation instead of an interactive shell,
e.g. using the following command:

10

3.7 Docker images

$ docker run --tty --rm \
--volume "$(pwd)":/data \
--name=allpix-squared \
gitlab-registry.cern.ch/allpix-squared/allpix-squared \
"allpix -c my_simulation.conf"

where a simulation described in the configuration my_simulation.conf is directly executed
and the container terminated and deleted after completing the simulation. This closely
resembles the behavior of running Allpix2 natively on the host system. Of course, any
additional command line arguments known to the allpix executable described in Section 4.3
can be appended.

For tagged versions, the tag name should be appended to the image name, e.g.
gitlab-registry.cern.ch/allpix-squared/allpix-squared:v1.1, and a full list of
available Docker containers is provided via the project’s container registry [12]. A short
description of how Docker images for this project are built can be found in Section 10.4.4.

11

4 Getting Started

This Getting Started guide is written with a default installation in mind, meaning that some
parts may not apply if a custom installation was used. When the allpix binary is used, this
refers to the executable installed in bin/allpix in the installation path. It is worth noting
that before running any Allpix2 simulation, ROOT and (in most cases) Geant4 should be
initialized. Refer to Section 3.4 for instructions on how to load these libraries.

4.1 Configuration Files

The framework is configured with simple human-readable configuration files. The configuration
format is described in detail in Section 5.2.1, and consists of several section headers within [
and] brackets, and a section without header at the start. Each of these sections contains a
set of key/value pairs separated by the = character. Comments are indicated using the hash
symbol (#).

The framework has the following three required layers of configuration files:

• The main configuration: The most important configuration file and the file that is
passed directly to the binary. Contains both the global framework configuration and
the list of modules to instantiate together with their configuration. An example can be
found in the repository at examples/example.conf. More details and a more thorough
example are found in Section 4.1.2, several advanced simulation chain configurations are
presented in Chapter 8.

• The detector configuration passed to the framework to determine the geometry. De-
scribes the detector setup, containing the position, orientation and model type of all de-
tectors. An example is available in the repository at examples/example_detector.conf.
Introduced in Section 4.1.3.

• The detector model configuration. Contains the parameters describing a particular
type of detector. Several models are already provided by the framework, but new types
of detectors can easily be added. See models/test.conf in the repository for an example.
Please refer to Section 9.2 for more details about adding new models.

In the following paragraphs, the available types and the unit system are explained and an
introduction to the different configuration files is given.

13

4 Getting Started

4.1.1 Parsing types and units

The Allpix2 framework supports the use of a variety of types for all configuration values. The
module specifies how the value type should be interpreted. An error will be raised if either the
key is not specified in the configuration file, the conversion to the desired type is not possible,
or if the given value is outside the domain of possible options. Please refer to the module
documentation in Chapter 7 for the list of module parameters and their types. Parsing the
value roughly follows common-sense (more details can be found in Section 5.2.2). A few special
rules do apply:

• If the value is a string, it may be enclosed by a single pair of double quotation marks
("), which are stripped before passing the value to the modules. If the string is not
enclosed by quotation marks, all whitespace before and after the value is erased. If the
value is an array of strings, the value is split at every whitespace or comma (,) that is
not enclosed in quotation marks.

• If the value is a boolean, either numerical (0, 1) or textual (false, true) representations
are accepted.

• If the value is a relative path, that path will be made absolute by adding the absolute
path of the directory that contains the configuration file where the key is defined.

• If the value is an arithmetic type, it may have a suffix indicating the unit. The list of
base units is shown in Table 4.1.

If no units are specified, values will always be interpreted in the base units of the
framework. In some cases this can lead to unexpected results. E.g. specifying a bias
voltage as bias_voltage = 50 results in an applied voltage of 50 MV. Therefore it is
strongly recommended to always specify units in the configuration files.

The internal base units of the framework are not chosen for user convenience but for maximum
precision of the calculations and in order to avoid the necessity of conversions in the code.

Combinations of base units can be specified by using the multiplication sign * and the division
sign / that are parsed in linear order (thus V m

s2 should be specified as V ∗ m/s/s). The
framework assumes the default units (as given in Table 4.1) if the unit is not explicitly
specified. It is recommended to always specify the unit explicitly for all parameters that are
not dimensionless as well as for angles.

Examples of specifying key/values pairs of various types are given below:

1 # All whitespace at the front and back is removed
2 first_string = string_without_quotation
3 # All whitespace within the quotation marks is preserved
4 second_string = " string with quotation marks "
5 # Keys are split on whitespace and commas
6 string_array = "first element" "second element","third element"

14

4.1 Configuration Files

Table 4.1: List of units supported by Allpix2

Quantity Default unit Auxiliary units

Length mm (millimeter)

nm (nanometer)
um (micrometer)
cm (centimeter)
dm (decimeter)
m (meter)
km (kilometer)

Time ns (nanosecond)

ps (picosecond)
us (microsecond)
ms (millisecond)
s (second)

Energy MeV (megaelectronvolt)
eV (electronvolt)
keV (kiloelectronvolt)
GeV (gigaelectronvolt)

Temperature K (kelvin) —

Charge e (elementary charge)
ke (kiloelectrons)
fC (femtocoulomb)
C (coulomb)

Voltage MV (megavolt) V (volt)
kV (kilovolt)

Magnetic field strength T (tesla) mT (millitesla)

Angle rad (radian) deg (degree)
mrad (milliradian)

15

4 Getting Started

7 # Elements of matrices with more than one dimension are separated
8 # using square brackets
9 string_matrix_3x3 = [["1","0","0"], ["0","cos","-sin"], ["0","sin",cos]]

10 # If the matrix is of dimension 1xN, the outer brackets have to be
11 # added explicitly
12 integer_matrix_1x3 = [[10, 11, 12]]
13 # Integer and floats can be specified in standard formats
14 int_value = 42
15 float_value = 123.456e9
16 # Units can be passed to arithmetic types
17 energy_value = 1.23MeV
18 time_value = 42ns
19 # Units are combined in linear order without grouping or implicit brackets
20 acceleration_value = 1.0m/s/s
21 # Thus the quantity below is the same as 1.0deg*kV*K/m/s
22 random_quantity = 1.0deg*kV/m/s*K
23 # Relative paths are expanded to absolute paths, e.g. the following value
24 # will become "/home/user/test" if the configuration file is located
25 # at "/home/user"
26 output_path = "test"
27 # Booleans can be represented in numerical or textual style
28 my_switch = true
29 my_other_switch = 0

4.1.2 Main configuration

The main configuration consists of a set of sections specifying the modules used. All modules
are executed in the linear order in which they are defined. There are a few section names
which have a special meaning in the main configuration, namely the following:

• The global (framework) header sections: These are all zero-length section headers
(including the one at the beginning of the file) and all sections marked with the header
[Allpix] (case-insensitive). These are combined and accessed together as the global
configuration, which contain all parameters of the framework itself (see Section 4.2 for
details). All key-value pairs defined in this section are also inherited by all individual
configurations as long the key is not defined in the module configuration itself.

• The ignore header sections: All sections with name [Ignore] (case-insensitive) are
ignored. Key-value pairs defined in the section as well as the section itself are discarded
by the parser. These section headers are useful for quickly enabling and disabling
individual modules by replacing their actual name by an ignore section header.

All other section headers are used to instantiate modules of the respective name. Installed
modules are loaded automatically. If problems arise please review the loading rules described
in Section 5.3.3.

16

4.1 Configuration Files

Modules can be specified multiple times in the configuration files, depending on their type
and configuration. The type of the module determines how the module is instantiated:

• If the module is unique, it is instantiated only a single time irrespective of the number
of detectors. These kinds of modules should only appear once in the whole configuration
file unless different inputs and outputs are used, as explained in Section 5.6.

• If the module is detector-specific, it is instantiated once for every detector it is configured
to run on. By default, an instantiation is created for all detectors defined in the detector
configuration file (see Section 4.1.3, lowest priority) unless one or both of the following
parameters are specified:

– name: An array of detector names the module should be executed for. Replaces all
global and type-specific modules of the same kind (highest priority).

– type: An array of detector types the module should be executed for. Instantiated
after considering all detectors specified by the name parameter above. Replaces all
global modules of the same kind (medium priority).

Within the same module, the order of the individual instances in the configuration file is
irrelevant.

A valid example configuration using the detector configuration above is:

1 # Key is part of the empty section and therefore the global configuration
2 string_value = "example1"
3 # The location of the detector configuration is a global parameter
4 detectors_file = "manual_detector.conf"
5 # The Allpix section is also considered global and merged with the above
6 [Allpix]
7 another_random_string = "example2"
8

9 # First run a unique module
10 [MyUniqueModule]
11 # This module takes no parameters
12 # [MyUniqueModule] cannot be instantiated another time
13

14 # Then run detector modules on different detectors
15 # First run a module on the detector of type Timepix
16 [MyDetectorModule]
17 type = "timepix"
18 int_value = 1
19 # Replace the module above for ‘dut‘ with a specialized version
20 # It does not inherit any parameters from earlier modules
21 [MyDetectorModule]
22 name = "dut"
23 int_value = 2
24 # Run the module on the remaining unspecified detector (‘telescope1‘)

17

4 Getting Started

25 [MyDetectorModule]
26 # int_value is not specified, so it uses the default value

In the following paragraphs, a fully functional (albeit simple) configuration file with valid
configuration is presented, as opposed to the above examples with hypothetical module names
for illustrative purpose.

4.1.3 Detector configuration

The detector configuration consists of a set of sections describing the detectors in the setup.
Each section starts with a header describing the name used to identify the detector; all names
are required to be unique. Every detector should contain all of the following parameters:

• A string referring to the type of the detector model. The model should exist in the
search path described in Section 5.4.3.

• The 3D position in the world frame in the order x, y, z. See Section 5.4 for details.

• The orientation specified as X-Y-Z extrinsic Euler angles. This means the detector is
rotated first around the world’s X-axis, then around the world’s Y-axis and then around
the world’s Z-axis. Alternatively the orientation can be set as Z-Y-X or X-Z-X extrinsic
Euler angles, refer to Section 5.4 for details.

In addition to these required parameters, the following parameters allow to randomly misalign
the respective detector from its initial position. The values are interpreted as width of a
normal distribution centered around zero. In order to reproduce misalignments, a fixed random
seed for the framework core can be used as explained in Section 4.2. Misalignment can be
introduced both for shifts along the three global axes and the three rotations angles with the
following parameters:

• The parameter alignment_precision_position allows the specification of the align-
ment precision along the three global axes. Each value represents the Gaussian width
with which the detector will be randomly misaligned along the corresponding axis.

• The parameter alignment_precision_orientation allows to specify the alignment
precision in the three rotation angles defined by the orientation parameter. The
misalignments are added to the individual angles before combining them into the final
rotation as defined by the orientation_mode parameter.

Furthermore it is possible to specify certain parameters of the detector explained in more
detail in Section 5.4.3. This allows to quickly adapt e.g. the sensor thickness of a certain
detector without altering the actual detector model file.

An example configuration file describing a setup with one CLICpix2 detector and two
Timepix [13] models is the following:

1 # Placement of first detector, named "telescope1"
2 [telescope1]
3 # Type to the detector is the "timepix" model
4 type = "timepix"

18

4.1 Configuration Files

Figure 4.1: Visualization of a Pion passing through the telescope setup defined in the detector
configuration file. A secondary particle is produced in the material of the detector
in the center.

5 # Position the detector at the origin of the world frame
6 position = 0 0 0mm
7 # Default orientation: perpendicular to the incoming beam
8 orientation = 0 0 0
9

10 # Placement of the second detector, the "DUT (device under test)
11 [dut]
12 # Detector model is "clicpix2"
13 type = "clicpix2"
14 # Position is downstream of "telescope1":
15 position = 100um 100um 25mm
16 # Rotated by 20 degrees around the world x-axis
17 orientation = 20deg 0 0
18

19 # Third detector is downstream "telescope2"
20 [telescope2]
21 # Detector type again is "timepix"
22 type = "timepix"
23 # Placement 50 mm downstream of the first detector
24 position = 0 0 50mm
25 # Default orientation
26 orientation = 0 0 0

Figure 4.1 shows a visualization of the setup described in the file. This configuration is used

19

4 Getting Started

in the rest of this chapter for explaining concepts.

4.2 Framework parameters

The Allpix2 framework provides a set of global parameters which control and alter its behav-
ior:

• detectors_file: Location of the file describing the detector configuration (introduced
in Section 4.1.3). The only required global parameter: the framework will fail to start if
it is not specified.

• number_of_events: Determines the total number of events the framework should
simulate. Defaults to one (simulating a single event).

• root_file: Location relative to the output_directory where the ROOT output data
of all modules will be written to. The file extension .root will be appended if not
present. Default value is modules.root. Directories within the ROOT file will be created
automatically for all module instantiations.

• log_level: Specifies the lowest log level which should be reported. Possible values are
FATAL, STATUS, ERROR, WARNING, INFO and DEBUG, where all options are case-insensitive.
Defaults to the INFO level. More details and information about the log levels, including
how to change them for a particular module, can be found in Section 4.6. Can be
overwritten by the -v parameter on the command line (see Section 4.3).

• log_format: Determines the log message format to display. Possible options are SHORT,
DEFAULT and LONG, where all options are case-insensitive. More information can be
found in Section 4.6.

• log_file: File where the log output should be written to in addition to printing to the
standard output (usually the terminal). Only writes to standard output if this option is
not provided. Another (additional) location to write to can be specified on the command
line using the -l parameter (see Section 4.3).

• output_directory: Directory to write all output files into. Subdirectories are created
automatically for all module instantiations. This directory will also contain the root_
file specified via the parameter described above. Defaults to the current working
directory with the subdirectory output/ attached.

• purge_output_directory: Decides whether the content of an already existing output
directory is deleted before a new run starts. Defaults to false, i.e. files are kept but
will be overwritten by new files created by the framework.

• deny_overwrite: Forces the framework to abort the run and throw an exception when
attempting to overwrite an existing file. Defaults to false, i.e. files are overwritten
when requested. This setting is inherited by all modules, but can be overwritten in the
configuration section of each of the modules.

20

4.3 The allpix Executable

• random_seed: Seed for the global random seed generator used to initialize seeds for
module instantiations. The 64-bit Mersenne Twister mt19937_64 from the C++ Standard
Library is used to generate seeds. A random seed from multiple entropy sources will
be generated if the parameter is not specified. Can be used to reproduce an earlier
simulation run.

• random_seed_core: Optional seed used for pseudo-random number generators in the
core components of the framework. If not set explictely, the value (random_seed + 1) is
used.

• library_directories: Additional directories to search for module libraries, before
searching the default paths. See Section 5.3.3 for details.

• model_paths: Additional files or directories from which detector models should be read
besides the standard search locations. Refer to Section 5.4.3 for more information.

• experimental_multithreading: Enable experimental multi-threading for the frame-
work. This can speed up simulations of multiple detectors significantly. More information
about multi-threading can be found in Section 5.3.4.

• workers: Specify the number of workers to use in total, should be strictly larger than
zero. Only used if experimental_multithreading is set to true. Defaults to the number
of native threads available on the system if this can be determined, otherwise one thread
is used.

4.3 The allpix Executable

The allpix executable functions as the interface between the user and the framework. It is
primarily used to provide the main configuration file, but also allows to add and overwrite
options from the main configuration file. This is both useful for quick testing as well as for
batch processing of simulations.

The executable handles the following arguments:

• -c <file>: Specifies the configuration file to be used for the simulation, relative to the
current directory. This is the only required argument, the simulation will fail to start if
this argument is not given.

• -l <file>: Specify an additional location to forward log output to, besides standard
output and the location specified in the framework parameters explained in Section 4.2.

• -v <level>: Sets the global log verbosity level, overwriting the value specified in the
configuration file described in Section 4.2. Possible values are FATAL, STATUS, ERROR,
WARNING, INFO and DEBUG, where all options are case-insensitive. The module specific
logging level introduced in Section 4.6 is not overwritten.

• --version: Prints the version and build time of the executable and terminates the
program.

21

4 Getting Started

• -o <option>: Passes extra options which are added and overwritten in the main
configuration file. This argument may be specified multiple times, to add multiple
options. Options are specified as key/value pairs in the same syntax as used in the
configuration files (refer to Section 5.2.1 for more details), but the key is extended to
include a reference to a configuration section or instantiation in shorthand notation.
There are three types of keys that can be specified:

– Keys to set framework parameters. These have to be provided in exactly the
same way as they would be in the main configuration file (a section does not need
to be specified). An example to overwrite the standard output directory would be
allpix -c <file> -o output_directory="run123456".

– Keys formodule configurations. These are specified by adding a dot (.) between
the module and the actual key as it would be given in the configuration file (thus
module.key). An example to overwrite the deposited particle to a positron would
be allpix -c <file> -o DepositionGeant4.particle_type="e+".

– Keys to specify values for a particular module instantiation. The identifier of
the instantiation and the name of the actual key are split by a dot (.), in the same
way as for keys for module configurations (thus identifier.key). The unique identifier
for a module can contains one or more colons (:) to distinguish between various
instantiations of the same module. The exact name of an identifier depends on the
name of the detector and the optional input and output name. Those identifiers
can be extracted from the logging section headers. An example to change the
temperature of propagation for a particular instantiation for a detector named dut
could be allpix -c <file> -o GenericPropagation:dut.temperature=273K.

Note that only the single argument directly following the -o is interpreted as the option.
If there is whitespace in the key/value pair this should be properly enclosed in quotation
marks to ensure the argument is parsed correctly.

No interaction with the framework is possible during the simulation. Signals can however be
send using keyboard shortcuts to terminate the simulation, either gracefully or with force.
The executable understand the following signals:

• SIGINT (CTRL+C): Request a graceful shutdown of the simulation. This means the
current simulated event is finished, while all other events requested in the configuration
file are ignored. After finishing the event, the finalization stage is run for every module
to ensure all modules finish properly. This signal can be very useful when too many
events are specified and the simulation takes too long to finish entirely, but the output
generated so far should still be kept.

• SIGTERM: Same as SIGINT, request a graceful shutdown of the simulation. This signal
is emitted e.g. by the kill command or by cluster computing schedulers to ask for a
termination of the job.

• SIGQUIT (CTRL+\): Forcefully terminates the simulation. It is not recommmended to
use this signal as it will normally lead to the loss of all generated data. This signal
should only be used when graceful termination is for any reason not possible.

22

4.4 Setting up the Simulation Chain

4.4 Setting up the Simulation Chain

In the following, the framework parameters are used to set up a fully functional simulation.
Module parameters are shortly introduced when they are first used. For more details about
these parameters, the respective module documentation in Chapter 7 should be consulted. A
typical simulation in Allpix2 will contain the following components:

• The geometry builder, responsible for creating the external Geant4 geometry from
the internal geometry. In this document, internal geometry refers to the detector
parameters used by Allpix2 for coordinate transformations and conversions throughout
the simulation, while external geometry refers to the constructed Geant4 geometry used
for charge carrier deposition (and possibly visualization).

• The deposition module that simulates the particle beam creating charge carriers in
the detectors using the provided physics list (containing a description of the simulated
interactions) and the geometry created above.

• A propagation module that propagates the charges through the sensor.

• A transfer module that transfers the charges from the sensor electrodes and assigns
them to a pixel of the readout electronics.

• A digitizer module which converts the charges in the pixel to a detector hit, simulating
the front-end electronics response.

• An output module, saving the data of the simulation. The Allpix2 standard file format
is a ROOT TTree, which is described in detail in Section 4.7.

In this example, charge carriers will be deposited in the three sensors defined in the detector
configuration file in Section 4.1.3. All charge carriers deposited in the different sensors will be
propagated and digitized. Finally, monitoring histograms for the device under test (DUT)
will be recorded in the framework’s main ROOT file and all simulated objects, including the
entry and exit positions of the simulated particles (Monte Carlo truth), will be stored in a
ROOT file using the Allpix2 format. An example configuration file implementing this would
look like:

1 # Global configuration
2 [Allpix]
3 # Simulate a total of 5 events
4 number_of_events = 5
5 # Use the short logging format
6 log_format = "SHORT"
7 # Location of the detector configuration
8 detectors_file = "manual_detector.conf"
9

10 # Read and instantiate the detectors and construct the Geant4 geometry
11 [GeometryBuilderGeant4]
12

13 # Initialize physics list and particle source
14 [DepositionGeant4]

23

4 Getting Started

15 # Use a Geant4 physics lists with EMPhysicsStandard_option3 enabled
16 physics_list = FTFP_BERT_EMY
17 # Use a charged pion as particle
18 particle_type = "pi+"
19 # Set the energy of the particle
20 source_energy = 120GeV
21 # Origin of the beam
22 source_position = 0 0 -12mm
23 # The direction of the beam
24 beam_direction = 0 0 1
25 # Use a single particle in a single ’event’
26 number_of_particles = 1
27

28 # Propagate the charge carriers through the sensor
29 [GenericPropagation]
30 # Set the temperature of the sensor
31 temperature = 293K
32 # Propagate multiple charges at once
33 charge_per_step = 50
34

35 # Transfer the propagated charges to the pixels
36 [SimpleTransfer]
37 max_depth_distance = 5um
38

39 # Digitize the propagated charges
40 [DefaultDigitizer]
41 # Noise added by the readout electronics
42 electronics_noise = 110e
43 # Threshold for a hit to be detected
44 threshold = 600e
45 # Threshold dispersion
46 threshold_smearing = 30e
47 # Noise added by the digitisation
48 adc_smearing = 100e
49

50 # Save histograms to the ROOT output file
51 [DetectorHistogrammer]
52 # Save histograms for the "dut" detector only
53 name = "dut"
54

55 # Store all simulated objects to a ROOT file with TTrees
56 [ROOTObjectWriter]
57 # File name of the output file
58 file_name = "allpix-squared-output"
59 # Ignore initially deposited charges and propagated carriers:
60 exclude = DepositedCharge, PropagatedCharge

24

4.5 Extending the Simulation Chain

This configuration is available in the repository at etc/manual.conf. The detector configura-
tion file from Section 4.1.3 can be found at etc/manual_detector.conf.

The simulation is started by passing the path of the main configuration file to the allpix
executable as follows:

$ allpix -c etc/manual.conf

The output should look similar to the sample log provided in Appendix A.1. The detector
histograms such as the hit map are stored in the ROOT file output/modules.root in the
TDirectory DetectorHistogrammer/.

If problems occur when exercising this example, it should be made sure that an up-to-date
and properly installed version of Allpix2 is used (see the installation instructions in Chapter 3).
If modules or models fail to load, more information about potential issues with the library
loading can be found in the detailed framework description in Chapter 5.

4.5 Extending the Simulation Chain

In the following, a few basic modules will be discussed which may be of use during a first
simulation.

Visualization Displaying the geometry and the particle tracks helps both in checking and
interpreting the results of a simulation. Visualization is fully supported through Geant4,
supporting all the options provided by Geant4 [14]. Using the Qt viewer with OpenGL driver
is the recommended option as long as the installed version of Geant4 is built with Qt support
enabled.

To add the visualization, the VisualizationGeant4 section should be added at the end of the
configuration file. An example configuration with some useful parameters is given below:

1 [VisualizationGeant4]
2 # Use the Qt gui
3 mode = "gui"
4

5 # Set transparency of the detector models (in percent)
6 transparency = 0.4
7 # Set viewing style (alternative is ’wireframe’)
8 view_style = "surface"
9

10 # Color trajectories by charge of the particle
11 trajectories_color_mode = "charge"
12 trajectories_color_positive = "blue"
13 trajectories_color_neutral = "green"
14 trajectories_color_negative = "red"

25

4 Getting Started

If Qt is not available, a VRML viewer can be used as an alternative, however it is recommended
to reinstall Geant4 with the Qt viewer included as it offers the best visualization capabilities.
The following steps are necessary in order to use a VRML viewer:

• A VRML viewer should be installed on the operating system. Good options are FreeWRL
or OpenVRML.

• Subsequently, two environmental parameters have to be exported to the shell environment
to inform Geant4 about the configuration: G4VRMLFILE_VIEWER should point to the
location of the viewer executable and G4VRMLFILE_MAX_FILE_NUM should typically be
set to 1 to prevent too many files from being created.

• Finally, the configuration section of the visualization module should be altered as follows:

1 [VisualizationGeant4]
2 # Do not start the Qt gui
3 mode = "none"
4 # Use the VRML driver
5 driver = "VRML2FILE"

More information about all possible configuration parameters can be found in the module
documentation in Chapter 7.

Electric Fields By default, detectors do not have an electric field associated with them, and no
bias voltage is applied. A field can be added to each detector using the ElectricFieldReader
module.

The section below calculates a linear electric field for every point in active sensor volume
based on the depletion voltage of the sensor and the applied bias voltage. The sensor is always
depleted from the implant side; the direction of the electric field depends on the sign of the
bias voltage as described in the module description in Chapter 7.

1 # Add an electric field
2 [ElectricFieldReader]
3 # Set the field type to ‘linear‘
4 model = "linear"
5 # Applied bias voltage to calculate the electric field from
6 bias_voltage = -50V
7 # Depletion voltage at which the given sensor is fully depleted
8 depletion_voltage = -10V

Allpix2 also provides the possibility to utilize a full electrostatic TCAD simulation for the
description of the electric field. In order to speed up the lookup of the electric field values
at different positions in the sensor, the adaptive TCAD mesh has to be interpolated and
transformed into a regular grid with configurable feature size before use. Allpix2 comes with a
converter tool which reads TCAD DF-ISE files from the sensor simulation, interpolates the
field, and writes this out in an appropriate format. A more detailed description of the tool can

26

4.6 Logging and Verbosity Levels

be found in Section 12.2. An example electric field (with the file name used in the example
below) can be found in the etc directory of the Allpix2 repository.

Electric fields can be attached to a specific detector using the standard syntax for detector
binding. A possible configuration would be:

1 [ElectricFieldReader]
2 # Bind the electric field to the detector named ‘dut‘
3 name = "dut"
4 # Specify that the model is provided in the ‘init‘ electric field map

format converted from TCAD↪→

5 model = "init"
6 # Name of the file containing the electric field
7 file_name = "example_electric_field.init"

Magnetic Fields

For simulating the detector response in the presence of a magnetic field with Allpix2, a constant,
global magnetic field can be defined. By default, it is turned off. A field can be added to
the whole setup using the unique module MagneticFieldReader, passing the field vector as
parameter:

1 # Add a magnetic field
2 [MagneticFieldReader]
3 # Constant magnetic field (currently this is the default value)
4 model="constant"
5 # Magnetic field vector
6 magnetic_field = 0mT 3.8T 0T

The global magnetic field is used by the interface to Geant4 and therefore exposes charged
primary particles to the Lorentz force, and as a property of each detector present, enabling a
Lorentz drift of the charge carriers in the active sensors, if supported by the used propagation
modules. See Chapter 7 for more information on the available propagation modules.

Currently, only constant magnetic fields can be applied.

4.6 Logging and Verbosity Levels

Allpix2 is designed to identify mistakes and implementation errors as early as possible and to
provide the user with clear indications about the problem. The amount of feedback can be
controlled using different log levels which are inclusive, i.e. lower levels also include messages
from all higher levels. The global log level can be set using the global parameter log_level.
The log level can be overridden for a specific module by adding the log_level parameter to
the respective configuration section. The following log levels are supported:

27

4 Getting Started

• FATAL: Indicates a fatal error that will lead to direct termination of the application.
Typically only emitted in the main executable after catching exceptions as they are the
preferred way of fatal error handling (as discussed in Section 5.8). An example of a fatal
error is an invalid configuration parameter.

• STATUS: Important information about the status of the simulation. Is only used for
messages which have to be logged in every run such as the global seed for pseudo-random
number generators and the current progress of the run.

• ERROR: Severe error that should not occur during a normal well-configured simulation
run. Frequently leads to a fatal error and can be used to provide extra information that
may help in finding the problem (for example used to indicate the reason a dynamic
library cannot be loaded).

• WARNING: Indicate conditions that should not occur normally and possibly lead
to unexpected results. The framework will however continue without problems after a
warning. A warning is for example issued to indicate that an output message is not used
and that a module may therefore perform unnecessary work.

• INFO: Information messages about the physics process of the simulation. Contains
summaries of the simulation details for every event and for the overall simulation. Should
typically produce maximum one line of output per event and module.

• DEBUG: In-depth details about the progress of the simulation and all physics details
of the simulation. Produces large volumes of output per event, and should therefore
only be used for debugging the physics simulation of the modules.

• TRACE: Messages to trace what the framework or a module is currently doing. Unlike
the DEBUG level, it does not contain any direct information about the physics of
the simulation but rather indicates which part of the module or framework is currently
running. Mostly used for software debugging or determining performance bottlenecks in
the simulations.

It is not recommended to set the log_level higher than WARNING in a typical
simulation as important messages may be missed. Setting too low logging levels should also
be avoided since printing many log messages will significantly slow down the simulation.

The logging system supports several formats for displaying the log messages. The following
formats are supported via the global parameter log_format or the individual module parameter
with the same name:

• SHORT: Displays the data in a short form. Includes only the first character of the log
level followed by the configuration section header and the message.

• DEFAULT: The default format. Displays system time, log level, section header and
the message itself.

28

4.7 Storing Output Data

• LONG: Detailed logging format. Displays all of the above but also indicates source
code file and line where the log message was produced. This can help in debugging
modules.

More details about the logging system and the procedure for reporting errors in the code can
be found in Sections 5.7.1 and 5.8.

4.7 Storing Output Data

Storing the simulation output to persistent storage is of primary importance for subsequent
reprocessing and analysis. Allpix2 primarily uses ROOT for storing output data, given that it
is a standard tool in High-Energy Physics and allows objects to be written directly to disk. The
ROOTObjectWriter automatically saves all objects created in a TTree [15]. It stores separate
trees for all object types and creates branches for every unique message name: a combination
of the detector, the module and the message output name as described in Section 5.6. For
each event, values are added to the leaves of the branches containing the data of the objects.
This allows for easy histogramming of the acquired data over the total run using standard
ROOT utilities.

Relations between objects within a single event are internally stored as ROOT TRefs [16],
allowing retrieval of related objects as long as these are loaded in memory. An exception will
be thrown when trying to access an object which is not in memory. Refer to Section 6.2 for
more information about object history.

In order to save all objects of the simulation, a ROOTObjectWriter module has to be added
with a file_name parameter to specify the file location of the created ROOT file in the global
output directory. The file extension .root will be appended if not present. The default file
name is data, i.e. the file data.root is created in the output directory. To replicate the default
behaviour the following configuration can be used:

1 # The object writer listens to all output data
2 [ROOTObjectWriter]
3 # specify the output file (default file name is used if omitted)
4 file_name = "data"

The generated output file can be analyzed using ROOT macros. A simple macro for converting
the results to a tree with standard branches for comparison is described in Section 12.3.

It is also possible to read object data back in, in order to dispatch them as messages to further
modules. This feature is intended to allow splitting the execution of parts of the simulation
into independent steps, which can be repeated multiple times. The tree data can be read
using a ROOTObjectReader module, which automatically dispatches all objects to the correct
module instances. An example configuration for using this module is:

1 # The object reader dispatches all objects in the tree
2 [ROOTObjectReader]

29

4 Getting Started

3 # path to the output data file, absolute or relative to the configuration
file↪→

4 file_name = "../output/data.root"

The Allpix2 framework comes with a few more output modules which allow data storage in
different formats, such as the LCIO persistency event data model [11], the native RCE file
format [17], or the Corryvreckan reconstruction framework data format. Detailed descriptions
of these modules can be found in Chapter 7.

30

5 Structure & Components of the Framework

This chapter details the technical implementation of the Allpix2 framework and is mostly
intended to provide insight into the gearbox to potential developers and interested users. The
framework consists of the following four main components that together form Allpix2:

1. Core: The core contains the internal logic to initialize the modules, provide the geometry,
facilitate module communication and run the event sequence. The core keeps its
dependencies to a minimum (it only relies on ROOT) and remains independent from the
other components as far as possible. It is the main component discussed in this section.

2. Modules: A module is a set of methods which is executed as part of the simulation
chain. Modules are built as separate libraries and loaded dynamically on demand by the
core. The available modules and their parameters are discussed in detail in Chapter 7.

3. Objects: Objects form the data passed between modules using the message framework
provided by the core. Modules can listen and bind to messages with objects they wish
to receive. Messages are identified by the object type they are carrying, but can also be
renamed to allow the direction of data to specific modules, facilitating more sophisticated
simulation setups. Messages are intended to be read-only and a copy of the data should
be made if a module wishes to change the data. All objects are compiled into a separate
library which is automatically linked to every module. More information about the
messaging system and the supported objects can be found in Section 5.5.

4. Tools: Allpix2 provides a set of header-only ’tools’ that allow access to common logic
shared by various modules. Examples are the Runge-Kutta solver [18] implemented
using the Eigen3 library and the set of template specializations for ROOT and Geant4
configurations. More information about the tools can be found in Chapter 12. This set
of tools is different from the set of core utilities the framework itself provides, which is
part of the core and explained in Section 5.7.

Finally, Allpix2 provides an executable which instantiates the core of the framework, receives
and distributes the configuration object and runs the simulation chain.

The chapter is structured as follows. Section 5.1 provides an overview of the architectural design
of the core and describes its interaction with the rest of the Allpix2 framework. The different
subcomponents such as configuration, modules and messages are discussed in Sections 5.2–5.5.
The chapter closes with a description of the available framework tools in Section 5.7. Some
C++ code will be provided in the text, but readers not interested may skip the technical
details.

31

5 Structure & Components of the Framework

5.1 Architecture of the Core

The core is constructed as a light-weight framework which provides various subsystems to the
modules. It contains the part of the software responsible for instantiating and running the
modules from the supplied configuration file, and is structured around five subsystems, of
which four are centered around a manager and the fifth contains a set of general utilities. The
systems provided are:

1. Configuration: The configuration subsystem provides a configuration object from
which data can be retrieved or stored, together with a TOML-like [19] parser to read
configuration files. It also contains the Allpix2 configuration manager which provides
access to the main configuration file and its sections. It is used by the module manager
system to find the required instantiations and access the global configuration. More
information is given in Section 5.2.

2. Module: The module subsystem contains the base class of all Allpix2 modules as well as
the manager responsible for loading and executing the modules (using the configuration
system). This component is discussed in more detail in Section 5.3.

3. Geometry: The geometry subsystem supplies helpers for the simulation geometry. The
manager instantiates all detectors from the detector configuration file. A detector object
contains the position and orientation linked to an instantiation of a particular detector
model, itself containing all parameters describing the geometry of the detector. More
details about geometry and detector models is provided in Section 5.4.

4. Messenger: The messenger is responsible for sending objects from one module to
another. The messenger object is passed to every module and can be used to bind to
messages to listen for. Messages with objects are also dispatched through the messenger
as described in Section 5.5.

5. Utilities: The framework provides a set of utilities for logging, file and directory access,
and unit conversion. An explanation on how to use of these utilities can be found in
Section 5.7. A set of C++ exceptions is also provided in the utilities, which are inherited
and extended by the other components. Proper use of exceptions, together with logging
information and reporting errors, makes the framework easier to use and debug. A few
notes about the use and structure of exceptions are provided in Section 5.8.

5.2 Configuration and Parameters

Individual modules as well as the framework itself are configured through configuration files,
which all follow the same format. Explanations on how to use the various configuration files
together with several examples have been provided in Section 4.1.

32

5.2 Configuration and Parameters

5.2.1 File format

Throughout the framework, a simplified version of TOML [19] is used as standard format for
configuration files. The format is defined as follows:

1. All whitespace at the beginning or end of a line are stripped by the parser. In the rest
of this format specification the line refers to the line with this whitespace stripped.

2. Empty lines are ignored.

3. Every non-empty line should start with either #, [or an alphanumeric character. Every
other character should lead to an immediate parse error.

4. If the line starts with a hash character (#), it is interpreted as comment and all other
content on the same line is ignored.

5. If the line starts with an open square bracket ([), it indicates a section header (also
known as configuration header). The line should contain a string with alphanumeric
characters and underscores, indicating the header name, followed by a closing square
bracket (]), to end the header. After any number of ignored whitespace characters there
could be a # character. If this is the case, the rest of the line is handled as specified
in point 3. Otherwise there should not be any other character (except the whitespace)
on the line. Any line that does not comply to these specifications should lead to an
immediate parse error. Multiple section headers with the same name are allowed. All
key-value pairs following this section header are part of this section until a new section
header is started.

6. If the line starts with an alphanumeric character, the line should indicate a key-value pair.
The beginning of the line should contain a string of alphabetic characters, numbers, dots
(.), colons () and underscores (_), but it may only start with an alphanumeric character.
This string indicates the ’key’. After an optional number of ignored whitespace, the key
should be followed by an equality sign (=). Any text between the = and the first #
character not enclosed within a pair of single or double quotes (’ or ") is known as the
non-stripped string. Any character after the # is handled as specified in point 3. If the
line does not contain any non-enclosed # character, the value ends at the end of the line
instead. The ’value’ of the key-value pair is the non-stripped string with all whitespace
in front and at the end stripped. The value may not be empty. Any line that does not
comply to these specifications should lead to an immediate parse error.

7. The value may consist of multiple nested dimensions which are grouped by pairs of
square brackets ([and]). The number of square brackets should be properly balanced,
otherwise an error is raised. Square brackets which should not be used for grouping
should be enclosed in quotation marks. Every dimension is split at every whitespace
sequence and comma character (,) not enclosed in quotation marks. Implicit square
brackets are added to the begin and end of the value, if these are not explicitly added.
A few situations require explicit addition of outer brackets such as matrices with only
one column element, i.e. with dimension 1xN.

8. The sections of the value which are interpreted as separate entities are named elements.
For a single value the element is on the zeroth dimension, for arrays on the first dimension

33

5 Structure & Components of the Framework

and for matrices on the second dimension. Elements can be forced by using quotation
marks, either single or double quotes (’ or "). The number of both types of quotation
marks should be properly balanced, otherwise an error is raised. The conversion to the
elements to the actual type is performed when accessing the value.

9. All key-value pairs defined before the first section header are part of a zero-length empty
section header.

5.2.2 Accessing parameters

Values are accessed via the configuration object. In the following example, the key is a string
called key, the object is named config and the type TYPE is a valid C++ type the value
should represent. The values can be accessed via the following methods:

1 // Returns true if the key exists and false otherwise
2 config.has("key")
3 // Returns the number of keys found from the provided initializer list:
4 config.count({"key1", "key2", "key3"});
5 // Returns the value in the given type, throws an exception if not existing

or a conversion to TYPE is not possible↪→

6 config.get<TYPE>("key")
7 // Returns the value in the given type or the provided default value if it

does not exist↪→

8 config.get<TYPE>("key", default_value)
9 // Returns an array of elements of the given type

10 config.getArray<TYPE>("key")
11 // Returns a matrix: an array of arrays of elements of the given type
12 config.getMatrix<TYPE>("key")
13 // Returns an absolute (canonical if it should exist) path to a file
14 config.getPath("key", true /* check if path exists */)
15 // Return an array of absolute paths
16 config.getPathArray("key", false /* do not check if paths exists */)
17 // Returns the value as literal text including possible quotation marks
18 config.getText("key")
19 // Set the value of key to the default value if the key is not defined
20 config.setDefault("key", default_value)
21 // Set the value of the key to the default array if key is not defined
22 config.setDefaultArray<TYPE>("key", vector_of_default_values)
23 // Create an alias named new_key for the already existing old_key or throws

an exception if the old_key does not exist↪→

24 config.setAlias("new_key", "old_key")

Conversions to the requested type are using the from_string and to_string methods provided
by the string utility library described in Section 5.7.3. These conversions largely follow standard
C++ parsing, with one important exception. If (and only if) the value is retrieved as a C/C++
string and the string is fully enclosed by a pair of " characters, these are stripped before
returning the value. Strings can thus also be provided with or without quotation marks.

34

5.3 Modules and the Module Manager

It should be noted that a conversion from string to the requested type is a comparatively
heavy operation. For performance-critical sections of the code, one should consider
fetching the configuration value once and caching it in a local variable.

5.3 Modules and the Module Manager

Allpix2 is a modular framework and one of the core ideas is to partition functionality in
independent modules which can be inserted or removed as required. These modules are located
in the subdirectory src/modules/ of the repository, with the name of the directory the unique
name of the module. The suggested naming scheme is CamelCase, thus an example module
name would be GenericPropagation. There are two different kind of modules which can be
defined:

• Unique: Modules for which a single instance runs, irrespective of the number of
detectors.

• Detector: Modules which are concerned with only a single detector at a time. These
are then replicated for all required detectors.

The type of module determines the constructor used, the internal unique name and the
supported configuration parameters. For more details about the instantiation logic for the
different types of modules, see Section 5.3.3.

5.3.1 Files of a Module

Every module directory should at minimum contain the following documents (with ModuleName
replaced by the name of the module):

• CMakeLists.txt: The build script to load the dependencies and define the source files
of the library.

• README.md: Full documentation of the module.

• ModuleNameModule.hpp: The header file of the module.

• ModuleNameModule.cpp: The implementation file of the module.

These files are discussed in more detail below. By default, all modules added to the src/modules/
directory will be built automatically by CMake. If a module depends on additional packages
which not every user may have installed, one can consider adding the following line to the top
of the module’s CMakeLists.txt:

1 ALLPIX_ENABLE_DEFAULT(OFF)

General guidelines and instructions for implementing new modules are provided in Sec-
tion 9.1.

35

5 Structure & Components of the Framework

CMakeLists.txt Contains the build description of the module with the following compo-
nents:

1. On the first line either ALLPIX_DETECTOR_MODULE(MODULE_NAME) or ALLPIX_UNIQUE_
MODULE(MODULE_NAME) depending on the type of module defined. The internal name
of the module is automatically saved in the variable ${MODULE_NAME} which should be
used as an argument to other functions. Another name can be used by overwriting the
variable content, but in the examples below, ${MODULE_NAME} is used exclusively and is
the preferred method of implementation.

2. The following lines should contain the logic to load possible dependencies of the module
(below is an example to load Geant4). Only ROOT is automatically included and linked
to the module.

3. A line with ALLPIX_MODULE_SOURCES(${MODULE_NAME} sources) defines the module
source files. Here, sources should be replaced by a list of all source files relevant to this
module.

4. Possible lines to include additional directories and to link libraries for dependencies
loaded earlier.

5. A line containing ALLPIX_MODULE_INSTALL(${MODULE_NAME}) to set up the required
target for the module to be installed to.

A simple CMakeLists.txt for a module named Test which requires Geant4 is provided below
as an example.

1 # Define module and save name to MODULE_NAME
2 # Replace by ALLPIX_DETECTOR_MODULE(MODULE_NAME) to define a detector

module↪→

3 ALLPIX_UNIQUE_MODULE(MODULE_NAME)
4

5 # Load Geant4
6 FIND_PACKAGE(Geant4)
7 IF(NOT Geant4_FOUND)
8 MESSAGE(FATAL_ERROR "Could not find Geant4, make sure to source the

Geant4 environment\n$ source YOUR_GEANT4_DIR/bin/geant4.sh")↪→

9 ENDIF()
10

11 # Add the sources for this module
12 ALLPIX_MODULE_SOURCES(${MODULE_NAME}
13 TestModule.cpp
14)
15

16 # Add Geant4 to the include directories
17 TARGET_INCLUDE_DIRECTORIES(${MODULE_NAME} SYSTEM PRIVATE

${Geant4_INCLUDE_DIRS})↪→

18

19 # Link the Geant4 libraries to the module library

36

5.3 Modules and the Module Manager

20 TARGET_LINK_LIBRARIES(${MODULE_NAME} ${Geant4_LIBRARIES})
21

22 # Provide standard install target
23 ALLPIX_MODULE_INSTALL(${MODULE_NAME})

README.md The README.md serves as the documentation for the module and should be
written in Markdown format [20]. It is automatically converted to LATEXusing Pandoc [21]
and included in the user manual in Chapter 7. By documenting the module functionality in
Markdown, the information is also viewable with a web browser in the repository within the
module sub-folder.

The README.md should follow the structure indicated in the README.md file of the DummyModule
in src/modules/Dummy, and should contain at least the following sections:

• The H1-size header with the name of the module and at least the following required
elements: the Maintainer and the Status of the module. If the module is working and
well-tested, the status of the module should be Functional. By default, new modules are
given the status Immature. The maintainer should mention the full name of the module
maintainer, with their email address in parentheses. A minimal header is therefore:

ModuleName
Maintainer: Example Author (<example@example.org>)
Status: Functional

In addition, the Input and Output objects to be received and dispatched by the module
should be mentioned.

• An H3-size section named Description, containing a short description of the module.

• An H3-size section named Parameters, with all available configuration parameters of
the module. The parameters should be briefly explained in an itemised list with the
name of the parameter set as an inline code block.

• An H3-size section with the titleUsage which should contain at least one simple example
of a valid configuration for the module.

ModuleNameModule.hpp and ModuleNameModule.cpp All modules should consist of both
a header file and a source file. In the header file, the module is defined together with all of its
methods. Brief Doxygen documentation should be added to explain what each method does.
The source file should provide the implementation of every method and also its more detailed
Doxygen documentation. Methods should only be declared in the header and defined in the
source file in order to keep the interface clean.

37

5 Structure & Components of the Framework

5.3.2 Module structure

All modules must inherit from the Module base class, which can be found in src/core/mod-
ule/Module.hpp. The module base class provides two base constructors, a few convenient
methods and several methods which the user is required to override. Each module should
provide a constructor using the fixed set of arguments defined by the framework; this particular
constructor is always called during by the module instantiation logic. These arguments for
the constructor differ for unique and detector modules.

For unique modules, the constructor for a TestModule should be:

1 TestModule(Configuration& config, Messenger* messenger, GeometryManager*
geo_manager): Module(config) {}↪→

For detector modules, the first two arguments are the same, but the last argument is a
std::shared_ptr to the linked detector. It should always forward this detector to the base
class together with the configuration object. Thus, the constructor of a detector module is:

1 TestModule(Configuration& config, Messenger* messenger,
std::shared_ptr<Detector> detector): Module(config, std::move(detector))
{}

↪→

↪→

The pointer to a Messenger can be used to bind variables to either receive or dispatch messages
as explained in Section 5.5. The constructor should be used to bind required messages, set
configuration defaults and to throw exceptions in case of failures. Unique modules can access
the GeometryManager to fetch all detector descriptions, while detector modules directly receive
a link to their respective detector.

In addition to the constructor, each module can override the following methods:

• init(): Called after loading and constructing all modules and before starting the event
loop. This method can for example be used to initialize histograms.

• run(unsigned int event_number): Called for every event in the simulation, with the
event number (starting from one). An exception should be thrown for serious errors,
otherwise a warning should be logged.

• finalize(): Called after processing all events in the run and before destructing the
module. Typically used to save the output data (like histograms). Any exceptions should
be thrown from here instead of the destructor.

If necessary, modules can also access the ConfigurationManager directly in order to obtain
configuration information from other module instances or other modules in the framework
using the getConfigManager() call. This allows to retrieve and e.g. store the configuration
actually used for the simulation alongside the data.

38

5.3 Modules and the Module Manager

5.3.3 Module instantiation

Modules are dynamically loaded and instantiated by the Module Manager. They are con-
structed, initialized, executed and finalized in the linear order in which they are defined in
the configuration file; for this reason the configuration file should follow the order of the
real process. For each section in the main configuration file (see 5.2 for more details), a
corresponding library is searched for which contains the module (the exception being the
global framework section). Module libraries are always named following the scheme libAllpix-
ModuleModuleName, reflecting the ModuleName configured via CMake. The module search
order is as follows:

1. Modules already loaded before from an earlier section header

2. All directories in the global configuration parameter library_directories in the
provided order, if this parameter exists.

3.

4. The internal library paths of the executable, that should automatically point to the
libraries that are built and installed together with the executable. These library paths
are stored in RPATH on Linux, see the next point for more information.

5. The other standard locations to search for libraries depending on the operating system.
Details about the procedure Linux follows can be found in [22].

If the loading of the module library is successful, the module is checked to determine if it
is a unique or detector module. As a single module may be called multiple times in the
configuration, with overlapping requirements (such as a module which runs on all detectors
of a given type, followed by the same module but with different parameters for one specific
detector, also of this type) the Module Manager must establish which instantiations to keep
and which to discard. The instantiation logic determines a unique name and priority, where a
lower number indicates a higher priority, for every instantiation. The name and priority for
the instantiation are determined differently for the two types of modules:

• Unique: Combination of the name of the module and the input and output parameter
(both defaulting to an empty string). The priority is always zero.

• Detector: Combination of the name of the module, the input and output parameter
(both defaulting to an empty string) and the name of detector this module is executed
for. If the name of the detector is specified directly by the name parameter, the priority
is high. If the detector is only matched by the type parameter, the priority is medium. If
the name and type are both unspecified and the module is instantiated for all detectors,
the priority is low.

In the end, only a single instance for every unique name is allowed. If there are multiple
instantiations with the same unique name, the instantiation with the highest priority is kept.
If multiple instantiations with the same unique name and the same priority exist, an exception
is raised.

39

5 Structure & Components of the Framework

5.3.4 Parallel execution of modules

The framework has experimental support for running several modules in parallel. This feature
is disabled for new modules by default, and has to be both supported by the module and
enabled by the user as described in Section 4.2. A significant speed improvement can be
achieved if the simulation contains multiple detectors or simulates the same module using
different parameters.

The framework allows to parallelize the execution of the same type of module, if these would
otherwise be executed directly after each other in a linear order. Thus, as long as the name of
the module remains the same, while going through the execution order of all run() methods,
all instances are added to a work queue. The instances are then distributed to a set of worker
threads as specified in the configuration or determined from system parameters, which will
execute the individual modules. The module manager will wait for all jobs to finish before
continuing to process the next type of module.

To enable parallelization for a module, the following line of code has to be added to the
constructor of a module:

1 // Enable parallelization of this module if multithreading is enabled
2 enable_parallelization();

By adding this, the module promises that it will work correctly if the run-method is executed
multiple times in parallel, in separate instantiations. This means in particular that the module
will safely handle access to shared (for example static) variables and it will properly bind
ROOT histograms to their directory before the run()-method. Access to constant operations
in the GeometryManager, Detector and DetectorModel is always valid between various threads.
In addition, sending and receiving messages is thread-safe.

5.4 Geometry and Detectors

Simulations are frequently performed for a set of different detectors (such as a beam telescope
and a device under test). All of these individual detectors together form what Allpix2 defines
as the geometry. Each detector has a set of properties attached to it:

• A unique detector name to refer to the detector in the configuration.

• The position in the world frame. This is the position of the geometric center of
the sensitive device (sensor) given in world coordinates as X, Y and Z as defined in
Section 5.4.1 (note that any additional components like the chip and possible support
layers are ignored when determining the geometric center).

• An orientation_mode that determines the way that the orientation is applied. This
can be either xyz, zyx or zxz, where xyz is used as default if the parameter is
not specified. Three angles are expected as input, which should always be provided in
the order in which they are applied.

40

5.4 Geometry and Detectors

– The xyz option uses extrinsic Euler angles to apply a rotation around the global X
axis, followed by a rotation around the global Y axis and finally a rotation around
the global Z axis.

– The zyx option uses the extrinsic Z-Y-X convention for Euler angles, also
known as Pitch-Roll-Yaw or 321 convention. The rotation is represented by three
angles describing first a rotation of an angle φ (yaw) about the Z axis, followed
by a rotation of an angle θ (pitch) about the initial Y axis, followed by a third
rotation of an angle ψ (roll) about the initial X axis.

– The zxz uses the extrinsic Z-X-Z convention for Euler angles instead. This
option is also known as the 3-1-3 or the "x-convention" and the most widely used
definition of Euler angles [23].

It is highly recommended to always explicitly state the orientation mode instead of
relying on the default configuration.

• The orientation to specify the Euler angles in logical order (e.g. first X, then Y , then
Z for the xyz method), interpreted using the method above (or with the xyz method if
the orientation_mode is not specified). An example for three Euler angles would be

1 orientation_mode = "zyx"
2 orientation = 45deg 10deg 12deg

which describes the rotation of 45◦ around the Z axis, followed by a 10◦ rotation around
the initial Y axis, and finally a rotation of 12◦ around the initial X axis.

All supported rotations are extrinsic active rotations, i.e. the vector itself is rotated,
not the coordinate system. All angles in configuration files should be specified in
the order they will be applied.

• A type parameter describing the detector model, for example timepix or mimosa26.
These models define the geometry and parameters of the detector. Multiple detectors
can share the same model, several of which are shipped ready-to-use with the framework.

• An optional parameter alignment_precision_position to specify the alignment pre-
cision along the three global axes as described in Section 4.1.3.

• An optional parameter alignment_precision_orientation for the alignment precision
in the three rotation angles as described in Section 4.1.3.

• An optional electric field in the sensitive device. An electric field can be added to a
detector by a special module as demonstrated in Section 4.5.

The detector configuration is provided in the detector configuration file as explained in
Section 4.1.3.

41

5 Structure & Components of the Framework

Global Coordinates At Origin Local Coordinates

DUT

• Shift to origin

• Apply inverse rotation • Shift to origin

• Shift to sensor center

• Apply rotation

• Shift to detector position

z

x

z

x

z

x

y

x

y

x

y

x

Figure 5.1: Coordinate transoformations from global to local and revers. The first row shows
the detector positions in the repective coordinate systems in top view, the second
row in side view.

5.4.1 Coordinate systems

Local coordinate systems for each detector and a global frame of reference for the full setup are
defined. The global coordinate system is chosen as a right-handed Cartesian system, and the
rotations of individual devices are performed around the geometrical center of their sensor.

Local coordinate systems for the detectors are also right-handed Cartesian systems, with the
x- and y-axes defining the sensor plane. The origin of this coordinate system is the center of
the lower left pixel in the grid, i.e. the pixel with indices (0,0). This simplifies calculations in
the local coordinate system as all positions can either be stated in absolute numbers or in
fractions of the pixel pitch.

A sketch of the actual coordinate transformations performed, including the order of transfor-
mations, is provided in Figure 5.1. The global coordinate system used for tracking of particles
through detetector setup is shown on the left side, while the local coordinate system used to
describe the individual sensors is located at the right.

42

5.4 Geometry and Detectors

5.4.2 Changing and accessing the geometry

The geometry is needed at a very early stage because it determines the number of detector
module instantiations as explained in Section 5.3.3. The procedure of finding and loading the
appropriate detector models is explained in more detail in Section 5.4.3.

The geometry is directly added from the detector configuration file described in Section 4.1.3.
The geometry manager parses this file on construction, and the detector models are loaded and
linked later during geometry closing as described above. It is also possible to add additional
models and detectors directly using addModel and addDetector (before the geometry is
closed). Furthermore it is possible to add additional points which should be part of the world
geometry using addPoint. This can for example be used to add the beam source to the world
geometry.

The detectors and models can be accessed by name and type through the geometry manager
using getDetector and getModel, respectively. All detectors can be fetched at once using
the getDetectors method. If the module is a detector-specific module its related Detector
can be accessed through the getDetector method of the module base class instead (returns a
null pointer for unique modules) as follows:

1 void run(unsigned int event_id) {
2 // Returns the linked detector
3 std::shared_ptr<Detector> detector = this->getDetector();
4 }

5.4.3 Detector models

Different types of detector models are available and distributed together with the framework:
these models use the configuration format introduced in Section 5.2.1 and can be found in the
models directory of the repository. Every model extends from the DetectorModel base class,
which defines the minimum required parameters of a detector model within the framework.
The coordinates place the detector in the global coordinate system, with the reference point
taken as the geometric center of the active matrix. This is defined by the number of pixels in
the sensor in both the x- and y-direction, and together with the pitch of the individual pixels
the total size of the pixel matrix is determined. Outside the active matrix, the sensor can
feature excess material in all directions in the x-y-plane. A detector of base class type does
not feature a separate readout chip, thus only the thickness of an additional, inactive silicon
layer can be specified. Derived models allow for separate readout chips, optionally connected
with bump bonds.

The base detector model can be extended to provide more detailed geometries. Currently
implemented derived models are the MonolithicPixelDetectorModel, which describes a
monolithic detector with all electronics directly implemented in the same silicon wafer as
the sensor, and the HybridPixelDetectorModel, which in addition to the features described
above also includes a separate readout chip with configurable size and bump bonds between
the sensor and readout chip.

43

5 Structure & Components of the Framework

Detector model parameters
Models are defined in configuration files which are used to instantiate the actual model classes;
these files contain various types of parameters, some of which are required for all models while
others are optional or only supported by certain model types. For more details on how to add
and use a new detector model, Section 9.2 should be consulted.

The set of base parameters supported by every model is provided below. These parameters
should be given at the top of the file before the start of any sub-sections.

• type: A required parameter describing the type of the model. At the moment either
monolithic or hybrid. This value determines the supported parameters as discussed
later.

• number_of_pixels: The number of pixels in the 2D pixel matrix. Determines the base
size of the sensor together with the pixel_size parameter below.

• pixel_size: The pitch of a single pixel in the pixel matrix. Provided as 2D parameter
in the x-y-plane. This parameter is required for all models.

• implant_size: The size of the collection diode implant in each pixel of the matrix.
Provided as 2D parameter in the x-y-plane. This parameter is optional, the implant size
defaults to the pixel pitch if not specified otherwise.

• sensor_thickness: Thickness of the active area of the detector model containing the
individual pixels. This parameter is required for all models.

• sensor_excess_direction : With direction either top, bottom, right or left, where
the top, bottom, right and left direction are the positive y-axis, the negative y-axis, the
positive x-axis and the negative x-axis, respectively. Specifies the extra material added
to the sensor outside the active pixel matrix in the given direction.

• sensor_excess: Fallback for the excess width of the sensor in all four directions (top,
bottom, right and left). Used if the specialized parameters described below are not given.
Defaults to zero, thus having a sensor size equal to the number of pixels times the pixel
pitch.

• chip_thickness: Thickness of the readout chip, placed next to the sensor.

The base parameters described above are the only set of parameters supported by the
monolithic model. For this model, the chip_thickness parameter represents the first few
micrometers of silicon which contain the chip circuitry and are shielded from the bias voltage
and thus do not contribute to the signal formation.

The hybrid model adds bump bonds between the chip and sensor while automatically making
sure the chip and support layers are shifted appropriately. Furthermore, it allows the user to
specify the chip dimensions independently from the sensor size, as the readout chip is treated
as a separate entity. The additional parameters for the hybrid model are as follows:

• chip_excess_direction : With direction either top, bottom, right or left. The chip
excess in the specific direction, similar to the sensor_excess_direction parameter
described above.

44

5.4 Geometry and Detectors

• chip_excess: Fallback for the excess width of the chip, defaults to zero and thus to a
chip size equal to the dimensions of the pixel matrix. See the sensor_excess parameter
above.

• bump_height: Height of the bump bonds (the separation distance between the chip and
the sensor)

• bump_sphere_radius: The individual bump bonds are simulated as union solids of a
sphere and a cylinder. This parameter sets the radius of the sphere to use.

• bump_cylinder_radius: The radius of the cylinder part of the bump. The height of
the cylinder is determined by the bump_height parameter.

• bump_offset: A 2D offset of the grid of bumps. The individual bumps are by default
positioned at the center of each single pixel in the grid.

Support Layers
In addition to the active layer, multiple layers of support material can be added to the detector
description. It is possible to place support layers at arbitrary positions relative to the sensor,
while the default position is behind the readout chip (or inactive silicon layer). The support
material can be chosen from a set of predefined materials, including PCB and Kapton.

Every support layer should be defined in its own section headed with the name [support].
By default, no support layers are added. Support layers allow for the following parameters.

• size: Size of the support in 2D (the thickness is given separately below). This parameter
is required for all support layers.

• thickness: Thickness of the support layers. This parameter is required for all support
layers.

• location: Location of the support layer. Either sensor to attach it to the sensor
(opposite to the readout chip/inactive silicon layer), chip to add the support layer behind
the chip/inactive layer or absolute to specify the offset in the z-direction manually.
Defaults to chip if not specified. If the parameter is equal to sensor or chip, the support
layers are stacked in the respective direction when multiple layers of support are specified.

• offset: If the parameter location is equal to sensor or chip, an optional 2D offset
can be specified using this parameter, the offset in the z-direction is then automatically
determined. These support layers are by default centered around the middle of the pixel
matrix (the rotation center of the model). If the location is set to absolute, the offset is
a required parameter and should be provided as a 3D vector with respect to the center
of the model (thus the center of the active sensor). Care should be taken to ensure that
these support layers and the rest of the model do not overlap.

• hole_size: Adds an optional cut-out hole to the support with the 2D size provided.
The hole always cuts through the full support thickness. No hole will be added if this
parameter is not present.

• hole_offset: If present, the hole is by default placed at the center of the support layer.
A 2D offset with respect to its default position can be specified using this parameter.

45

5 Structure & Components of the Framework

• material: Material of the support. Allpix2 does not provide a set of materials to choose
from; it is up to the modules using this parameter to implement the materials such
that they can use it. Chapter 7 provides details about the materials supported by the
geometry builder module (GeometryBuilderGeant4).

Accessing specific detector models within the framework
Some modules are written to act on only a particular type of detector model. In order to
ensure that a specific detector model has been used, the model should be downcast: the
downcast returns a null pointer if the class is not of the appropriate type. An example for
fetching a HybridPixelDetectorModel would thus be:

1 // "detector" is a pointer to a Detector object
2 auto model = detector->getModel();
3 auto hybrid_model =

std::dynamic_pointer_cast<HybridPixelDetectorModel>(model);↪→

4 if(hybrid_model != nullptr) {
5 // The model of this Detector is a HybridPixelDetectorModel
6 }

Specializing detector models
A detector model contains default values for all parameters. Some parameters like the sensor
thickness can however vary between different detectors of the same model. To allow for easy
adjustment of these parameters, models can be specialized in the detector configuration file
introduced in 4.1.3. All model parameters, except the type parameter and the support layers,
can be changed by adding a parameter with the exact same key and the updated value to the
detector configuration. The framework will then automatically create a copy of this model
with the requested change.

Before re-implementing models, it should be checked if the desired change can be achieved
using the detector model specialization. For most cases this provides a quick and flexible
way to adapt detectors to different needs and setups (for example, detectors with different
sensor thicknesses).

Search order for models
To support different detector models and storage locations, the framework searches different
paths for model files in the following order:

1. If defined, the paths provided in the global model_paths parameter are searched first.
Files are read and parsed directly. If the path is a directory, all files in the directory are
added (without recursing into subdirectories).

2. The location where the models are installed to (refer to the description of the MODEL_
DIRECTORY variable in Section 3.5).

46

5.5 Passing Objects using Messages

3. The standard data paths on the system as given by the environmental variable $XDG_
DATA_DIRS with “Allpix/models” appended. The $XDG_DATA_DIRS variable defaults
to /usr/local/share/ (thus effectively /usr/local/share/Allpix/models) followed by /us-
r/share/ (effectively /usr/share/Allpix/models).

5.5 Passing Objects using Messages

Communication between modules is performed by the exchange of messages. Messages are
templated instantiations of the Message class carrying a vector of objects. The list of objects
available in the Allpix2 objects library are discussed in Chapter 6. The messaging system
has a dispatching mechanism to send messages and a receiving part that fetches incoming
messages.

The dispatching module can specify an optional name for the messages, but modules should
normally not specify this name directly. If the name is not given (or equal to -) the output
parameter of the module is used to determine the name of the message, defaulting to an empty
string. Dispatching messages to their receivers is then performed following these rules:

1. The receiving module will only receive a message if it has the exact same type as the
message dispatched (thus carrying the same objects). If the receiver is however listening
to the BaseMessage type which does not specify the type of objects it is carrying, it will
instead receive all dispatched messages.

2. The receiving module will only receive messages with the exact name it is listening for.
The module uses the input parameter to determine which message names it should
listen for; if the input parameter is equal to * the module will listen to all messages.
Each module by default listens to messages with no name specified (thus receiving the
messages of dispatching modules without output name specified).

3. If the receiving module is a detector module, it will only receive messages bound to that
specific detector or messages that are not bound to any detector.

An example of how to dispatch a message containing an array of Object types bound to a
detector named dut is provided below. As usual, the message is dispatched at the end of the
run() function of the module.

1 void run(unsigned int event_id) {
2 std::vector<Object> data;
3 // ..fill the data vector with objects ...
4

5 // The message is dispatched only for the module’s detector, stored in
"detector_"↪→

6 auto message = std::make_shared<Message<Object>>(data, detector_);
7

8 // Send the message using the Messenger object
9 messenger->dispatchMessage(this, message);

10 }

47

5 Structure & Components of the Framework

5.5.1 Methods to process messages

The message system has multiple methods to process received messages. The first two are the
most common methods and the third should be avoided in almost every instance.

1. Bind a single message to a variable. This should usually be the preferred method,
where a module expects only a single message to arrive per event containing the list of
all relevant objects. The following example binds to a message containing an array of
objects and is placed in the constructor of a detector-type TestModule:

1 TestModule(Configuration&, Messenger* messenger,
std::shared_ptr<Detector>) {↪→

2 messenger->bindSingle(this,
3 /* Pointer to the message variable */
4 &TestModule::message,
5 /* No special messenger flags */
6 MsgFlags::NONE);
7 }
8 std::shared_ptr<Message<Object>> message;

2. Bind a set of messages to a std::vector variable. This method should be used if the
module can (and expects to) receive the same message multiple times (possibly because
it wants to receive the same type of message for all detectors). An example to bind
multiple messages containing an array of objects in the constructor of a unique-type
TestModule would be:

1 TestModule(Configuration&, Messenger* messenger, GeometryManager*
geo_manager) {↪→

2 messenger->bindMulti(this,
3 /* Pointer to the message vector */
4 &TestModule::messages,
5 /* No special messenger flags */
6 MsgFlags::NONE);
7 }
8 std::vector<std::shared_ptr<Message<Object>>> messages;

3. Listen to a particular message type and execute a listener function as soon as an
object is received. This can be used for more advanced strategies of retrieving messages,
but the other methods should be preferred whenever possible. The listening module
should not do any heavy work in the listening function as this is supposed to take place
in the module run method instead. Using a listener function can lead to unexpected
behaviour because the function is executed during the run method of the dispatching
module. This means that logging is performed at the level of the dispatching module and
that the listener method can be accessed from multiple threads if the dispatching module
is parallelized. Listening to a message containing an array of objects in a detector-specific
TestModule could be performed as follows:

48

5.5 Passing Objects using Messages

1 TestModule(Configuration&, Messenger* messenger,
std::shared_ptr<Detector>) {↪→

2 messenger->registerListener(this,
3 /* Pointer to the listener method */
4 &TestModule::listener,
5 /* No special message flags */
6 MsgFlags::NONE);
7 }
8 void listener(std::shared_ptr<Message<Object>> message) {
9 // Do something with the received message ...

10 }

5.5.2 Message flags

Flags can be added to the bind and listening methods which enable a particular behaviour of
the framework.

• REQUIRED: Specifies that this message is required during the event processing. If
this particular message is not received before it is time to execute the module’s run
function, the execution of the method is automatically skipped by the framework for the
current event. This can be used to ignore modules which cannot perform any action
without received messages, for example charge carrier propagation without any deposited
charge carriers.

• ALLOW_OVERWRITE: By default an exception is automatically raised if a single bound
message is overwritten (thus receiving it multiple times instead of once). This flag
prevents this behaviour. It can only be used for variables bound to a single message.

• IGNORE_NAME: If this flag is specified, the name of the dispatched message is not
considered. Thus, the input parameter is ignored and forced to the value *.

5.5.3 Persistency

As objects may contain information relating to other objects, in particular for storing their
corresponding Monte Carlo history (see Section 6.2), objects are by default persistent until the
end of each event. All messages are stored as shared pointers by the modules which send them,
and are released at the end of each event. If no other copies of the shared message pointer are
created, then these will be subsequently deleted, including the objects stored therein. Where a
module requires access to data from a previous event (such as to simulate the effects of pile-up
etc.), local copies of the data objects must be created. Note that at the point of creating
copies the corresponding history will be lost.

49

5 Structure & Components of the Framework

5.6 Redirect Module Inputs and Outputs

In the Allpix2 framework, modules exchange messages typically based on their input and
output message types and the detector type. It is, however, possible to specify a name for
the incoming and outgoing messages for every module in the simulation. Modules will then
only receive messages dispatched with the name provided and send named messages to other
modules listening for messages with that specific name. This enables running the same module
several times for the same detector, e.g. to test different parameter settings.

The message output name of a module can be changed by setting the output parameter of the
module to a unique value. The output of this module is then not sent to modules without a
configured input, because by default modules listens only to data without a name. The input
parameter of a particular receiving module should therefore be set to match the value of the
output parameter. In addition, it is permitted to set the input parameter to the special value
* to indicate that the module should listen to all messages irrespective of their name.

An example of a configuration with two different settings for the digitisation module is shown
below:

1 # Digitize the propagated charges with low noise levels
2 [DefaultDigitizer]
3 # Specify an output identifier
4 output = "low_noise"
5 # Low amount of noise added by the electronics
6 electronics_noise = 100e
7 # Default values are used for the other parameters
8

9 # Digitize the propagated charges with high noise levels
10 [DefaultDigitizer]
11 # Specify an output identifier
12 output = "high_noise"
13 # High amount of noise added by the electronics
14 electronics_noise = 500e
15 # Default values are used for the other parameters
16

17 # Save histogram for ’low_noise’ digitized charges
18 [DetectorHistogrammer]
19 # Specify input identifier
20 input = "low_noise"
21

22 # Save histogram for ’high_noise’ digitized charges
23 [DetectorHistogrammer]
24 # Specify input identifier
25 input = "high_noise"

50

5.7 Logging and other Utilities

5.7 Logging and other Utilities

The Allpix2 framework provides a set of utilities which improve the usability of the framework
and extend the functionality provided by the C++ Standard Template Library (STL). The
former includes a flexible and easy-to-use logging system, introduced in Section 5.7.1 and an
easy-to-use framework for units that supports converting arbitrary combinations of units to
common base units which can be used transparently throughout the framework, and which
will be discussed in more detail in Section 5.7.2. The latter comprise tools which provide
functionality the C++14 standard does not contain. These utilities are used internally in
the framework and are only shortly discussed in Section 5.7.3 (file system support) and
Section 5.7.3 (string utilities).

5.7.1 Logging system

The logging system is built to handle input/output in the same way as std::cin and std::cout
do. This approach is both very flexible and easy to read. The system is globally configured,
thus only one logger instance exists. In order to send a message to the logging system at a
level of LEVEL, the following can be used:

1 LOG(LEVEL) << "this is an example message with an integer and a double " <<
1 << 2.0;↪→

A new line and carriage return is added at the end of every log message. Multi-line log
messages can also be used: the logging system will automatically align every new line under
the previous message and will leave the header space empty on new lines.

The system also allows messages to be updated on the same line, for simple progressbar-like
functionality. It is enabled using the LOG_PROCESS(LEVEL, IDENTIFIER) command. Here,
the IDENTIFIER is a unique string identifying this output stream in order not to mix different
progress reports.

If the output is a terminal screen the logging output will be coloured to make it easier to
identify warnings and error messages. This is disabled automatically for all non-terminal
outputs.

More details about the logging levels and formats can be found in Section 4.6.

5.7.2 Unit system

Correctly handling units and conversions is of paramount importance. Having a separate
C++ type for every unit would however be too cumbersome for a lot of operations, therefore
units are stored in standard C++ floating point types in a default unit which all code in
the framework should use for calculations. In configuration files, as well as for logging, it is
however very useful to provide quantities in different units.

51

5 Structure & Components of the Framework

The unit system allows adding, retrieving, converting and displaying units. It is a global
system transparently used throughout the framework. Examples of using the unit system are
given below:

1 // Define the standard length unit and an auxiliary unit
2 Units::add("mm", 1);
3 Units::add("m", 1e3);
4 // Define the standard time unit
5 Units::add("ns", 1);
6 // Get the units given in m/ns in the defined framework unit (mm/ns)
7 Units::get(1, "m/ns");
8 // Get the framework unit (mm/ns) in m/ns
9 Units::convert(1, "m/ns");

10 // Return the unit in the best type (lowest number larger than one) as
string.↪→

11 // The input is in default units 2000mm/ns and the ’best’ output is 2m/ns
(string)↪→

12 Units::display(2e3, {"mm/ns", "m/ns"});

A description of the use of units in config files within Allpix2 was presented in Section 4.1.1.

5.7.3 Internal utilities

The filesystem utilities provide functions to convert relative to absolute canonical paths, to
iterate through all files in a directory and to create new directories. These functions should be
replaced by the C++17 file system API [24] as soon as the framework minimum standard is
updated to C++17.

STL only provides string conversions for standard types using std::stringstream and
std::to_string, which do not allow parsing strings encapsulated in pairs of double quote (")
characters nor integrating different units. Furthermore it does not provide wide flexibility to
add custom conversions for other external types in either way.

The Allpix2 to_string and from_string methods provided by its string utilities do allow for
these flexible conversions, and are extensively used in the configuration system. Conversions of
numeric types with a unit attached are automatically resolved using the unit system discussed
above. The string utilities also include trim and split strings functions missing in the STL.

Furthermore, the Allpix2 tool system contains extensions to allow automatic conversions for
ROOT and Geant4 types as explained in Section 12.1.1.

5.8 Error Reporting and Exceptions

Allpix2 generally follows the principle of throwing exceptions in all cases where something is
definitely wrong. Exceptions are also thrown to signal errors in the user configuration. It does
not attempt to circumvent problems or correct configuration mistakes, and the use of error

52

5.8 Error Reporting and Exceptions

return codes is to be discouraged. The asset of this method is that errors cannot easily be
ignored and the code is more predictable in general.

For warnings and information messages, the logging system should be used extensively. This
helps both in following the progress of the simulation and in debugging problems. Care should
however be taken to limit the amount of messages in levels higher than DEBUG or TRACE. More
details about the logging levels and their usage can be found in Section 4.6.

The base exceptions in Allpix2 are available via the utilities. The most important exception
base classes are the following:

• ConfigurationError: All errors related to incorrect user configuration. This could
indicate a non-existing configuration file, a missing key or an invalid parameter value.

• RuntimeError: All other errors arising at run-time. Could be related to incorrect
configuration if messages are not correctly passed or non-existing detectors are specified.
Could also be raised if errors arise while loading a library or executing a module.

• LogicError: Problems related to modules which do not properly follow the specifications,
for example if a detector module fails to pass the detector to the constructor. These
methods should never be raised for correctly implemented modules and should therefore
not be of any concern for the end users. Reporting this type of error can help developers
during the development of new modules.

There are only four exceptions that are supposed to be used in specific modules, outside of
the core framework. These exceptions should be used to indicate errors that modules cannot
handle themselves:

• InvalidValueError: Derived from configuration exceptions. Signals any problem with
the value of a configuration parameter not related to parsing or conversion to the required
type. Can for example be used for parameters where the possible valid values are limited,
like the set of logging levels, or for paths that do not exist. An example is shown below:

1 void run(unsigned int event_id) {
2 // Fetch a key from the configuration
3 std::string value = config.get("key");
4

5 // Check if it is a ’valid’ value
6 if(value != ’A’ && value != "B") {
7 // Raise an error if it the value is not valid
8 // provide the configuration object, key and an explanation
9 throw InvalidValueError(config, "key", "A and B are the only

allowed values");↪→

10 }
11 }

• InvalidCombinationError: Derived from configuration exceptions. Signals any problem
with a combination of configuration parameters used. This could be used if several
optional but mutually exclusive parameters are present in a module, and it should be

53

5 Structure & Components of the Framework

ensured that only one is specified at the time. The exceptions accepts the list of keys as
initializer list. An example is shown below:

1 void run(unsigned int event_id) {
2 // Check if we have mutually exclusive options defined:
3 if(config.count({"exclusive_opt_a", "exclusive_opt_b"}) > 1) {
4 // Raise an error if the combination of keys is not valid
5 // provide the configuration object, keys and an explanation
6 throw InvalidCombinationError(config, {"exclusive_opt_a",

"exclusive_opt_b"}, "Options A and B are mutually exclusive,
specify only one.");

↪→

↪→

7 }
8 }

• ModuleError: Derived from module exceptions. Should be used to indicate any runtime
error in a module not directly caused by an invalid configuration value, for example that
it is not possible to write an output file. A reason should be given to indicate what the
source of problem is.

• EndOfRunException: Derived from module exceptions. Should be used to request the
end of event processing in the current run, e.g. if a module reading in data from a file
reached the end of its input data.

54

6 Objects

6.1 Object Types

Allpix2 provides a set of objects which can be used to transfer data between modules. These
objects can be sent with the messaging system as explained in Section 5.5. A typedef is
added to every object in order to provide an alternative name for the message which is directly
indicating the carried object.

The list of currently supported objects comprises:

MCTrack
The MCTrack objects reflects the state of a particle’s trajectory when it was created and
when it terminates. Moreover, it allows to retrieve the hierarchy of secondary tracks. This
can be done via the parent-child relations the MCTrack objects store, allowing retrieval of
the primary track for a given track. Combining this information with MCParticles allows the
Monte-Carlo trajectory to be fully reconstructed. In addition to these relational information,
the MCTrack stores information on the initial and final point of the trajectory (in global
coordinates), the energies (total as well as kinetic only) at those points, the creation process
type, name, and the volume it took place in. Furthermore, the particle’s PDG id is stored.

MCParticle
The Monte-Carlo truth information about the particle passage through the sensor. A start and
end point are stored in the object: for events involving a single MCParticle passing through the
sensor, the start and end points correspond to the entry and exit points. The exact handling
of non-linear particle trajectories due to multiple scattering is up to module. The MCParticle
also stores an identifier of the particle type, using the PDG particle codes [25], as well as
the time it has first been observed in the respective sensor. The MCParticle additionally
stores a parent MCParticle object, if available. The lack of a parent doesn’t guarantee that
this MCParticle originates from a primary particle, but only means that no parent on the
given detector exists. Also, the MCParticle stores a reference to the MCTrack it is associated
with.

DepositedCharge
The set of charge carriers deposited by an ionizing particle crossing the active material of
the sensor. The object stores the local position in the sensor together with the total number
of deposited charges in elementary charge units. In addition, the time (in ns as the internal
framework unit) of the deposition after the start of the event and the type of carrier (electron
or hole) is stored.

55

6 Objects

PropagatedCharge
The set of charge carriers propagated through the silicon sensor due to drift and/or diffusion
processes. The object should store the final local position of the propagated charges. This is
either on the pixel implant (if the set of charge carriers are ready to be collected) or on any
other position in the sensor if the set of charge carriers got trapped or was lost in another
process. Timing information giving the total time to arrive at the final location, from the
start of the event, can also be stored.

PixelCharge
The set of charge carriers collected at a single pixel. The pixel indices are stored in both the x
and y direction, starting from zero for the first pixel. Only the total number of charges at the
pixel is currently stored, the timing information of the individual charges can be retrieved
from the related PropagatedCharge objects.

PixelHit
The digitised pixel hits after processing in the detector’s front-end electronics. The object
allows the storage of both the time and signal value. The time can be stored in an arbitrary
unit used to timestamp the hits. The signal can hold different kinds of information depending
on the type of the digitizer used. Examples of the signal information is the ’true’ information
of a binary readout chip, the number of ADC counts or the ToT (time-over-threshold).

6.2 Object History

Objects may carry information about the objects which were used to create them. For
example, a PropagatedCharge could hold a link to the DepositedCharge object at which the
propagation started. All objects created during a single simulation event are accessible until
the end of the event; more information on object persistency within the framework can be
found in Chapter 5.5.3.

Object history is implemented using the ROOT TRef class [16], which acts as a special
reference. On construction, every object gets a unique identifier assigned, that can be stored
in other linked objects. This identifier can be used to retrieve the history, even after the
objects are written out to ROOT TTrees [15]. TRef objects are however not automatically
fetched and can only be retrieved if their linked objects are available in memory, which has to
be ensured explicitly. Outside the framework this means that the relevant tree containing the
linked objects should be retrieved and loaded at the same entry as the object that request the
history. Whenever the related object is not in memory (either because it is not available or
not fetched) a MissingReferenceException will be thrown.

A MCTrack which originated from another MCTrack is linked via a reference to this track,
this way the track hierarchy can be obtained. Every MCParticle is linked to the MCTrack it
is associated with. A MCParticle can furthermore be linked to another MCParticle on the
same detector. This will be the case if there are MCParticles from a primary (parent) and
secondary (child) track on one detector. The corresponding child MCParticles will then carry
a reference to the parent MCParticle.

56

7 Modules

This section describes all currently available Allpix2 modules in detail. This includes a
description of the physics implemented as well as possible configuration parameters along
with their defaults. For inquiries about certain modules or its documentation, the respective
maintainers should be contacted directly. The modules are listed in alphabetical order.

7.1 CapacitiveTransfer

Maintainer: Mateus Vicente (mvicente@cern.ch)
Status: Functional
Input: PropagatedCharge
Output: PixelCharge

Description

Similar to the SimpleTransferModule, this module combines individual sets of propagated
charges together to a set of charges on the sensor pixels and thus prepares them for processing
by the detector front-end electronics. In addition to the SimpleTransferModule, where the
charge close to the implants is transferred only to the closest read-out pixel, this module also
copies the propagated charge to the neighboring pixels, scaled by the respective cross-coupling
(i.e. cross_capacitance / nominal_capacitance), in order to simulate the cross-coupling between
neighboring pixels in Capacitively Coupled Pixel Detectors (CCPDs).

It is also possible to simulate assemblies with tilted chips, with non-uniform coupling over the
pixel matrix, by providing the tilting angles between the chips, the nominal and minimum gaps
between the pixel pads, the pixel coordinates where the chips are away from each other by the
minimum gap provided and a root file containing ROOT::TGraph with coupling capacitances
vs gap between pixel pads.

The coupling matrix (imported via the coupling_matrix or the coupling_file configuration
keys) represents the pixels coupling with a nominal gap between the chips, while the the
ROOT file imported with the configuration key coupling_scan_file contains the coupling
between the pixels for several gaps.

The coupling matrices can be used to easily simulate the cross-coupling in CCPDs with the
nominal, and constant, gap between chips over the pixel matrix. In such cases, the “central
pixel” (center element of the coupling matrix) always receive 100% of the charge transfered
while neighbor pixels, with lower coupling capacitance, gets a fraction of the charged transfered
to the central pixel, normalized by the nominal capacitance (capacitance to central pixel). The

57

7 Modules

coupling matrices always represents the coupling in fractions from 0 (no charge transfered) up
to 1 (100% transfer).

If a coupling_scan_file is provided the gap between the chips will be calculated on each pixel
with a hit and the charge transfered will be normalized by the capacitance value of the central
pixel at the nominal gap. This model will reproduce the results with the coupling matrices if
chip_angle = 0rad 0rad (parallel chips) and minimum_gap = nominal_gap.

Dependencies

This module requires an installation of Eigen3.

Parameters

• coupling_scan_file: Root file containing a TGraph, for each pixel, with the capacitance
simulated for each gap between the pixel pads. The TGraph objects in the root file
should be named Pixel_X where X goes from 1 to 9.

• chip_angle: Tilt angle between chips. The first angle is the rotation along the columns
axis, and second is along the row axis. It defaults to 0.0 radians (parallel chips).

• tilt_center: Pixel position for the nominal coupling/distance.
• nominal_gap: Nominal gap between chips.
• minimum_gap: Closest distance between chips.
• cross_coupling: Enables cross-coupling between pixels. Defaults to 1 (enabled).
• coupling_file: Path to the file containing the cross-coupling matrix. The file must

contain the relative capacitance to the central pixel.
• coupling_matrix: Cross-coupling matrix with relative capacitances.
• max_depth_distance: Maximum distance in depth, i.e. normal to the sensor surface at

the implant side, for a propagated charge to be taken into account. Defaults to 5um.
• output_plots: Saves the output plots for this module. Defaults to 1 (enabled).

The cross-coupling matrix, to be parsed via the matrix file or via the configuration file, must
be organized in Row vs Col, such as:
cross_coupling_00 cross_coupling_01 cross_coupling_02
cross_coupling_10 cross_coupling_11 cross_coupling_12
cross_coupling_20 cross_coupling_21 cross_coupling_22

The matrix center element, cross_coupling_11 in this example, is the coupling to the closest
pixel and should be always 1. The matrix can have any size, although square 3x3 matrices
are recommended as the coupling decreases significantly after the first neighbors and the
simulation will scale with NxM, where N and M are the respective sizes of the matrix.

Usage

This module accepts only one coupling model (coupling_scan_file, coupling_file or cou-
pling_matrix) at each time. If more then one option is provided, the simulation will not
run.

58

7.2 CorryvreckanWriter

[CapacitiveTransfer]
coupling_scan_file = "capacitance_vs_gap.root"
nominal_gap = 2um
minimum_gap = 8um
chip_angle = -0.000524rad 0.000350rad
tilt_center = 80 336
cross_coupling = 0
max_depth_distance = 5um

or
[CapacitiveTransfer]
max_depth_distance = 5um
coupling_file = "capacitance_matrix.txt"

or
[CapacitiveTransfer]
max_depth_distance = 5um
coupling_matrix = [[0.1, 0.3, 0.1], [0.2, 1, 0.2], [0.1, 0.3, 1.1]]

7.2 CorryvreckanWriter

Maintainer: Daniel Hynds (daniel.hynds@cern.ch)
Status: Functional
Input: PixelHit

Description

Takes all digitised pixel hits and converts them into Corryvreckan pixel format. These are
then written to an output file in the expected format to be read in by the reconstruction
software. Will optionally write out the MC Truth information, storing the MC particle class
from Corryvreckan.

This module writes output compatible with Corryvreckan 0.7 and later.

Parameters

• file_name : Output filename (file extension .root will be appended if not present).
Defaults to corryvreckanOutput.root

• geometry_file : Name of the output geometry file in the Corryvreckan format. Defaults
to corryvreckanGeometry.conf

• output_mctruth : Flag to write out MCParticle information for each hit. Defaults to
false.

59

7 Modules

Usage

Typical usage is:
[CorryvreckanWriter]
file_name = corryvreckan
output_mctruth = true

7.3 DefaultDigitizer

Maintainer: Simon Spannagel (simon.spannagel@cern.ch)
Status: Functional
Input: PixelCharge
Output: PixelHit

Description

Very simple digitization module which translates the collected charges into a digitized signal
proportional to the input charge. It simulates noise contributions from the readout electronics
as Gaussian noise and allows for a configurable threshold. Furthermore, the linear response of
an ADC with configurable resolution can be simulated.

In detail, the following steps are performed for every pixel charge:

• A Gaussian noise is added to the input charge value in order to simulate input noise to
the preamplifier circuit.

• The preamplifier is simulated by multiplying the input charge with a defined gain factor.
The actually applied gain is smeared with a Gaussian distribution on an event-by-event
basis.

• A charge threshold is applied. Only if the threshold is surpassed, the pixel is accounted
for - for all values below the threshold, the pixel charge is discarded. The actually
applied threshold is smeared with a Gaussian distribution on an event-by-event basis
allowing for simulating fluctuations of the threshold level.

• An ADC with configurable resolution, given in bit, can be simulated. For this, first
an inaccuracy of the ADC is simulated using an additional Gaussian smearing which
allows to take ADC noise into account. Then, the charge is converted into ADC units
using the adc_slope and adc_offset parameters provided. Finally, the calculated value
is clamped to be contained within the ADC resolution, over- and underflows are treated
as saturation.

The ADC implementation also allows to simulate ToT (time-over-threshold) devices by setting
the adc_offset parameter to the negative threshold. Then, the ADC only converts charge
above threshold.

With the output_plots parameter activated, the module produces histograms of the charge
distribution at the different stages of the simulation, i.e. before processing, with electronics
noise, after threshold selection, and with ADC smearing applied. A 2D-histogram of the

60

mailto:simon.spannagel@cern.ch

7.4 DepositionGeant4

actual pixel charge in electrons and the converted charge in ADC units is provided if ADC
simulation is enabled by setting adc_resolution to a value different from zero. In addition,
the distribution of the actually applied threshold is provided as histogram.

Parameters

• electronics_noise : Standard deviation of the Gaussian noise in the electronics (before
amplification and application of the threshold). Defaults to 110 electrons.

• gain : Gain factor the input charge is multiplied with, defaults to 1.0 (no gain).
• gain_smearing : Standard deviation of the Gaussian uncertainty in the gain factor.

Defaults to 0.
• threshold : Threshold for considering the collected charge as a hit. Defaults to 600

electrons.
• threshold_smearing : Standard deviation of the Gaussian uncertainty in the threshold

charge value. Defaults to 30 electrons.
• adc_resolution : Resolution of the ADC in units of bits. Thus, a value of 8 would

translate to an ADC range of 0 – 255. A value of 0bit switches off the ADC simulation
and returns the actual charge in electrons. Defaults to 0.

• adc_smearing : Standard deviation of the Gaussian noise in the ADC conversion (after
applying the threshold). Defaults to 300 electrons.

• adc_slope : Slope of the ADC calibration in electrons per ADC unit (unit: “e”). Defaults
to 10e.

• adc_offset : Offset of the ADC calibration in electrons. In order to simulate a ToT
(time-over-threshold) device, this offset should be configured to the negative value of the
threshold. Defaults to 0.

• output_plots : Enables output histograms to be be generated from the data in every
step (slows down simulation considerably). Disabled by default.

• output_plots_scale : Set the x-axis scale of the output plot, defaults to 30ke.
• output_plots_bins : Set the number of bins for the output plot histograms, defaults to
100.

Usage

The default configuration is equal to the following:
[DefaultDigitizer]
electronics_noise = 110e
threshold = 600e
threshold_smearing = 30e
adc_smearing = 300e

7.4 DepositionGeant4

Maintainer: Koen Wolters (koen.wolters@cern.ch), Tobias Bisanz (tobias.bisanz@phys.
uni-goettingen.de), Thomas Billoud (thomas.billoud@cern.ch)

61

mailto:koen.wolters@cern.ch
mailto:tobias.bisanz@phys.uni-goettingen.de
mailto:tobias.bisanz@phys.uni-goettingen.de
mailto:thomas.billoud@cern.ch

7 Modules

Status: Functional
Output: DepositedCharge, MCParticle, MCTrack

Description

Module which deposits charge carriers in the active volume of all detectors. It acts as
wrapper around the Geant4 logic and depends on the global geometry constructed by the
GeometryBuilderGeant4 module. It initializes the physical processes to simulate a particle
source that will deposit charge carriers for every event simulated.

Source Shapes

The source can be defined in two different ways using the source_type parameter: with
pre-defined shapes or with a Geant4 macro file. Pre-defined shapes are point, beam, square or
sphere. For the square and sphere, the particle starting points are distributed homogeneously
over the surfaces. By default, the particle directions for the square are random, as would
be for a squared radioactive source. For the sphere, unless a focus point is set, the particle
directions follow the cosine-law defined by Geant4 [26] and the field inside the sphere is hence
isotropic.

To define more complex sources or angular distributions, the user can create a macro file with
Geant4 commands. These commands are those defined for the GPS source and are explained
in the Geant4 website [26] (only the source position and number of particles must still be
defined in the main configuration file).

Particles, Ions and Radioactive Decays

The particle type can be set via a string (particle_type) or by the respective PDG code
(particle_code). Refer to the Geant4 webpage [27] for information about the available types
of particles and the PDG particle code definition [25] for a list of the available particles and
PDG codes.

Radioactive sources can be simulated simply by setting their isotope name in the particle_type
parameter, and optionally by setting the source energy to zero for a decay in rest. The
G4RadioactiveDecay package [28] is used to simulate the decay of the radioactive nuclei.
Secondary ions from the decay are not further treated and the decay chain is interrupted,
e.g. Am241 only undergoes its alpha decay without the decay of its daughter nucleus of Np237
being simulated. Radioactive isotopes are forced to decay immediately in order to allow
sensible measurements of arrival and deposition times. Currently, the following radioactive
isotopes are supported: Fe55, Am241, Sr90, Co60, Cs137.

Ions can be used as particles by setting their atomic properties, i.e. the atomic number Z, the
atomic mass A, their charge Q and the excitation energy E via the following syntax:
particle_type = "ion/Z/A/Q/E"

where Z and A are unsigned integers, Q is a signed integer and E a floating point value with
units, e.g. 13eV.

62

7.4 DepositionGeant4

Energy Deposition and Charge Carrier creation

For all particles passing the sensitive device of the detectors, the energy loss is converted into
deposited charge carriers in every step of the Geant4 simulation. Optionally, the Photoabsorp-
tion Ionization model (PAI) can be activated to improve the modeling of very thin sensors [29].
The information about the truth particle passage is also fully available, with every deposit
linked to a MCParticle. Each trajectory which passes through at least one detector is also
registered and stored as a global MCTrack. MCParticles are linked to their respective tracks
and each track is linked to its parent track, if available.

A range cut-off threshold for the production of gammas, electrons and positrons is necessary
to avoid infrared divergence. By default, Geant4 sets this value to 700um or even 1mm, which
is most likely too coarse for precise detector simulation. In this module, the range cut-off is
automatically calculated as a fifth of the minimal feature size of a single pixel, i.e. either to a
fifth of the smallest pitch of a fifth of the sensor thickness, if smaller. This behavior can be
overwritten by explicitly specifying the range cut via the range_cut parameter.

The module supports the propagation of charged particles in a magnetic field if defined via
the MagneticFieldReader module.

With the output_plots parameter activated, the module produces histograms of the total
deposited charge per event for every sensor in units of kilo-electrons. The scale of the plot
axis can be adjusted using the output_plots_scale parameter and defaults to a maximum of
100ke.

Dependencies

This module requires an installation Geant4.

Parameters

• physics_list: Geant4-internal list of physical processes to simulate, defaults to
FTFP_BERT_LIV. More information about possible physics list and recommendations
for defaults are available on the Geant4 website [30].

• enable_pai: Determines if the Photoabsorption Ionization model is enabled in the sensors
of all detectors. Defaults to false.

• pai_model: Model can be pai for the normal Photoabsorption Ionization model or
paiphoton for the photon model. Default is pai. Only used if enable_pai is set to true.

• charge_creation_energy : Energy needed to create a charge deposit. Defaults to the
energy needed to create an electron-hole pair in silicon (3.64 eV).

• max_step_length : Maximum length of a simulation step in every sensitive device.
Defaults to 1um.

• range_cut : Geant4 range cut-off threshold for the production of gammas, electrons and
positrons to avoid infrared divergence. Defaults to a fifth of the shortest pixel feature,
i.e. either pitch or thickness.

• particle_type : Type of the Geant4 particle to use in the source (string). Refer to the
Geant4 documentation [27] for information about the available types of particles.

63

7 Modules

• particle_code : PDG code of the Geant4 particle to use in the source.
• source_energy : Mean energy of the generated particles.
• source_energy_spread : Energy spread of the source.
• source_position : Position of the particle source in the world geometry.
• source_type : Shape of the source: beam (default), point, square, sphere, macro.
• file_name : Name of the macro file (if source_type=macro).
• number_of_particles : Number of particles to generate in a single event. Defaults to

one particle.
• output_plots : Enables output histograms to be be generated from the data in every

step (slows down simulation considerably). Disabled by default.
• output_plots_scale : Set the x-axis scale of the output plot, defaults to 100ke.

Parameters for source beam

• beam_size : Width of the Gaussian beam profile.
• beam_divergence : Standard deviation of the particle angles in x and y from the particle

beam
• beam_direction : Direction of the beam as a unit vector.

Please note that the old source parameters from version v1.1.2 and before (beam_energy,
beam_energy_spread and beam_position) are still supported but it is recommended to use the
new corresponding ones.

Parameters for source square

• square_side : Length of the square side.
• square_angle : Cone opening angle defining the maximum submission angle. Defaults

to 180deg, i.e. emission into one full hemisphere.

Parameters for source sphere

• sphere_radius : Radius of the sphere source (particles start only from the surface).
• sphere_focus_point : Focus point of the sphere source. If not specified, the radiation

field is isotropic inside the sphere.

Usage

A possible default configuration to use, simulating a beam of 120 GeV pions with a divergence
in x, is the following:
[DepositionGeant4]
physics_list = FTFP_BERT_LIV
particle_type = "pi+"
source_energy = 120GeV
source_position = 0 0 -1mm
source_type = "beam"
beam_direction = 0 0 1

64

7.5 DetectorHistogrammer

beam_divergence = 3mrad 0mrad
number_of_particles = 1

A radioactive point source of Iron-55 could be simulated by the following configuration:
[DepositionGeant4]
physics_list = FTFP_BERT_LIV
particle_type = "Fe55"
source_energy = 0eV
source_position = 0 0 -1mm
source_type = "point"
number_of_particles = 1

A Xenon-132 ion beam could be simulated using the following configuration:
[DepositionGeant4]
physics_list = FTFP_BERT_LIV
particle_type = "ion/54/132/0/0eV"
source_energy = 10MeV
source_position = 0 0 -1mm
source_type = "beam"
beam_direction = 0 0 1
number_of_particles = 1

7.5 DetectorHistogrammer

Maintainer: Koen Wolters (koen.wolters@cern.ch), Paul Schuetze (paul.schuetze@desy.de),
Simon Spannagel (simon.spannagel@cern.ch)
Status: Functional
Input: PixelHit, MCParticle

Description

This module provides an overview of the produced simulation data for a quick inspection and
simple checks. For more sophisticated analyses, the output from one of the output writers
should be used to make the necessary information available.

Within the module, clustering of the input hits is performed. Looping over the PixelHits, hits
being adjacent to an existing cluster are added to this cluster. Clusters are merged if there
are multiple adjacent clusters. If the PixelHit is free-standing, a new cluster is created.

This module serves as a quick “mini-analysis” and creates the histograms listed below. The
Monte Carlo truth position provided by the MCParticle objects is used as track reference
position. An additional uncertainty can be added by configuring a track resolution, with which
every cluster residual is convoled. For technical reasons, this offset is drawn randomly from a
Gauss distribution independently for the resolution and the efficiency measurement.

• A hitmap of all pixels in the pixel grid, displaying the number of times a pixel has been
hit during the simulation run.

65

mailto:koen.wolters@cern.ch
mailto:paul.schuetze@desy.de
mailto:simon.spannagel@cern.ch

7 Modules

• A cluster map indicating the cluster positions for the whole simulation run.
• Distribution of the total number of pixel hits (event size) per event.
• Distribution of the total number of clusters found per event.
• Distributions of the cluster size in x, y and the total cluster size.
• Mean cluster size and cluster sizes in x and y as function of the in-pixel impact position

of the primary particle.
• Residual distribution in x and y between the center-of-gravity position of the cluster

and the primary particle.
• Mean absolute deviations of the residual as function of the in-pixel impact position of
the primary particle. Histograms both for a 2D representation of the pixel cell as well
as the projections (residual X vs position X, residual Y vs position Y, residual X vs
position Y, residual Y vs position X) are produced.

• Efficiency map of the detector
• Efficiency as function of the in-pixel impact position of the primary particle. Histograms
both for a 2D representation of the pixel cell as well as the projections (efficiency vs
position X, efficiency vs position Y) are produced.

• Total cluster charge distribution.
• Mean total cluster charge as function of the in-pixel impact position of the primary

particle.
• Mean seed pixel charge as a function of the in-pixel impact position of the primary

particle.

Parameters

• granularity: 2D integer vector defining the number of bins along the x and y axis for
in-pixel maps. Defaults to the pixel pitch in micro meters, e.g. a detector with 100um x
100um pixels would be represented in a histogram with 100 * 100 = 10000 bins.

• max_cluster_charge: Upper limit for the cluster charge histogram, defaults to 50ke.
• track_resolution: Assumed track resolution the Monte Carlo truth is smeared with.
Expects two values for the resolution in local-x and local-y directions and defaults to
2um 2um.

• matching_cut: Required maximum matching distance between cluster position and
particle position for the efficiency measurement. Expected two values and defaults to
three times the pixel pitch in each dimension.

Usage

This module is normally bound to a specific detector to plot, for example to the ‘dut’:

[DetectorHistogrammer]
name = "dut"
granularity = 100, 100

66

7.6 ElectricFieldReader

7.6 ElectricFieldReader

Maintainer: Koen Wolters (koen.wolters@cern.ch), Simon Spannagel (simon.spannagel@cern.
ch)
Status: Functional

Description

Adds an electric field to the detector from one of the supported sources. By default, detectors
do not have an electric field applied.

The reader provides the following models for electric fields:

• For constant electric fields it add a constant electric field in the z-direction towards the
pixel implants. This is not very physical but might aid in developing and testing new
charge propagation algorithms.

• For linear electric fields, the field has a constant slope determined by the bias voltage and
the depletion voltage. The sensor is depleted either from the implant or the back side,
the direction of the electric field depends on the sign of the bias voltage (with negative
bias voltage the electric field vector points towards the backplane and vice versa). If the
sensor is depleted from the implant side, the electric field is calculated using the formula
‘E(z) = Ubias−Udepl

d + 2Udepld

(
1 − z

d

)
‘, where d is the thickness of the sensor, and ‘Udepl‘,

‘Ubias‘ are the depletion and bias voltages, respectively. In case of a depletion from the
back side, the electric field is calculated as ‘E(z) = Ubias−Udepl

d + 2Udepld

(
z
d

)
‘.

• For electric fields in the INIT format it parses a file containing an electric field map
in the INIT format also used by the PixelAV software [31]. An example of a electric
field in this format can be found in etc/example_electric_field.init in the repository. An
explanation of the format is available in the source code of this module, a converter tool
for electric fields from adaptive TCAD meshes is provided with the framework. Fields
of different sizes can be used and mapped onto the pixel matrix using the field_scale
parameter. By default, the module assumes the field represents a single pixel unit cell.
If the field size and pixel pitch do not match, a warning is printed and the field is scaled
to the pixel pitch.

The depletion_depth parameter can be used to control the thickness of the depleted region
inside the sensor. This can be useful for devices such as HV-CMOS sensors, where the typical
depletion depth but not necessarily the full depletion voltage are know. It should be noted
that depletion_voltage and depletion_depth are mutually exclusive parameters and only one
at a time can be specified.

Furthermore the module can produce a plot the electric field profile on an projection axis
normal to the x,y or z-axis at a particular plane in the sensor.

Parameters

• model : Type of the electric field model, either linear, constant or init.

67

mailto:koen.wolters@cern.ch
mailto:simon.spannagel@cern.ch
mailto:simon.spannagel@cern.ch

7 Modules

• bias_voltage : Voltage over the whole sensor thickness. Used to calculate the electric
field if the model parameter is equal to constant or linear.

• depletion_voltage : Indicates the voltage at which the sensor is fully depleted. Used to
calculate the electric field if the model parameter is equal to linear.

• depletion_depth : Thickness of the depleted region. Used for all electric fields. When
using the depletion depth for the linear model, no depletion voltage can be specified.

• deplete_from_implants : Indicates whether the sensor is depleted from the implants or
the back side for the linear model. Defaults to true (depletion from the implant side).

• file_name : Location of file containing the electric field in the INIT format. Only used
if the model parameter has the value init.

• field_scale : Scale of the electric field in x- and y-direction. This parameter allows to
use electric fields for fractions or multiple pixels. For example, an electric field calculated
for a quarter pixel cell can be used by setting this parameter to 0.5 0.5 (half pitch in
both directions) while a field calculated for four pixel cells in y and a single cell in x
could be mapped to the pixel grid using 1 4. Defaults to 1.0 1.0. Only used if the
model parameter has the value init.

• field_offset: Offset of the field from the pixel edge in x- and y-direction. By default,
the framework assumes that the provided electric field starts at the edge of the pixel,
i.e. with an offset of 0.0. With this parameter, the field can be shifted e.g. by half a
pixel pitch to accommodate for fields which have been simulated starting from the pixel
center. In this case, a parameter of 0.5 0.5 should be used. Only used if the model
parameter has the value init.

• output_plots : Determines if output plots should be generated. Disabled by default.
• output_plots_steps : Number of bins in both x- and y-direction in the 2D histogram

used to plot the electric field in the detectors. Only used if output_plots is enabled.
• output_plots_project : Axis to project the 3D electric field on to create the 2D histogram.
Either x, y or z. Only used if output_plots is enabled.

• output_plots_projection_percentage : Percentage on the projection axis to plot the
electric field profile. For example if output_plots_project is x and this parameter is set
to 0.5, the profile is plotted in the Y,Z-plane at the X-coordinate in the middle of the
sensor. Default is 0.5.

• output_plots_single_pixel: Determines if the whole sensor has to be plotted or only a
single pixel. Defaults to true (plotting a single pixel).

Usage

An example to add a linear field with a bias voltage of -150 V and a full depletion voltage of
-50 V to all the detectors, apart from the detector named ‘dut’ where a specific INIT field is
added, is given below
[ElectricFieldReader]
model = "linear"
bias_voltage = -150V
depletion_voltage = -50V

[ElectricFieldReader]
name = "dut"

68

7.7 GenericPropagation

model = "init"
Should point to the example electric field in the repositories etc directory
file_name = "example_electric_field.init"

7.7 GenericPropagation

Maintainer: Koen Wolters (koen.wolters@cern.ch), Simon Spannagel (simon.spannagel@cern.
ch) Status: Functional Input: DepositedCharge Output: PropagatedCharge

Description

Simulates the propagation of electrons and/or holes through the sensitive sensor volume of
the detector. It allows to propagate sets of charge carriers together in order to speed up the
simulation while maintaining the required accuracy. The propagation process for these sets is
fully independent and no interaction is simulated. The maximum size of the set of propagated
charges and thus the accuracy of the propagation can be controlled.

The propagation consists of a combination of drift and diffusion simulation. The drift is
calculated using the charge carrier velocity derived from the charge carrier mobility parame-
terization by C. Jacoboni et al. [32] and the magnetic field via a calculation of the Lorentz
drift. The correct mobility for either electrons or holes is automatically chosen, based on the
type of the charge carrier under consideration. Thus, also input with both electrons and holes
is treated properly. The mobility is calculated as

‘µ (~x) = vm
Ec

1
(1+(E(~x)/Ec)β)1/β ‘

with ‘vm‘, ‘Ec‘, ‘β‘ defined for electrons and holes separately as detailed in [32].

The two parameters propagate_electrons and propagate_holes allow to control which type
of charge carrier is propagated to their respective electrodes. Either one of the carrier types
can be selected, or both can be propagated. It should be noted that this will slow down the
simulation considerably since twice as many carriers have to be handled and it should only be
used where sensible. The direction of the propagation depends on the electric and magnetic
fields field configured, and it should be ensured that the carrier types selected are actually
transported to the implant side. For linear electric fields, a warning is issued if a possible
misconfiguration is detected.

A fourth-order Runge-Kutta-Fehlberg method [18] with fifth-order error estimation is used to
integrate the particle propagation in the electric and magnetic fields. After every Runge-Kutta
step, the diffusion is accounted for by applying an offset drawn from a Gaussian distribution
calculated from the Einstein relation

‘σ =
√

2kbT
e µt‘

using the carrier mobility ‘µ‘, the temperature ‘T ‘ and the time step ‘t‘. The propagation
stops when the set of charges reaches any surface of the sensor.

69

mailto:koen.wolters@cern.ch
mailto:simon.spannagel@cern.ch
mailto:simon.spannagel@cern.ch

7 Modules

The propagation module also produces a variety of output plots. These include a 3D line
plot of the path of all separately propagated charge carrier sets from their point of deposition
to the end of their drift, with nearby paths having different colors. In this coloring scheme,
electrons are marked in blue colors, while holes are presented in different shades of orange. In
addition, a 3D GIF animation for the drift of all individual sets of charges (with the size of the
point proportional to the number of charges in the set) can be produced. Finally, the module
produces 2D contour animations in all the planes normal to the X, Y and Z axis, showing the
concentration flow in the sensor. It should be noted that generating the animations is very
time-consuming and should be switched off even when investigating drift behavior.

Dependencies

This module requires an installation of Eigen3.

Parameters

• temperature : Temperature of the sensitive device, used to estimate the diffusion constant
and therefore the strength of the diffusion. Defaults to room temperature (293.15K).

• charge_per_step : Maximum number of charge carriers to propagate together. Divides
the total number of deposited charge carriers at a specific point into sets of this number
of charge carriers and a set with the remaining charge carriers. A value of 10 charges
per step is used by default if this value is not specified.

• spatial_precision : Spatial precision to aim for. The timestep of the Runge-Kutta
propagation is adjusted to reach this spatial precision after calculating the uncertainty
from the fifth-order error method. Defaults to 0.25nm.

• timestep_start : Timestep to initialize the Runge-Kutta integration with. Appropri-
ate initialization of this parameter reduces the time to optimize the timestep to the
spatial_precision parameter. Default value is 0.01ns.

• timestep_min : Minimum step in time to use for the Runge-Kutta integration regardless
of the spatial precision. Defaults to 1ps.

• timestep_max : Maximum step in time to use for the Runge-Kutta integration regardless
of the spatial precision. Defaults to 0.5ns.

• integration_time : Time within which charge carriers are propagated. After exceeding
this time, no further propagation is performed for the respective carriers. Defaults to
the LHC bunch crossing time of 25ns.

• propagate_electrons : Select whether electron-type charge carriers should be propagated
to the electrodes. Defaults to true.

• propagate_holes : Select whether hole-type charge carriers should be propagated to the
electrodes. Defaults to false.

• ignore_magnetic_field: The magnetic field, if present, is ignored for this module.
Defaults to false.

70

7.7 GenericPropagation

Plotting parameters

• output_plots : Determines if output plots should be generated for every event. This
causes a significant slow down of the simulation, it is not recommended to enable this
option for runs with more than a couple of events. Disabled by default.

• output_plots_step_length : Determines if a global histogram should be created with all
the step lengths used during integration. Default to output_plots, but could be enabled
separately as it has much lower performance impact.

• output_plots_drift_time : Determines if a global histogram should be created showing
the total drift time of each charge carrier. Default to output_plots, but could be enabled
separately as it has much lower performance impact.

• output_plots_step : Timestep to use between two points plotted. Indirectly determines
the amount of points plotted. Defaults to timestep_max if not explicitly specified.

• output_plots_theta : Viewpoint angle of the 3D animation and the 3D line graph around
the world X-axis. Defaults to zero.

• output_plots_phi : Viewpoint angle of the 3D animation and the 3D line graph around
the world Z-axis. Defaults to zero.

• output_plots_use_pixel_units : Determines if the plots should use pixels as unit instead
of metric length scales. Defaults to false (thus using the metric system).

• output_plots_use_equal_scaling : Determines if the plots should be produced with
equal distance scales on every axis (also if this implies that some points will fall out of
the graph). Defaults to true.

• output_plots_align_pixels : Determines if the plot should be aligned on pixels, defaults
to false. If enabled the start and the end of the axis will be at the split point between
pixels.

• output_plots_lines_at_implants : Determine whether to plot all charge carrier drift
lines (false) or to just plot lines from charge carriers which reached the implant side
within the allotted integration time (true). Defaults to false, i.e. all charge carrier drift
lines are drawn.

• output_animations : In addition to the other output plots, also write a GIF animation of
the charges drifting towards the electrodes. This is very slow and writing the animation
takes a considerable amount of time, therefore defaults to false. This option also requires
output_plots to be enabled.

• output_animations_time_scaling : Scaling for the animation used to convert the actual
simulation time to the time step in the animation. Defaults to 1.0e9, meaning that every
nanosecond of the simulation is equal to an animation step of a single second.

• output_animations_marker_size : Scaling for the markers on the animation, defaults to
one. The markers are already internally scaled to the charge of their step, normalized to
the maximum charge.

• output_animations_contour_max_scaling : Scaling to use for the contour color axis from
the theoretical maximum charge at every single plot step. Default is 10, meaning that
the maximum of the color scale axis is equal to the total amount of charges divided by
ten (values above this are displayed in the same maximum color). Parameter can be
used to improve the color scale of the contour plots.

• output_animations_color_markers: Determines if colors should be for the markers in
the animations, defaults to false.

71

7 Modules

Usage

A example of generic propagation for all sensors of type Timepix at room temperature using
packets of 25 charges is the following:

[GenericPropagation]
type = "timepix"
temperature = 293K
charge_per_step = 25

7.8 GeometryBuilderGeant4

Maintainer: Koen Wolters (koen.wolters@cern.ch)
Status: Functional

Description

Constructs the Geant4 geometry from the internal geometry description. First constructs
the world frame with a configurable margin and material. Then continues to create all the
detectors using their internal detector models and to place them within the world frame.

All available detector models are fully supported. This builder can create extra support layers
of the following materials:

• Air
• Aluminum
• Carbonfiber (a mixture of carbon and epoxy)
• Copper
• Epoxy
• G10 (PCB material)
• Kapton (using the G4_KAPTON definition)
• Lead
• Plexiglass (using the G4_PLEXIGLASS definition)
• Silicon
• Solder (a mixture of tin and lead)
• Tungsten

Dependencies

This module requires an installation Geant4.

72

mailto:koen.wolters@cern.ch

7.9 LCIOWriter

Parameters

• world_material : Material of the world, should either be air or vacuum. Defaults to
air if not specified.

• world_margin_percentage : Percentage of the world size to add to every dimension
compared to the internally calculated minimum world size. Defaults to 0.1, thus 10%.

• world_minimum_margin : Minimum absolute margin to add to all sides of the internally
calculated minimum world size. Defaults to zero for all axis, thus not requiring any
minimum margin.

• GDML_output_file : Optional file to write the geometry to in GDML format. Can only be
used if this Geant4 version is built with GDML support enabled and will throw an error
otherwise. This feature is to be considered experimental as the GDML implementation
of Geant4 is incomplete.

Usage

To create a Geant4 geometry using vacuum as world material and with always exactly one
meter added to the minimum world size in every dimension, the following configuration could
be used:
[GeometryBuilderGeant4]
world_material = "vacuum"
world_margin_percentage = 0
world_minimum_margin = 1m 1m 1m

7.9 LCIOWriter

Maintainer: Andreas Nurnberg (andreas.nurnberg@cern.ch), Simon Spannagel (simon.
spannagel@cern.ch), Tobias Bisanz(tobias.bisanz@phys.uni-goettingen.de)
Status: Functional
Input: PixelHit

Description

Writes pixel hit data to LCIO file, compatible with the EUTelescope analysis framework [33].

If the geometry_file parameter is set to a non-empty string, a matching GEAR XML file is
created from the simulated detector geometry and written to the simulation output directory.
This GEAR file can be used with EUTelescope directly to reconstruct particle trajectories.

Optionally, if dump_mc_truth is set to true, this module will create Monte Carlo truth collections
in the output LCIO file.

73

mailto:andreas.nurnberg@cern.ch
mailto:simon.spannagel@cern.ch
mailto:simon.spannagel@cern.ch
mailto:tobias.bisanz@phys.uni-goettingen.de

7 Modules

Parameters

• file_name: name of the LCIO file to write, relative to the output directory of the
framework. The extension .slcio should be added. Defaults to output.slcio.

• geometry_file : name of the output GEAR file to write the EUTelescope geometry
description to. Defaults to allpix_squared_gear.xml

• pixel_type: EUtelescope pixel type to create. Options: EUTelSimpleSparsePixelDe-
fault = 1, EUTelGenericSparsePixel = 2, EUTelTimepix3SparsePixel = 5 (Default:
EUTelGenericSparsePixel)

• detector_name: Detector name written to the run header. Default: “EUTelescope”
• dump_mc_truth: Export the Monte Carlo truth data. Default: “false”

Only one of the following options must be used, if none is specified output_collection_name
will be used with its default value.

• output_collection_name: Name of the LCIO collection containing the pixel data. Detec-
tors will be assigned ascending sensor ids starting with 0. Default: “zsdata_m26”

• detector_assignment: A matrix with three entries each row: ["detector_name", "output_collection", "sensor_id"],
one row for each detector. This allows to assign different output collections and sensor
ids within the same set-up. detector_name is the detector’s name as specified in the
geometry file, output_collection the desired LCIO collection name and sensor_id the
id used in the exported LCIO data. Sensor ids must be unique.

If only one detector is present in the detector_assignment, the value has to be encapsulated
in extra quotes, i.e. [["mydetector", "zsdata_test", "123"]].

Usage

[LCIOWriter]
file_name = "run000123-converter.slcio"

Using the detector_assignment to write into two collections and assigning sensor id 20 to the
device under test. Further, exporting the Monte Carlo truth data and writing the GEAR
file:
[LCIOWriter]
file_name = "run000123-converter.slcio"
geometry_file = "run000123-gear.xml"
dump_mc_truth = true
detector_assignment = ["telescope0", "zsdata_m26", "0"], ["mydut", "zsdata_dut", "20"], ["telescope1", "zsdata_m26", "1"]

7.10 MagneticFieldReader

Maintainer: Paul Schuetze (paul.schuetze@desy.de)
Status: Functional

74

mailto:paul.schuetze@desy.de

7.11 ProjectionPropagation

Description

Unique module, adds a magnetic field to the full volume, including the active sensors. By
default, the magnetic field is turned off.

The magnetic field reader only provides constant magnetic fields, read in as a three-dimensional
vector. The magnetic field is forwarded to the GeometryManager, enabling the magnetic field
for the particle propagation via Geant4, as well as to all detectors for enabling a Lorentz drift
during the charge propagation.

Parameters

• model : Type of the magnetic field model, currently only constant possible.
• magnetic_field : Vector describing the magnetic field.

Usage

An example is given below
[MagneticFieldReader]
model = "constant"
magnetic_field = 500mT 3.8T 0T

7.11 ProjectionPropagation

Maintainer: Simon Spannagel (simon.spannagel@cern.ch), Paul Schuetze (paul.schuetze@
desy.de)
Status: Functional
Input: DepositedCharge
Output: PropagatedCharge

Description

The module projects the deposited electrons (or holes) to the sensor surface and applies a
randomized diffusion. It can be used as a replacement for a charge propagation (e.g. the
GenericPropagation module) for saving computing time at the cost of precision.

The diffusion of the charge carriers is realized by placing sets of a configurable number of
electrons in positions drawn as a random number from a two-dimensional gaussian distribution
around the projected position at the sensor surface. The diffusion width is based on an
approximation of the drift time, using an analytical approximation for the integral of the
mobility in a linear electric field. The integral is calculated as follows, with ‘µ0 = Vm/Ec‘:

‘t =
∫ 1
vds =

∫ 1
µ(s)E(s)ds =

∫ (1+
(
E(S)
Ec

)β)1/β

µ0E(s) ds‘

75

mailto:simon.spannagel@cern.ch
mailto:paul.schuetze@desy.de
mailto:paul.schuetze@desy.de

7 Modules

Here, ‘β‘ is set to 1, inducing systematic errors less than 10%, depending on the sensor
temperature configured. With the linear approximation to the electric field as ‘E(s) = ks+E0‘
it is

‘t = 1
µ0

∫ (1
E(s) + 1

Ec

)
ds = 1

µ0

∫ (1
ks+E0

+ 1
Ec

)
ds = 1

µ0

[
ln(ks+E0)

k + s
Ec

]b
a

= 1
µ0

[
ln(E(s))

k + s
Ec

]b
a

‘.

Since the approximation of the drift time assumes a linear electric field, this module cannot
be used with any other electric field configuration.

Lorentz drift in a magnetic field is not supported. Hence, in order to use this module with a
magnetic field present, the parameter ignore_magnetic_field can be set.

Parameters

• temperature: Temperature in the sensitive device, used to estimate the diffusion constant
and therefore the width of the diffusion distribution.

• charge_per_step: Maximum number of electrons placed for which the randomized
diffusion is calculated together, i.e. they are placed at the same position. Defaults to 10.

• propagate_holes: If set to true, holes are propagated instead of electrons. Defaults to
false. Only one carrier type can be selected since all charges are propagated towards the
implants.

• ignore_magnetic_field: Enables the usage of this module with a magnetic field present,
resulting in an unphysical propagation w/o Lorentz drift. Defaults to false.

• output_plots: Determines if plots should be generated.

Usage

[ProjectionPropagation]
temperature = 293K
charge_per_step = 10
output_plots = 1

7.12 RCEWriter

Author: Salman Maqbool (salman.maqbool@cern.ch)
Maintainer: Moritz Kiehn (msmk@cern.ch)
Status: Functional
Input: PixelHit

Description

Reads in the PixelHit messages and saves track data in the RCE format, appropriate for the
Proteus telescope reconstruction software [34]. An event tree and a sensor tree and their
branches are initialized in the module’s init() method. The event tree is initialized with
the appropriate branches, while a sensor tree is created for each detector and the branches
initialized from a struct storing the tree and branch information for every sensor. Initially, the

76

mailto:salman.maqbool@cern.ch
mailto:msmk@cern.ch

7.13 ROOTObjectReader

program loops over all PixelHit messages and then over all the hits within the message, and
writes data to the tree branches in the RCE format. If there are no hits, the event is saved
with nHits = 0, with the other fields empty.

Parameters

• file_name : Name of the data file to create, relative to the output directory of the
framework. The file extension .root will be appended if not present. The default
filename is rce-data.root

• geometry_file : Name of the output geometry file in the [Proteus][34] toml format. The
file extension .toml will be appended if not present. Defaults to rce-geo.toml

Usage

To create the default file (with the name rce_data.root) an instantiation without arguments
can be placed at the end of the main configuration:

[RCEWriter]

7.13 ROOTObjectReader

Maintainer: Koen Wolters (koen.wolters@cern.ch)
Status: Functional
Output: all objects in input file

Description

Converts all object data stored in the ROOT data file produced by the ROOTObjectWriter
module back in to messages (see the description of ROOTObjectWriter for more information
about the format). Reads all trees defined in the data file that contain Allpix objects. Creates
a message from the objects in the tree for every event.

If the requested number of events for the run is less than the number of events the data
file contains, all additional events in the file are skipped. If more events than available are
requested, a warning is displayed and the other events of the run are skipped.

Currently it is not yet possible to exclude objects from being read. In case not all objects
should be converted to messages, these objects need to be removed from the file before the
simulation is started.

77

mailto:koen.wolters@cern.ch

7 Modules

Parameters

• file_name : Location of the ROOT file containing the trees with the object data.
• include : Array of object names (without allpix:: prefix) to be read from the ROOT
trees, all other object names are ignored (cannot be used simulateneously with the
exclude parameter).

• exclude: Array of object names (without allpix:: prefix) not to be read from the ROOT
trees (cannot be used simulateneously with the include parameter).

• ignore_seed_mismatch: If set to true, a mismatch between the core random seed in the
configuration file and the input data is ignored, otherwise an exception is thrown. This
also covers the case when the core random seed in the configuration file is missing.
Default is set to false.

Usage

This module should be placed at the beginning of the main configuration. An example to read
only PixelCharge and PixelHit objects from the file data.root is:
[ROOTObjectReader]
file_name = "data.root"
include = "PixelCharge", "PixelHit"

7.14 ROOTObjectWriter

Maintainer: Koen Wolters (koen.wolters@cern.ch)
Status: Functional
Input: all objects in simulation

Description

Reads all messages dispatched by the framework that contain Allpix objects. Every message
contains a vector of objects, which is converted to a vector to pointers of the object base class.
The first time a new type of object is received, a new tree is created bearing the class name of
this object. For every combination of detector and message name, a new branch is created
within this tree. A leaf is automatically created for every member of the object. The vector of
objects is then written to the file for every event it is dispatched, saving an empty vector if an
event does not include the specific object.

If the same type of messages is dispatched multiple times, it is combined and written to the
same tree. Thus, the information that they were separate messages is lost. It is also currently
not possible to limit the data that is written to file. If only a subset of the objects is needed,
the rest of the data should be discarded afterwards.

In addition to the objects, both the configuration and the geometry setup are written to the
ROOT file. The main configuration file is copied directly and all key/value pairs are written

78

mailto:koen.wolters@cern.ch

7.15 SimpleTransfer

to a directory config in a subdirectory with the name of the corresponding module. All the
detectors are written to a subdirectory with the name of the detector in the top directory
detectors. Every detector contains the position, rotation matrix and the detector model (with
all key/value pairs stored in a similar way as the main configuration).

Parameters

• file_name : Name of the data file to create, relative to the output directory of the
framework. The file extension .root will be appended if not present.

• include : Array of object names (without allpix:: prefix) to write to the ROOT trees,
all other object names are ignored (cannot be used together simulateneously with the
exclude parameter).

• exclude: Array of object names (without allpix:: prefix) that are not written to the
ROOT trees (cannot be used together simulateneously with the include parameter).

Usage

To create the default file (with the name data.root) containing trees for all objects except
for PropagatedCharges, the following configuration can be placed at the end of the main
configuration:
[ROOTObjectWriter]
exclude = "PropagatedCharge"

7.15 SimpleTransfer

Maintainer: Koen Wolters (koen.wolters@cern.ch)
Status: Functional
Input: PropagatedCharge
Output: PixelCharge

Description

Combines individual sets of propagated charges together to a set of charges on the sensor
pixels and thus prepares them for processing by the detector front-end electronics. The module
does a simple direct mapping to the nearest pixel, ignoring propagated charges that are too
far away from the implants or outside the pixel grid. Timing information for the pixel charges
is currently not yet produced, but can be fetched from the linked propagated charges.

When a collection diode size is specified for the respective detector via its implant_size
parameter, the collect_from_implant option can be turned on in order to only pick charge
carriers from the implant region and ignore everything outside this region. Since this will lead
to unexpected and undesired behavior when using linear electric fields, this option can only
be used when using fields with an x/y dependence (i.e. field maps imported from TCAD).

79

mailto:koen.wolters@cern.ch

7 Modules

A histogram of charge carrier arrival times is generated if output_plots is enabled. The range
and granularity of this plot can be configured.

Parameters

• max_depth_distance : Maximum distance in depth, i.e. normal to the sensor surface at
the implant side, for a propagated charge to be taken into account. Defaults to 5um.

• collect_from_implant: Only consider charge carriers within the implant region of the
respective detector instead of the full surface of the sensor. Should only be used with
non-linear electric fields and defaults to false.

• output_plots: Determines if output plots should be generated. Disabled by default.
• output_plots_step: Bin size of the arrival time histogram in units of time. Defaults to

0.1ns.
• output_plots_range: Total range of the arrival time histogram. Defaults to 100ns.

Usage

For a typical simulation, a max_depth_distance a few micro meters should be sufficient,
leading to the following configuration:
[SimpleTransfer]
max_depth_distance = 5um

7.16 TextWriter

Maintainer: Simon Spannagel (simon.spannagel@cern.ch)
Status: Functional
Input: all objects in simulation

Description

This module allows to write any object from the simulation to a plain ASCII text file. It reads
all messages dispatched by the framework containing Allpix objects. The data content of each
message is printed into the text file, while events are separated by an event header:
=== <event number> ===

and individual detectors by the detector marker:
--- <detector name> ---

The include and exclude parameters can be used to restrict the objects written to file to a
certain type.

80

mailto:simon.spannagel@cern.ch

7.17 VisualizationGeant4

Parameters

• file_name : Name of the data file to create, relative to the output directory of the
framework. The file extension .txt will be appended if not present.

• include : Array of object names (without allpix:: prefix) to write to the ASCII text
file, all other object names are ignored (cannot be used together simultaneously with
the exclude parameter).

• exclude: Array of object names (without allpix:: prefix) that are not written to the
ASCII text file (cannot be used together simultaneously with the include parameter).

Usage

To create the default file (with the name data.txt) containing entries only for PixelHit objects,
the following configuration can be placed at the end of the main configuration:

[TextWriter]
include = "PixelHit"

7.17 VisualizationGeant4

Maintainer: Koen Wolters (koen.wolters@cern.ch)
Status: Functional

Description

Constructs a viewer to display the constructed Geant4 geometry. The module supports all
type of viewers included in Geant4, but the default Qt visualization with the OpenGL viewer is
recommended as long as the installed Geant4 version supports it. It offers the best visualization
experience.

The module allows for changing a variety of parameters to control the output visualization
both for the different detector components and the particle beam.

Dependencies

This module requires an installation of Geant4.

81

mailto:koen.wolters@cern.ch

7 Modules

Parameters

• mode : Determines the mode of visualization. Options are gui which starts a Qt
visualization window containing the driver (as long as the chosen driver supports it),
terminal starts both the visualization viewer and a Geant4 terminal or none which
only starts the driver itself (and directly closes it if the driver is asynchronous). Defaults
to gui.

• driver : Geant4 driver used to visualize the geometry. All the supported options can
be found online [35] and depend on the build options of the Geant4 version used. The
default OGL should normally be used with the gui option if the visualization should
be accumulated, otherwise terminal is the better option. Other than this, only the
VRML2FILE driver has been tested. This driver should be used with mode equal to
none. Defaults to the OpenGL driver OGL.

• accumulate : Determines if all events should be accumulated and displayed at the end,
or if only the last event should be kept and directly visualized (if the driver supports it).
Defaults to true, thus accumulating events and only displaying the final result.

• accumulate_time_step : Time step to sleep between events to allow for time to display if
events are not accumulated. Only used if accumulate is disabled. Default value is 100ms.

• simple_view : Determines if the visualization should be simplified, not displaying the
pixel matrix and other parts which are replicated multiple times. Default value is true.
This parameter should normally not be changed as it will cause a considerable slowdown
of the visualization for a sensor with a typical number of channels.

• background_color : Color of the background of the viewer. Defaults to white.
• view_style : Style to use to display the elements in the geometry. Options arewireframe
and surface. By default, all elements are displayed as solid surface.

• transparency : Default transparency percentage of all detector elements, only used if the
view_style is set to display solid surfaces. The default value is 0.4, giving a moderate
amount of transparency.

• display_trajectories : Determines if the trajectories of the primary and secondary
particles should be displayed. Defaults to true.

• hidden_trajectories : Determines if the trajectories should be hidden inside the detec-
tors. Only used if the display_trajectories is enabled. Default value of the parameter is
true.

• trajectories_color_mode : Configures the way, trajectories are colored. Options are
either generic which colors all trajectories in the same way, charge which bases the
color on the particle’s charge, or particle which colors the trajectory based on the type
of the particle. The default setting is charge.

• trajectories_color : Color of the trajectories if trajectories_color_mode is set to
generic. Default value is blue.

• trajectories_color_positive : Visualization color for positively charged particles. Only
used if trajectories_color_mode is equal to charge. Default is blue.

• trajectories_color_neutral : Visualization color for neutral particles. Only used if
trajectories_color_mode is equal to charge. Default is green.

• trajectories_color_negative : Visualization color for negatively charged particles. Only
used if trajectories_color_mode is equal to charge. Default is red.

• trajectories_particle_colors : Array of combinations of particle ID and color used to

82

7.17 VisualizationGeant4

determine the particle colors if trajectories_color_mode is equal to particle. Refer to
the Geant4 documentation [27] for details about the IDs of particles.

• trajectories_draw_step : Determines if the steps of the trajectories should be plotted.
Enabled by default. Only used if display_trajectories is enabled.

• trajectories_draw_step_size : Size of the markers used to display a trajectory step.
Defaults to 2 points. Only used if trajectories_draw_step is enabled.

• trajectories_draw_step_color : Color of the markers used to display a trajectory step.
Default value red. Only used if trajectories_draw_step is enabled.

• draw_hits : Determines if hits in the detector should be displayed. Defaults to false.
Option is only useful if Geant4 hits are generated in a module.

• macro_init : Optional Geant4 macro to execute during initialization. Whenever possible,
the configuration parameters above should be used instead of this option.

Usage

An example configuration providing a wireframe viewing style with the same color for every
particle and displaying the result after every event for 2s is provided below:
[VisualizationGeant4]
mode = "none"
view_style = "wireframe"
trajectories_color_mode = "generic"
accumulate = 0
accumulate_time_step = 2s

83

8 Examples

This section provides brief descriptions of the example configurations currently provided in
the Allpix2 repository. The examples are listed in alphabetical order.

8.1 CapacitiveTransfer example files

This folder contains example files and configuration for the CapacitiveTransfer module.

The capacitive_coupling.conf configuration file, as it is, simulates 6 FE-I4b planes (aligned as
in a telescope) with a FE-I4b as a device-under-test (DUT) between the 3rd and 4th telescope
planes. This geometry is defined in the ccpd_example_detector.conf file. The SimpleTransfer
module is used for the telescope planes while the CapacitiveTransfer is used for the DUT.
The DUT is simulated with specific angles, nominal and minimum gaps, obtained from real
measurements. The simulation results, regarding the DUT, should present a lower efficiency
on the bottom left corner of the DUT due to the increasing gap between the pixels, towards
this direction, and consequently a smaller coupling capacitance. The coupling capacitance for
each gap is retrieved from the gap_scan_coupling_sim.root ROOT file. More information are
provided in the CapacitiveTransfer module documentation.

The capacitance_matrix.txt file contains a generic relative coupling matrix (same as in the
configuration file) that can be used to simulate the cross-coupling effects in parallel CCPDs
assemblies. More information on possible configurations of the CapacitiveTransfer module are
provided in its documentation.

8.2 Fast Simulation Example

This example is a simulation chain optimized for speed. A setup like this is well suited
for unirradiated standard planar silicon detectors, where a linear electric field is a good
approximation.

The setup consists of six Timepix-type detectors with a sensor thickness of 300um arranged in
a telescope-like structure. The charge deposition is performed by Geant4 using a standard
physics list (with the EmStandard_opt3 option) suited for tracking detectors. The Geant4
stepping length is chosen rather coarse with 10um.

The detector setup contains the position and orientation of the telescope planes, which are
divided into an upstream and downstream arm and are inclined in both X and Y to increase
charge sharing. In addition, the alignment precision in position and orientation is specified in

85

8 Examples

order to randomly misalign the setup and allow reconstruction without tracking artifacts from
pixel-perfect alignment.

The main speedup compared to other setups comes from the usage of the ProjectionPropagation
module to simulate the charge carrier propagation. A setting of charge_per_step = 100 is
chosen over the default of 10 charge carriers to further reduce the CPU load. With a sensor
thickness of 300um and an most probable energy deposition of more than 20’000 charge
carriers, no impact on the precision is to be expected.

Also the exclusion of DepositedCharge and PropagatedCharge objects from the output trees
help in speeding up the simulation and in keeping the output file size low.

8.3 Magnetic Field Example

This example demonstrates the charged particle propagation inside a sensor with a magnetic
field applied.

Two CMS Pixel Detector single chip modules are placed in a 3.8 T magnetic field, of which
the rear one is turned to 19 deg. This results in mostly 2 pixel clusters in the front sensor
due to the Lorentz drift, while the rotation of the second sensor cancels out the Lorentz drift,
resulting in mostly 1 pixel clusters.

For better performance, disable the output plots for the GenericPropagation module.

8.4 Precise DUT Simulation Example

This example combines features from the “fast simulation” and the “TCAD field simulation”
examples. The setup consists of six telescope planes of Timepix-type detectors for reference
tracks and a device under test (DUT), in this case a CLICpix2 detector, in the center of the
telescope between the two arms. The goal of this setup is to demonstrate how to perform a
fast simulation on the telescope planes while maintaining a high precision on the DUT.

For this propose, the telescope follows the example of the “fast simulation” and employs a
linear electric field and the ProjectionPropagation module for charge carrier transport. To
assign this module only to the telescope planes, the type keyword is used to restrict the module
to instances of Timepix detectors.

For the DUT the ElectricFieldReader module providing the TCAD field features the name
keyword assigning this module instance to the DUT detector only. This named module instance
takes precedence over the other instance with the linear electric field. The GenericPropagation
module also has to be assigned to the DUT because it would otherwise also be instantiated
for the Timepix telescope detectors. Here, the charge_per_step setting has been reduced to
10 for the DUT since the CLICpix2 prototype features a sensor of 50um thickness and the
additional precision might improve the agreement with data.

All further modules in the simulation chain are again unnamed and without type specification
since they are supposed to be executed for all detectors likewise.

86

8.5 Example for Replaying a Simulation

8.5 Example for Replaying a Simulation

This example demonstrates the possibility of reading data files from previous simulation runs
and replaying the messages to the framework, dispatching them to modules with altered
parameters. In this case, the output of the fast simulation example is reprocessed with a new
charge threshold in the digitization step.

Since this example requires input data from another simulation, it has to be executed using
the following command:
allpix -c replay_simulation.conf -o ROOTObjectReader.file_name=<input_file>

where <input_file> should be replaced with the absolute path of the data file generated by the
fast simulation example. Alternatively, this parameter can be set directly in the configuration
file of the example.

The main advantage of replaying a simulation is, that late stages of the simulation chain can
be repeatedly executed without having to regenerate the full event. In the present case, only
the PixelCharge objects, i.e. the charge collected at each amplifier input of the pixel are read
from the input file as indicated by the include keyword. These objects are then dispatched
for every event, and the subsequent modules listening to this object type receive them just as
if they have been generated from scratch.

The DefaultDigitizer module then performs the digitization of the charges, but this time
with a different threshold than in the original “fast simulation” example. Finally, the
ROOTObjectWriter stores the newly digitized PixelHit objects to a new data file.

A quick speed comparison of running the initial fast simulation and re-running the digitization
step of the simulation using the replay technique reveals event generation frequencies of about
70 Hz versus 970 Hz, respectively, i.e. a speed-up factor larger than 10 on a single core of a
standard Intel CPU.

8.6 Source Measurement with Shielding

This example simulates an Iron-55 source using Geant4’s radioactive decay simulation. The
particle type is set to Fe55 to use the isotope, the source energy configured as 0eV for a decay
in rest. A point-like particle source is used.

A Medipix-type detector is placed below the source, shielded with an additional sheet of
aluminum with a thickness of 8mm. No misalignment is added but the absolute position and
orientation of the detector is specified.

The setup of the simulation chain follows the “fast simulation example: The charge deposition
is performed by Geant4 using a standard physics list and a stepping length of 10um. The
ProjectionPropagation module with a setting of charge_per_step = 100 is used to simulate the
charge carrier propagation and the simulation result is stored to file excluding DepositedCharge
and PropagatedCharge objects to keep the output file size low.

87

8 Examples

8.7 TCAD Field Simulation Example

This example follows the “fast simulation” example but now replaces the simplified
linear electric field with an actual TCAD-simulated electric field. For this reason, the
ProjectionPropagation module is replaced by GenericPropagation as the former only allows
for linear fields owing to the simplifications made in the drift calculations.

The setup is unchanged compared to the “fast simulation example” and consists of six Timepix-
type detectors with a sensor thickness of 300um arranged in a telescope-like structure, inclined
planes for charge sharing, and a defined alignment precision. The charge deposition is also
performed by Geant4 with a stepping length of 10um.

Because the charge carrier propagation using the GenericPropagation module contributes
the lion’s share of the total simulation time, the simulation can profit from multi-threading,
i.e. running the propagation for different detectors in parallel on different threads. An
exemplary run on an Intel i7 machine with four cores sees a speedup of a factor two. It should
be noted that currently multi-threading is still considered experimental.

Again, DepositedCharge and PropagatedCharge objects are not written to the output file as
information about these objects cannot be accessed in data and thus are rarely used in the
final analysis.

88

9 Module & Detector Development

This chapter provides a few brief recipes for developing new simulation modules and detector
models for the Allpix2 framework. Before starting the development, the CONTRIBUTING.md
file in the repository should be consulted for further information on the development process,
code contributions and the preferred coding style for Allpix2.

9.1 Implementing a New Module

It is essential to carefully read the framework module manager documentation in Section 5.3,
the information about the directory structure in Section 5.3.1 and the details of the module
structure in Section 5.3.2 before creating a new module. Thereafter, the steps below should
provide enough details for starting a new module, hereafter called ModuleName:

1. Run the module initialization script at etc/scripts/make_module.sh in the repository.
The script will ask for the name of the model and the type (unique or detector-specific).
It creates the directory with a minimal example to get started together with the rough
outline of its documentation in README.md.

2. Before starting to implement the actual module, it is recommended to update the
introductory documentation in README.md. No additional documentation in LaTeX
has to be provided, as this Markdown-formatted file [20] is automatically converted and
included in the user manual. Formulae can be included by enclosure in Dollar-backtick
markers, i.e. ‘‘E(z) = 0‘‘. The Doxygen documentation in ModuleName.hpp should also
be extended to provide a basic description of the module.

3. Finally, the constructor and init, run and/or finalize methods can be written,
depending on the requirements of the new module.

After this, it is up to the developer to implement all required functionality.

It should be kept in mind that writing more generic modules, which are not tied to a
specific detector type or simulation, will allow other users to benefit from the development.
Furthermore, it may be beneficial to split up modules to support the modular design of Allpix2.
Additional sources of documentation which may be useful during the development of a module
include:

• The framework documentation in Chapter 5 for an introduction to the different parts of
the framework.

• The module documentation in Chapter 7 for a description of the functionality of other
modules already implemented, and to look for similar modules which can help during
development.

89

9 Module & Detector Development

• The Doxygen (core) reference documentation included in the framework [5].

• The latest version of the source code of all modules and the Allpix2 core itself.

Any module potentially useful for other users should be contributed back to the main repository
after is has been validated. It is strongly encouraged to send a merge-request through the
mechanism provided by the software repository [10].

9.2 Adding a New Detector Model

Custom detector models based on the detector classes provided with Allpix2 can easily be
added to the framework. In particular Section 5.4.3 explains all parameters of the detector
models currently available. The default models provided in the models directory of the
repository can serve as examples. To create a new detector model, the following steps should
be taken:

1. Create a new file with the name of the model followed by the .conf suffix (for example
your_model.conf).

2. Add a configuration parameter type with the type of the model, at the moment either
’monolithic’ or ’hybrid’ for respectively monolithic sensors or hybrid models with bump
bonds and a separate readout chip.

3. Add all required parameters and possibly optional parameters as explained in Sec-
tion 5.4.3.

4. Include the detector model in the search path of the framework by adding the model_
paths parameter to the general setting of the main configuration (see Section 4.2),
pointing either directly to the detector model file or the directory containing it. It should
be noted that files in this path will overwrite models with the same name in the default
model folder.

Models should be contributed to the main repository to make them available to other users of
the framework. To add the detector model to the framework the configuration file should be
moved to the models folder of the repository. The file should then be added to the installation
target in the CMakeLists.txt file of the models directory. Afterwards, a merge-request can
be created via the mechanism provided by the software repository [10].

90

10 Development Tools & Continuous
Integration

The following chapter will introduce a few tools included in the framework to ease development
and help to maintain a high code quality. This comprises tools for the developer to be used
while coding, as well as a continuous integration (CI) and automated test cases of various
framework and module functionalities.

The chapter is structured as follows. Section 10.1 describes the available make targets for
code quality and formatting checks, Section 10.3 briefly introduces the CI, and Section 10.5
provides an overview of the currently implemented framework, module, and performance test
scenarios.

10.1 Additional Targets

A set of testing targets in addition to the standard compilation targets are automatically
created by CMake to enable additional code quality checks and testing. Some of these targets
are used by the project’s CI, others are intended for manual checks. Currently, the following
targets are provided:

make format
invokes the clang-format tool to apply the project’s coding style convention to all files
of the code base. The format is defined in the .clang-format file in the root directory
of the repository and mostly follows the suggestions defined by the standard LLVM style
with minor modifications. Most notably are the consistent usage of four whitespace
characters as indentation and the column limit of 125 characters.

make check-format
also invokes the clang-format tool but does not apply the required changes to the code.
Instead, it returns an exit code 0 (pass) if no changes are necessary and exit code 1 (fail)
if changes are to be applied. This is used by the CI.

make lint
invokes the clang-tidy tool to provide additional linting of the source code. The tool
tries to detect possible errors (and thus potential bugs), dangerous constructs (such as
uninitialized variables) as well as stylistic errors. In addition, it ensures proper usage of
modern C++ standards. The configuration used for the clang-tidy command can be
found in the .clang-tidy file in the root directory of the repository.

91

10 Development Tools & Continuous Integration

make check-lint
also invokes the clang-tidy tool but does not report the issues found while parsing the
code. Instead, it returns an exit code 0 (pass) if no errors have been produced and exit
code 1 (fail) if issues are present. This is used by the CI.

make cppcheck
runs the cppcheck command for additional static code analysis. The output is stored in
the file cppcheck_results.xml in XML2.0 format. It should be noted that some of the
issues reported by the tool are to be considered false positives.

make cppcheck-html
compiles a HTML report from the defects list gathered by make cppcheck. This target
is only available if the cppcheck-htmlreport executable is found in the PATH.

make package
creates a binary release tarball as described in Section 10.2.

10.2 Packaging

Allpix2 comes with a basic configuration to generate tarballs from the compiled binaries using
the CPack command. In order to generate a working tarball from the current Allpix2 build,
the RPATH of the executable should not be set, otherwise the allpix binary will not be able
to locate the dynamic libraries. If not set, the global LD_LIBRARY_PATH is used to search for
the required libraries:

$ mkdir build
$ cd build
$ cmake -DCMAKE_SKIP_RPATH=ON ..
$ make package

Since the CMake installation path defaults to the project’s source directory, certain files are
excluded from the default installation target created by CMake. This includes the detector
models in the models/ directory as well as the additional tools provided in tools/root_
analysis_macros/ folder. In order to include them in a release tarball produced by CPack,
the installation path should be set to a location different from the project source folder, for
example:

$ cmake -DCMAKE_INSTALL_PREFIX=/tmp ..

The content of the produced tarball can be extracted to any location of the file system, but
requires the ROOT6 and Geant4 libraries as well as possibly additional libraries linked by
individual at runtime.

For this purpose, a setup.sh shell script is automatically generated and added to the tarball.
By default, it contains the ROOT6 path used for the compilation of the binaries. Additional
dependencies, either library paths or shell scripts to be sourced, can be added via CMake for

92

10.3 Continuous Integration

individual modules using the CMake functions described below. The paths stored correspond
to the dependencies used at compile time, it might be necessary to change them manually
when deploying on a different computer.

ADD_RUNTIME_DEP(name)

This CMake command can be used to add a shell script to be sourced to the setup file. The
mandatory argument name can either be an absolute path to the corresponding file, or only
the file name when located in a search path known to CMake, for example:

1 # Add "geant4.sh" as runtime dependency for setup.sh file:
2 ADD_RUNTIME_DEP(geant4.sh)

The command uses the GET_FILENAME_COMPONENT command of CMake with the PROGRAM
option. Duplicates are removed from the list automatically. Each file found will be written to
the setup file as

source <absolute path to the file>

ADD_RUNTIME_LIB(names)

This CMake command can be used to add additional libraries to the global search path. The
mandatory argument names should be the absolute path of a library or a list of paths, such
as:

1 # This module requires the LCIO library:
2 FIND_PACKAGE(LCIO REQUIRED)
3 # The FIND routine provides all libraries in the LCIO_LIBRARIES variable:
4 ADD_RUNTIME_LIB(${LCIO_LIBRARIES})

The command uses the GET_FILENAME_COMPONENT command of CMake with the DIRECTORY
option to determine the directory of the corresponding shared library. Duplicates are removed
from the list automatically. Each directory found will be added to the global library search
path by adding the following line to the setup file:

export LD_LIBRARY_PATH="<library directory>:$LD_LIBRARY_PATH"

10.3 Continuous Integration

Quality and compatibility of the Allpix2 framework is ensured by an elaborate continuous
integration (CI) which builds and tests the software on all supported platforms. The Allpix2

CI uses the GitLab Continuous Integration features and consists of seven distinct stages as
depicted in Figure 10.1. It is configured via the .gitlab-ci.yml file in the repository’s root

93

10 Development Tools & Continuous Integration

Figure 10.1: Typical Allpix2 continous integration pipeline with 32 jobs distributed over seven
distinct stages. In this example, all jobs passed.

directory, while additional setup scripts for the GitLab Ci Runner machines and the Docker
instances can be found in the .gitlab/ci directory.

The compilation stage builds the framework from the source on different platforms. Currently,
builds are performed on Scientific Linux 6, CentOS7, and Mac OS X. On Linux type platforms,
the framework is compiled with recent versions of GCC and Clang, while the latest AppleClang
is used on Mac OS X. The build is always performed with the default compiler flags enabled
for the project:

-pedantic -Wall -Wextra -Wcast-align -Wcast-qual -Wconversion
-Wuseless-cast -Wctor-dtor-privacy -Wzero-as-null-pointer-constant
-Wdisabled-optimization -Wformat=2 -Winit-self -Wlogical-op
-Wmissing-declarations -Wmissing-include-dirs -Wnoexcept
-Wold-style-cast -Woverloaded-virtual -Wredundant-decls
-Wsign-conversion -Wsign-promo -Wstrict-null-sentinel
-Wstrict-overflow=5 -Wswitch-default -Wundef -Werror -Wshadow
-Wformat-security -Wdeprecated -fdiagnostics-color=auto
-Wheader-hygiene

The testing stage executes the framework system and unit tests described in Section 10.5.
Different jobs are used to run different test types. This allows to optimize the CI setup
depending on the demands of the test to be executed. All tests are expected to pass, and no
code that fails to satisfy all tests will be merged into the repository.

The formatting stage ensures proper formatting of the source code using the clang-format
and following the coding conventions defined in the .clang-format file in the repository. In
addition, the clang-tidy tool is used for “linting” of the source code. This means, the source
code undergoes a static code analysis in order to identify possible sources of bugs by flagging
suspicious and non-portable constructs used. Tests are marked as failed if either of the CMake
targets make check-format or make check-lint fail. No code that fails to satisfy the coding
conventions and formatting tests will be merged into the repository.

94

10.4 Automatic Deployment

The performance stage runs a longer simulation with several thousand events and measures
the execution time. This facilitates monitoring of the simulation performance, a failing job
would indicate a degradation in speed. These CI jobs run on dedicated machines with only
one concurrent job as described in Section 10.5. Performance tests are separated into their
own CI stage because their execution is time consuming and they should only be started once
proper formatting of the new code is established.

The documentation stage prepares this user manual as well as the Doxygen source code
documentation for publication. This also allows to identify e.g. failing compilation of the
LATEXdocuments or additional files which accidentally have not been committed to the
repository.

The packaging stage wraps the compiled binaries up into distributable tarballs for several
platforms. This includes adding all libraries and executables to the tarball as well as preparing
the setup.sh script to prepare run-time dependencies using the information provided to the
build system. This procedure is described in more detail in Section 10.2.

Finally, the deployment stage is only executed for new tags in the repository. Whenever a
tag is pushed, this stages receives the build artifacts of previous stages and publishes them to
the Allpix2 project website through the EOS file system [36]. More detailed information on
deployments is provided in the following.

10.4 Automatic Deployment

The CI is configured to automatically deploy new versions of Allpix2 and its user manual
and code reference to different places to make them available to users. This section briefly
describes the different deployment end-points currently configured and in use. The individual
targets are triggered either by automatic nightly builds or by publishing new tags. In order to
prevent accidental publications, the creation of tags is protected. Only users with Maintainer
privileges can push new tags to the repository. For new tagged versions, all deployment targets
are executed.

10.4.1 Software deployment to CVMFS

The software is automatically deployed to CERN’s VM file system (CVMFS) [37] for every
new tag. In addition, the master branch is built and deployed every night. New versions are
published to the folder /cvmfs/clicdp.cern.ch/software/allpix-squared/ where a new
folder is created for every new tag, while updates via the master branch are always stored in
the latest folder.

The deployed version currently comprises all modules as well as the detector models shipped
with the framework. An additional setup.sh is placed in the root folder of the respective
release, which allows to set up all runtime dependencies necessary for executing this version.
Versions both for SLC6 and CentOS 7 are provided.

The deployment CI job runs on a dedicated computer with a GitLab SSH runner. Job artifacts
from the packaging stage of the CI are downloaded via their ID using the script found in

95

10 Development Tools & Continuous Integration

.gitlab/ci/download_artifacts.py, and are made available to the cvclicdp user which has
access to the CVMFS interface. The job checks for concurrent deployments to CVMFS and then
unpacks the tarball releases and publishes them to the CLICdp experiment CVMFS space, the
corresponding script for the deployment can be found in .gitlab/ci/gitlab_deployment.sh.
This job requires a private API token to be set as secret project variable through the GitLab
interface, currently this token belongs to the service account user ap2.

10.4.2 Documentation deployment to EOS

The project documentation is deployed to the project’s EOS space at /eos/project/a/
allpix-squared/www/ for publication on the project website. This comprises both the PDF
and HTML versions of the user manual (subdirectory usermanual) as well as the Doxygen
code reference (subdirectory reference/). The documentation is only published only for new
tagged versions of the framework.

The CI jobs uses the ci-web-deployer Docker image from the CERN GitLab CI tools to
access EOS, which requires a specific file structure of the artifact. All files in the artifact’s
public/ folder will be published to the www/ folder of the given project. This job requires the
secret project variables EOS_ACCOUNT_USERNAME and EOS_ACCOUNT_PASSWORD to be set via the
GitLab web interface. Currently, this uses the credentials of the service account user ap2.

10.4.3 Release tarball deployment to EOS

Binary release tarballs are deployed to EOS to serve as downloads from the website to the
directory /eos/project/a/allpix-squared/www/releases. New tarballs are produced for
every tag as well as for nightly builds of the master branch, which are deployed with the name
allpix-squared-latest-<system-tag>-opt.tar.gz.

The files are taken from the packaging jobs and published via the ci-web-deployer Docker
image from the CERN GitLab CI tools. This job requires the secret project variables
EOS_ACCOUNT_USERNAME and EOS_ACCOUNT_PASSWORD to be set via the GitLab web interface.
Currently, this uses the credentials of the service account user ap2.

10.4.4 Building Docker images

New Allpix2 Docker images are automatically created and deployed by the CI for every new
tag and as a nightly build from the master branch. New versions are published to project
Docker container registry [12]. Tagged versions can be found via their respective tag name,
while updates via the nightly build are always stored with the latest tag attached.

The final Docker image is formed from three consecutive images with different layers of software
added. The ‘base‘ image contains all build dependencies such as compilers, CMake, and git. It
derives from a CentOS7 Docker image and can be build using the etc/docker/Dockerfile.
base file via the following commands:

96

10.5 Tests

Log into the CERN GitLab Docker registry:
$ docker login gitlab-registry.cern.ch
Compile the new image version:
$ docker build --file etc/docker/Dockerfile.base \

--tag gitlab-registry.cern.ch/allpix-squared/\
allpix-squared/allpix-squared-base \

.
Upload the image to the registry:
$ docker push gitlab-registry.cern.ch/allpix-squared/\

allpix-squared/allpix-squared-base

The two main dependencies of the framework are ROOT6 and Geant4, which are added to the
base image via the deps Docker image created from the file etc/docker/Dockerfile.deps
via:

$ docker build --file etc/docker/Dockerfile.deps \
--tag gitlab-registry.cern.ch/allpix-squared/\
allpix-squared/allpix-squared-deps \

.
$ docker push gitlab-registry.cern.ch/allpix-squared/\

allpix-squared/allpix-squared-deps

These images are created manually and only updated when necessary, i.e. if major new version
of the underlying dependencies are available.

Finally, the latest revision of Allpix2 is built using the file etc/docker/Dockerfile. This
job is performed automatically by the continuous integration and the created containers are
directly uploaded to the project’s Docker registry.

$ docker build --file etc/docker/Dockerfile \
--tag gitlab-registry.cern.ch/allpix-squared/allpix-squared \

.

A short summary of potential use cases for Docker images is provided in Section 3.7.

10.5 Tests

The build system of the framework provides a set of automated tests which are executed by
the CI to ensure proper functioning of the framework and its modules. The tests can also be
manually invoked from the build directory of Allpix2 with

$ ctest

The different subcategories of tests described below can be executed or ignored using the -E
(exclude) and -R (run) switches of the ctest program:

97

10 Development Tools & Continuous Integration

$ ctest -R test_performance

The configuration of the tests can be found in the etc/unittests/test_* directories of
the repository and are automatically discovered by CMake. CMake automatically searches
for Allpix2 configuration files in the different directories and passes them to the Allpix2

executable (cf. Section 4.3).

Adding a new test is as simple as adding a new configuration file to one of the different
subdirectories and specifying the pass or fail conditions based on the tags described in the
following paragraph.

Pass and Fail Conditions

The output of any test is compared to a search string in order to determine whether it passed
or failed. These expressions are simply placed in the configuration file of the corresponding
tests, a tag at the beginning of the line indicates whether it should be used for passing or
failing the test. Each test can only contain one passing and one failing expression. If different
functionality and thus outputs need to be tested, a second test should be added to cover the
corresponding expression.

Different tags are provided for Mac OS X since the C++ standard does not define the exact
implementation of random number distributions such as std::normal_distribution. Thus,
the distributions produce different results on different platforms even when used with the
same random number as input.

Passing a test
The expression marked with the tag #PASS/#PASSOSX has to be found in the output in
order for the test to pass. If the expression is not found, the test fails.

Failing a test
If the expression tagged with #FAIL/#FAILOSX is found in the output, the test fails. If
the expression is not found, the test passes.

Depending on another test
The tag #DEPENDS can be used to indicate dependencies between tests. For example, the
module test 09 described below implements such a dependency as it uses the output of
module test 08-1 to read data from a previously produced Allpix2 data file.

Defining a timeout
For performance tests the runtime of the application is monitored, and the test fails if it
exceeds the number of seconds defined using the #TIMEOUT tag.

Adding additional CLI options
Additional command line options can be specified for the allpix executable using the
#OPTION tag, following the format found in Section 4.3. Multiple options can be supplied
by repeating the #OPTION tag in the configuration file, only one option per tag is allowed.

98

10.5 Tests

Framework Functionality Tests

The framework functionality tests aim at reproducing basic features such as correct parsing
of configuration keys or resolution of module instantiations. Currently implemented tests
comprise:

test_01-1_globalconfig_detectors.conf
tests the framework behavior in case of a non-existent detector setup description file.

test_01-2_globalconfig_modelpaths.conf
tests the correct parsing of additional model paths and the loading of the detector model.

test_01-3_globalconfig_log_format.conf
switches the logging format.

test_01-4_globalconfig_log_level.conf
sets a different logging verbosity level.

test_01-5_globalconfig_log_file.conf
configures the framework to write log messages into a file.

test_01-6_globalconfig_missing_model.conf
tests the behavior of the framework in case of a missing detector model file.

test_01-7_globalconfig_random_seed.conf
sets a defined random seed to start the simulation with.

test_01-8_globalconfig_random_seed_core.conf
sets a defined seed for the core component seed generator, e.g. used for misalignment.

test_02-1_specialization_unique_name.conf
tests the framework behavior for an invalid module configuration: attempt to specialize
a unique module for one detector instance.

test_02-2_specialization_unique_type.conf
tests the framework behavior for an invalid module configuration: attempt to specialize
a unique module for one detector type.

test_03-1_geometry_g4_coordinate_system.conf
ensures that the Allpix2 and Geant4 coordinate systems and transformations are identical.

test_03-2_geometry_rotations.conf
tests the correct interpretation of rotation angles in the detector setup file.

test_03-3_geometry_misaligned.conf
tests the correct calculation of misalignments from alignment precisions given in the
detector setup file.

test_03-4_geometry_overwrite.conf
checks that detector model parameters are overwritten correctly as described in Sec-
tion 5.4.3.

99

10 Development Tools & Continuous Integration

test_04-1_configuration_cli_change.conf
tests whether single configuration values can be overwritten by options supplied via the
command line.

test_04-2_configuration_cli_nochange.conf
tests whether command line options are correctly assigned to module instances and do
not alter other values.

test_05-1_overwrite_same_denied.conf
tests whether two modules writing to the same file is disallowed if overwriting is denied.

test_04-2_configuration_cli_nochange.conf
tests whether two modules writing to the same file is allowed if the last one reenables
overwriting locally.

Module Functionality Tests

These tests ensure the proper functionality of each module covered and thus protect the
framework against accidental changes affecting the physics simulation. Using a fixed seed
(using the random_seed configuration keyword) together with a specific version of Geant4 [1]
allows to reproduce the same simulation event.

One event is produced per test and the DEBUG-level logging output of the respective module is
checked against pre-defined expectation output using regular expressions. Once modules are
altered, their respective expectation output has to be adapted after careful verification of the
simulation result.

Currently implemented tests comprise:

test_01_geobuilder.conf
takes the provided detector setup and builds the Geant4 geometry from the internal
detector description. The monitored output comprises the calculated wrapper dimensions
of the detector model.

test_02-1_electricfield_linear.conf
creates a linear electric field in the constructed detector by specifying the bias and
depletion voltages. The monitored output comprises the calculated effective thickness of
the depleted detector volume.

test_02-2_electricfield_init.conf
loads an INIT file containing a TCAD-simulated electric field (cf. Section 4.5) and applies
the field to the detector model. The monitored output comprises the number of field
cells for each pixel as read and parsed from the input file.

test_02-3_electricfield_linear_depth.conf
creates a linear electric field in the constructed detector by specifying the applied bias
voltage and a depletion depth. The monitored output comprises the calculated effective
thickness of the depleted detector volume.

100

10.5 Tests

test_02-4_magneticfield_constant.conf
creates a constant magnetic field for the full volume and applies it to the geometryMan-
ager. The monitored output comprises the message for successful application of the
magnetic field.

test_03-1_deposition.conf
executes the charge carrier deposition module. This will invoke Geant4 to deposit energy
in the sensitive volume. The monitored output comprises the exact number of charge
carriers deposited in the detector.

test_03-2_deposition_mc.conf
executes the charge carrier deposition module as the previous tests, but monitors the
type, entry and exit point of the Monte Carlo particle associated to the deposited charge
carriers.

test_03-3_deposition_track.conf
executes the charge carrier deposition module as the previous tests, but monitors the
start and end point of one of the Monte Carlo tracks in the event.

test_03-4_deposition_source_point.conf
tests the point source in the charge carrier deposition module by monitoring the deposited
charges.

test_03-5_deposition_source_square.conf
tests the square source in the charge carrier deposition module by monitoring the
deposited charges.

test_03-6_deposition_source_sphere.conf
tests the sphere source in the charge carrier deposition module by monitoring the
deposited charges.

test_03-7_deposition_source_macro.conf
tests the G4 macro source in the charge carrier deposition module using the macro file
source_macro_test.txt, monitoring the deposited charges.

test_04-1_propagation_project.conf
projects deposited charges to the implant side of the sensor. The monitored output
comprises the total number of charge carriers propagated to the sensor implants.

test_04-2_propagation_generic.conf
uses the Runge-Kutta-Fehlberg integration of the equations of motion implemented in
the drift-diffusion model to propagate the charge carriers to the implants. The monitored
output comprises the total number of charges moved, the number of integration steps
taken and the simulated propagation time.

test_04-3_propagation_generic-magnetic.conf
uses the Runge-Kutta-Fehlberg integration of the equations of motion implemented in
the drift-diffusion model to propagate the charge carriers to the implants under the
influence of a constant magnetic field. The monitored output comprises the total number
of charges moved, the number of integration steps taken and the simulated propagation
time.

101

10 Development Tools & Continuous Integration

test_05_transfer_simple.conf
tests the transfer of charges from sensor implants to readout chip. The monitored output
comprises the total number of charges transferred and the coordinates of the pixels the
charges have been assigned to.

test_06-1_digitization_charge.conf
digitizes the transferred charges to simulate the front-end electronics. The monitored
output of this test comprises the total charge for one pixel including noise contributions
and the smeared threshold it is compared to.

test_06-2_digitization_adc.conf
digitizes the transferred charges and tests the conversion into ADC units. The monitored
output comprises the converted charge value in units of ADC counts.

test_06-3_digitization_gain.conf
digitizes the transferred charges and tests the amplification process by monitoring the
total charge after signal amplification and smearing.

test_07_histogramming.conf
tests the detector histogramming module and its clustering algorithm. The monitored
output comprises the total number of clusters and their mean position.

test_08-1_writer_root.conf
ensures proper functionality of the ROOT file writer module. It monitors the total
number of objects and branches written to the output ROOT trees.

test_08-2_writer_rce.conf
ensures proper functionality of the RCE file writer module. The correct conversion of
the PixelHit position and value is monitored by the test’s regular expressions.

test_08-3_writer_lcio.conf
ensures proper functionality of the LCIO file writer module. Similar to the above test,
the correct conversion of PixelHits (coordinates and charge) is monitored.

test_08-4_writer_corryvreckan.conf
ensures proper functionality of the Corryvreckan file writer module. The monitored
output comprises the coordinates of the pixel produced in the simulation.

test_08-5_writer_corryvreckan_mc.conf
ensures the correct storage of Monte Carlo truth particle information in the Corryvreckan
file writer module by monitoring the local coordinates of the MC particle associated to
the pixel hit.

test_08-6_writer_text.conf
ensures proper functionality of the ASCII text writer module by monitoring the total
number of objects and messages written to the text file..

test_08-7_writer_lcio_detector_assignment.conf
exercises the assignment of detector IDs to Allpix2 detectors in the LCIO output file. A
fixed ID and collection name is assigned to the simulated detector.

102

10.5 Tests

test_08-8_writer_lcio_no_mc_truth.conf
ensures that simulation results are properly converted to LCIO and stored even without
the Monte Carlo truth information available.

test_09-1_reader_root.conf
tests the capability of the framework to read data back in and to dispatch messages for
all objects found in the input tree. The monitored output comprises the total number of
objects read from all branches.

test_09-2_reader_root_seed.conf
tests the capability of the framework to detect different random seeds for misalignment
set in a data file to be read back in. The monitored output comprises the error message
including the two different random seed values.

test_09-3_reader_root_ignoreseed.conf
tests if core random seeds are properly ignored by the ROOTObjectReader module if
requested by the configuration. The monitored output comprises the warning message
emitted if a difference in seed values is discovered.

Performance Tests

Similar to the module test implementation described above, performance tests use configura-
tions prepared such, that one particular module takes most of the load (dubbed the “slowest
instantiation” by Allpix2), and a few of thousand events are simulated starting from a fixed
seed for the pseudo-random number generator. The #TIMEOUT keyword in the configuration
file will ask CTest to abort the test after the given running time.

In the project CI, performance tests are limited to native runners, i.e. they are not executed
on docker hosts where the hypervisor decides on the number of parallel jobs. Only one test is
performed at a time.

Despite these countermeasures, fluctuations on the CI runners occur, arising from different loads
of the executing machines. Thus, all performance CI jobs are marked with the allow_failure
keyword which allows GitLab to continue processing the pipeline but will mark the final
pipeline result as “passed with warnings” indicating an issue in the pipeline. These tests
should be checked manually before merging the code under review.

Current performance tests comprise:

test_01_deposition.conf
tests the performance of charge carrier deposition in the sensitive sensor volume using
Geant4 [1]. A stepping length of 1.0 µm is chosen, and 10 000 events are simulated. The
addition of an electric field and the subsequent projection of the charges are necessary
since Allpix2 would otherwise detect that there are no recipients for the deposited charge
carriers and skip the deposition entirely.

test_02-1_propagation_generic.conf
tests the very critical performance of the drift-diffusion propagation of charge carriers,
as this is the most computing-intense module of the framework. Charge carriers are

103

10 Development Tools & Continuous Integration

deposited and a propagation with 10 charge carriers per step and a fine spatial and
temporal resolution is performed. The simulation comprises 500 events.

test_02-2_propagation_project.conf
tests the projection of charge carriers onto the implants, taking into account the diffusion
only. Since this module is less computing-intense, a total of 5000 events are simulated,
and charge carriers are propagated one-by-one.

test_02-3_propagation_generic_multithread.conf
tests the performance of multi-threaded simulation. It utilizes the very same configuration
as performance test 02-1 but in addition enables multi-threading with four worker threads.

104

11 Frequently Asked Questions

This chapter provides answers to some of the most frequently asked questions concerning
usage, configuration and extension of the Allpix2 framework.

11.1 Installation & Usage

What is the easiest way to use Allpix2 on CERN’s LXPLUS?
Central installations of Allpix2 on LXPLUS are provided via CVMFS for both supported
LXPLUS operating systems, SLC6 and CERN CentOS7. Please refer to Section 10.4.1
for the details of how to access these installations.

What is the quickest way to get a local installation of Allpix2?
The project provides ready-to-use Docker containers which contain all dependencies such
as Geant4 and ROOT. Please refer to Section 3.7 for more information on how to start
and use these containers.

11.2 Configuration

How do I run a module only for one detector?
This is only possible for detector modules (which are constructed to work on individual
detectors). To run it on a single detector, one should add a parameter name specifying
the name of the detector (as defined in the detector configuration file):

1 [ElectricFieldReader]
2 name = "dut"
3 model = "init"
4 file_name = "../example_electric_field.init"

How do I run a module only for a specific detector type?
This is only possible for detector modules (which are constructed to work on individual
detectors). To run it for a specific type of detector, one should add a parameter type
with the type of the detector model (as set in the detector configuration file by the
model parameter):

1 [ElectricFieldReader]
2 type = "timepix"
3 model = "linear"

105

11 Frequently Asked Questions

4 bias_voltage = -50V
5 depletion_voltage = -30V

Please refer to Section 5.3.3 for more information.

How can I run the exact same type of module with different settings?
This is possible by using the input and output parameters of a module that specify the
messages of the module:

1 [DefaultDigitizer]
2 name = "dut0"
3 adc_resolution = 4
4 output = "low_adc_resolution"
5

6 [DefaultDigitizer]
7 name = "dut0"
8 adc_resolution = 12
9 output = "high_adc_resolution"

By default, both the input and the output of module are messages with an empty name.
In order to further process the data, subsequent modules require the input parameter
to not receive multiple messages:

1 [DetectorHistogrammer]
2 input = "low_adc_resolution"
3 name = "dut0"
4

5 [DetectorHistogrammer]
6 input = "high_adc_resolution"
7 name = "dut0"

Please refer to Section 5.5 for more information.

How can I temporarily ignore a module during development?
The section header of a particular module in the configuration file can be replaced by
the string Ignore. The section and all of its key/value pairs are then ignored. Modules
can also be excluded from the compilation process as explained in Section 3.5.

Can I get a high verbosity level only for a specific module?
Yes, it is possible to specify verbosity levels and log formats per module. This can be
done by adding the log_level and/or log_format key to a specific module to replace
the parameter in the global configuration sections.

Can I import an electric field from TCAD and use it for simulating propagation?
Yes, the framework includes a tool to convert DF-ISE files from TCAD to an internal
format which Allpix2 can parse. More information about this tool can be found in
Section 12.2, instructions to import the generated field are provided in Section 4.5.

106

11.3 Detector Models

11.3 Detector Models

I want to use a detector model with one or several small changes, do I have to create a
whole new model for this?
No, models can be specialized in the detector configuration file. To specialize a detector
model, the key that should be changed in the standard detector model, e.g. like sensor_
thickness, should be added as key to the section of the detector configuration (which
already contains the position, orientation and the base model of the detector). Only
parameters in the header of detector models can be changed. If support layers should
be changed, or new support layers are needed, a new model should be created instead.
Please refer to Section 5.4.3 for more information.

11.4 Data Analysis

How do I access the history of a particular object?
Many objects can include an internal link to related other objects (for example
getPropagatedCharges in the PixelCharge object), containing the history of the
object (thus the objects that were used to construct the current object). These
referenced objects are stored as special ROOT pointers inside the object, which can only
be accessed if the referenced object is available in memory. In Allpix2 this requirement
can be automatically fulfilled by also binding the history object of interest in a module.
During analysis, the tree holding the referenced object should be loaded and pointing to
the same event entry as the object that requests the reference. If the referenced object
can not be loaded, an exception is thrown by the retrieving method. Please refer to
Section 6.2 for more information.

How do I access the Monte Carlo truth of a specific PixelHit?
The Monte Carlo truth is part of the history of a PixelHit. This means that the Monte
Carlo truth can be retrieved as described in the question above. Because accessing the
Monte Carlo truth of a PixelHit is quite a common task, these references are stored
directly for every new object created. This allows to retain the information without
the necessity to keep the full object history including all intermediate steps in memory.
Please refer to Section 6.2 for more information.

How do I find out, which Monte Carlo particles are primary particles and which have been
generated in the sensor?
The Monte Carlo truth information is stored per-sensor as MCParticle objects. Each
MCParticle stores, among other information, a reference to its parent. Particles which
have entered the sensor from the outside world do not have parent MCParticles in the
respective sensor and are thus primaries.

Using this approach it is possible, to e.g. treat a secondary particle produced in one
detector as primary in a following detector.

Below is some pseudo-code to filter a list of MCParticle objects for primaries based on
their parent relationship:

107

11 Frequently Asked Questions

1 // Collect all primary particles of the event:
2 std::vector<const MCParticle*> primaries;
3

4 // Loop over all MCParticles available
5 for(auto& mc_particle : my_mc_particles) {
6 // Check for possible parents:
7 if(mc_particle.getParent() != nullptr) {
8 // Has a parent, thus was created inside this sensor.
9 continue;

10 }
11

12 // Has no parent particles in this sensor, add to primary list.
13 primaries.push_back(&mc_particle);
14 }

A similar function is used e.g. in the DetectorHistogrammer module to filter primary
particles and create position-resolved graphs.

11.5 Development

How do I write my own output module?
An essential requirement of any output module is its ability to receive any message
of the framework. This can be implemented by defining a private listener function
for the module as described in Section 5.5. This function will be called for every new
message dispatched within the framework, and should contain code to decide whether
to discard or cache a message for processing. Heavy-duty tasks such as handling data
should not be performed in the listener routine, but deferred to the run function of
the respective output module.

How do I process data from multiple detectors?
When developing a new Allpix2 module which processes data from multiple detectors,
e.g. as the simulation of a track trigger module, this module has to be of type unqiue
as described in Section 5.3. As a detector module, it would always only have access to
the information linked to the specific detector is has been instantiated for. The module
should then request all messages of the desired type using the messenger call bindMulti
as described in Section 5.5. For PixelHit messages, an example code would be:

1 TrackTriggerModule(Configuration&, Messenger* messenger,
GeometryManager* geo_manager) {↪→

2 messenger->bindMulti(this,
3 &TrackTriggerModule::messages,
4 MsgFlags::NONE);
5 }
6 std::vector<std::shared_ptr<PixelHitMessage>> messages;

108

11.6 Miscellaneous

The correct detectors have then to be selected in the run function of the module
implementation.

How do I calculate an efficiency in a module?
Calculating efficiencies always requires a reference. For hit detection efficiencies in
Allpix2, this could be the Monte Carlo truth information available via the MCParticle
objects. Since the framework only runs modules, if all input message requirements are
satisfied, the message flags described in Section 5.5.2 have to be set up accordingly. For
the hit efficiency example, two different message types are required, and the Monte
Carlo truth should always be required (using MsgFlags::REQUIRED) while the PixelHit
message should be optional:

1 MyModule::MyModule(Configuration& config, Messenger* messenger,
std::shared_ptr<Detector> detector)↪→

2 : Module(config, detector), detector_(std::move(detector)) {
3

4 // Bind messages
5 messenger->bindSingle(this, &MyModule::pixels_message_);
6 messenger->bindSingle(this, &MyModule::mcparticle_message_,

MsgFlags::REQUIRED);↪→

7 }

11.6 Miscellaneous

How can I produce nicely looking drift-diffusion line graphs?
The GenericPropagation module offers the possibility to produce line graphs depicting
the path each of the charge carrier groups have taken during the simulation. This is a
very useful way to visualize the drift and diffusion along field lines.

An optional parameter allows to reduce the lines drawn to those charge carrier groups
which have reached the sensor surface to provide some insight into where from the
collected charge carriers originate and how they reached the implants. One graph is
written per event simulated, usually this option should thus only be used when simulating
one or a few events but not during a production run.

In order to produce a precise enough line graph, the integration time steps have to be
chosen carefully - usually finer than necessary for the actual simulation. Below is a set of
settings used to simulate the drift and diffusion in a high resistivity CMOS silicon sensor.
Settings of the module irrelevant for the line graph production have been omitted.

1 [GenericPropagation]
2 charge_per_step = 5
3 timestep_min = 1ps
4 timestep_max = 5ps
5 timestep_start = 1ps
6 spatial_precision = 0.1nm
7

109

11 Frequently Asked Questions

Figure 11.1: Drift and diffusion visualization of charge carrier groups being transported through
a high-resistivity CMOS silicon sensor. The plot shows the situation after an
integration time of 20 ns, only charge carrier groups which reached the implant
side of the sensor are drawn.

8 output_plots = true
9 output_plots_step = 100ps

10 output_plots_align_pixels = true
11 output_plots_use_pixel_units = true
12

13 # Optional to only draw charge carrier groups which reached the implant
side:↪→

14 # output_plots_lines_at_implants = true

With these settings, a graph of similar precision to the one presented in Figure 11.1 can
be produced. The required time stepping size and number of output plot steps varies
greatly with the sensor and its applied electric field. The number of charge carriers per
group can be used to vary the density of lines drawn. Larger groups result in fewer lines.

110

12 Additional Tools & Resources

This chapter briefly describes tools provided with the Allpix2 framework, which might be
re-used in new modules or in standalone code.

12.1 Framework Tools

12.1.1 ROOT and Geant4 utilities

The framework provides a set of methods to ease the integration of ROOT and Geant4 in
the framework. An important part is the extension of the custom conversion to_string and
from_string methods from the internal string utilities (see Section 5.7.3) to support internal
ROOT and Geant4 classes. This allows to directly read configuration parameters to these
types, making the code in the modules both shorter and cleaner. In addition, more conversions
functions are provided together with other useful utilities such as the possibility to display a
ROOT vector with units.

12.1.2 Runge-Kutta integrator

A fast Eigen-powered [7] Runge-Kutta integrator is provided as a tool to numerically solve
differential equations [18]. The Runge-Kutta integrator is designed in a generic way and
supports multiple methods using different tableaus. It allows to integrate a system of equations
in several steps with customizable step size. The step size can also be updated during the
integration depending on the error of the Runge-Kutta method (if a tableau with error
estimation is used).

12.2 TCAD DF-ISE mesh converter

This code takes the .grd and .dat files of the DF-ISE format from TCAD simulations as input.
The .grd file contains the vertex coordinates (3D or 2D) of each mesh node and the .dat file
contains the value of each electric field vector component for each mesh node, grouped by
model regions (such as silicon bulk or metal contacts). The regions are defined in the .grd file
by grouping vertices into edges, faces and, consecutively, volumes or elements.

A new regular mesh is created by scanning the model volume in regular X Y and Z steps (not
necessarily coinciding with original mesh nodes) and using a barycentric interpolation method
to calculate the respective electric field vector on the new point. The interpolation uses the

111

12 Additional Tools & Resources

four closest, no-coplanar, neighbor vertex nodes such, that the respective tetrahedron encloses
the query point. For the neighbors search, the software uses the Octree implementation [38].

The output .init file can be imported into Allpix Squared. The INIT file has a header followed
by a list of columns organized as
node.x node.y node.z observable.x observable.y observable.z

Compilation

When compiling the Allpix Squared framework, the TCAD DF-ISE mesh converter is auto-
matically compiled and installed in the Allpix Squared installation directory.

It is also possible to compile the converter separately as stand-alone tool within this directory:
$ mkdir build && cd build
$ cmake ..
$ make

It should be noted that the TCAD DF-ISE mesh converter depends on the core utilities of the
Allpix Squared framework found in the directory src/core/utils. Thus, it is discouraged to
move the converter code outside the repository as this directory would have to be copied and
included in the code as well. Furthermore, updates are only distributed through the repository
and new release versions of the Allpix Squared framework.

Features

• TCAD DF-ISE file format reader.
• Fast radius neighbor search for three-dimensional point clouds.
• Barycentric interpolation between non-regular mesh points.
• Several cuts available on the interpolation algorithm variables.
• Interpolated data visualization tool.

Parameters

• dimension: Specify mesh dimensionality (defaults to 3).
• region: Region name to be meshed (defaults to bulk).
• observable: Observable to be interpolated (defaults to ElectricField).
• initial_radius: Initial node neighbors search radius in micro meters (defaults to 1um).
• radius_step: Radius step if no neighbor is found (defaults to 0.5um).
• max_radius: Maximum search radius (default is 10um).
• radius_threshold: Minimum distance from node to new mesh point. By default, no
threshold is applied.

• volume_cut: Minimum volume for tetrahedron for non-coplanar vertices (defaults to
minimum double value).

• index_cut: Index cut during permutation on vertex neighbors (disabled by default).

112

12.2 TCAD DF-ISE mesh converter

• divisions: Number of divisions of the new regular mesh for each dimension, 2D or 3D
vector depending on the dimension setting. Defaults to 100 bins in each dimension.

• xyz: Array to replace the system coordinates of the mesh. A detailed description of how
to use this parameter is given below.

• screen_shot: Enables “screen-shot” of mesh points, point being interpolated (in red)
and neighboring pixels (in blue) (defaults to -1 -1 -1, disabling the screen-shot).

• ss_radius: Sets a region of interest around the point being interpolated to show the
mesh points.

• mesh_tree: Boolean to enable creation of a root file with the TCAD mesh nodes stored
in a ROOT::TTree. This setting is automatically enabled if screen-shot is activated and
deactivated by default.

• workers: Number of worker threads to be used for the interpolation. Defaults to the
available number of cores on the machine (hardware concurrency).

Usage

To run the program, the following command should be executed from the installation folder:
mesh_converter -f <file_prefix> [<options>] [<arguments>]

The converter will look for a configuration file with <file_prefix> and .conf extension. This
default configuration file name can be replaced with the -c option. The list with options can
be accessed using the -h option. Possible options and their default values are:
-f <file_prefix> common prefix of DF-ISE grid (.grd) and data (.dat) files
-c <config_file> configuration file setting mesh conversion parameters
-h display this help text
-l <file> file to log to besides standard output (disabled by default)
-o <init_file_prefix> output file prefix without .init (defaults to file name of <file_prefix>)
-v <level> verbosity level (default reporting level is INFO)

Observables currently implemented for interpolation are: ElectrostaticPotential,
ElectricField, DopingConcentration, DonorConcentration and AcceptorConcentration. The
output INIT file will be saved with the same file_prefix as the .grd and .dat files and the
additional name suffix _<observable>_interpolated.init, where <observable> is replaced
with the selected quantity.

The new coordinate system of the mesh can be changed by providing an array for the xyz
keyword in the configuration file. The first entry of the array, representing the new mesh x
coordinate, should indicate the TCAD original mesh coordinate (x, y or z), and so on for the
second (y) and third (z) array entry. For example, if one wants to have the TCAD x, y and z
mesh coordinates mapped into the y, z and x coordinates of the new mesh, respectively, the
configuration file should have xyz = z x y. If one wants to flip one of the coordinates, the
minus symbol (-) can be used in front of one of the coordinates (such as xyz = z x -y).

The program can be used to convert 3D and 2D TCAD mesh files. Note that when converting
2D meshes, the x coordinate will be fixed to 1 and the interpolation will happen over the
yz plane. The keyword mesh_tree can be used as a switch to enable or disable the creation

113

12 Additional Tools & Resources

of a root file with the original TCAD mesh points stored as a ROOT::TTree for later, fast,
inspection.

It is possible to visualize the position of the new mesh point to be interpolated (in red)
surrounded by the mesh points and the closest neighbors found (in blue) by providing the
keyword screen_shot with the new mesh node coordinates (such as screen_shot = 1 2 3) as
value pair. This can be useful if the interpolation gets stuck in some region. Currently, it is
implemented only for 3D meshes. The 3D point-cloud will be saved as a ROOT::TGraph2D in a
root file with the grid file name (including the .grd extension) as prefix and “_INTERPOLA-
TION_POINT_SCREEN_SHOT.root" as suffix.

In addition, the mesh_plotter tool can be used, in order to visualize the new mesh interpolation
results, from the installation folder as follows:
mesh_plotter -f <file_name> [<options>] [<arguments>]

The following command-line options are supported:
-f <file_name> init file name
-c <cut> projection height index (default is mesh_pitch / 2)
-h display this help text
-l plot with logarithmic scale if set
-o <output_file_name> name of the file to output (default is efield.png)
-p <plane> plane to be ploted. xy, yz or zx (default is yz)

The list with options and defaults is displayed with the -h option. In a 3D mesh, the plane to
be plotted must be identified by using the option -p with argument xy, yz or zx, defaulting to
yz. The data to be plotted can be selected with the -d option, the arguments are ex, ey, ez for
the vector components or the default value n for the norm of the electric field. The number of
mesh divisions in each dimension is automatically read from the init file, by default the cut
in the third dimension is done in the center but can be shifted using the -c option described
above.

Octree

J. Behley, V. Steinhage, A.B. Cremers. Efficient Radius Neighbor Search in Three-dimensional
Point Clouds, Proc. of the IEEE International Conference on Robotics and Automation
(ICRA), 2015 [38].

Copyright 2015 Jens Behley, University of Bonn. This project is free software made available
under the MIT License. For details see the LICENSE.md file.

12.3 ROOT Analysis & Helper Macros

Collection of macros demonstrating how to analyze data generated by the framework. Currently
contains a single macro to convert the TTree of objects to a tree containing standard data
written by the framework. This is useful for analysis and comparisons with other frameworks.

114

12.3 ROOT Analysis & Helper Macros

Comparison tree

Reads all required trees from the given file and binds their content to the objects defined by
the framework. Then creates an output tree and binds every branch to a simple arithmetic
type. Continues to loop over all events in the tree and converting the stored data from the
various trees to the output tree. The final output tree contains branches for the cluster sizes,
aspect ratios, accumulated charge per event, the track position from the Monte Carlo truth
and the reconstructed track obtained from a center of gravity calculation using the charge
values without additional corrections.

To construct a comparison tree using this macro, follow these steps:

• Open root with the data file attached like root -l /path/to/data.root
• Load the current library of objects with .L path/to/libAllpixObjects.so
• Build the macro with .L path/to/constructComparisonTree.C++
• Open a new file with auto file = new TFile("output.root", "RECREATE")
• Run the macro with auto tree = constructComparisonTree(_file0, "name_of_dut")
• Write the tree with tree->Write()

Remake project

Simple macro to show the possibility to recreate source files for legacy objects stored in ROOT
data files from older versions of the framework. Can be used if the corresponding dynamic
library for that particular version is not accessible anymore. It is however not possible to
recreate methods of the objects and it is therefore not easily possible to reconstruct the stored
history.

To recreate the project source files, the following commands should be executed:

• Open root with the data file attached like root -l /path/to/data.root
• Build the macro with .L path/to/remakeProject.C++
• Recreate the source files using remakeProject(_file0, "output_dir")

Recover Configuration Files

This macro allows to recover the full configuration of a simulation from a data file written
by the ROOTObjectWriter module. It retrieves the stored key-value pairs and writes them
into new files, including the framework and module configuration, the detector setup and the
individual detector models with possibly overwritten parameters.

The simulation configuration can be recreated using the following command:
root -x ’recoverConfiguration.C("path/to/output/data.root",

"configuration.conf")’

Here, the first argument is the input data file produced by the ROOTObjectWriter, while
the second argument is the output file name and path for the framework configuration. The
detector setup and model files will be named as defined in the main configuration and are
placed in the same folder.

115

A Appendix

A.1 Output of Example Simulation

A possible output for the example simulation in Section 4.4 is given below:
(S) Welcome to Allpix^2 v1.0+530^gfa11a2f
(S) Initialized PRNG with system entropy seed 5463861272355685682
(S) Loaded 7 modules
(S) Initializing 13 module instantiations
(I) [I:DepositionGeant4] Using G4 physics list "FTFP_BERT_EMY"
(I) [I:DepositionGeant4] Setting G4 production cut to 5um, derived from properties

of detector "dut"
(W) [I:GenericPropagation:telescope1] This detector does not have an electric field.
(W) [I:GenericPropagation:dut] This detector does not have an electric field.
(W) [I:GenericPropagation:telescope2] This detector does not have an electric field.
(S) Initialized 13 module instantiations
(S) Running event 1 of 5
(I) [R:DepositionGeant4] Deposited 50030 charges in sensor of detector telescope1
(I) [R:DepositionGeant4] Deposited 7658 charges in sensor of detector dut
(I) [R:DepositionGeant4] Deposited 44622 charges in sensor of detector telescope2
(I) [R:GenericPropagation:telescope1] Propagated 25015 charges in 651 steps in

average time of 24.3036ns
(I) [R:GenericPropagation:dut] Propagated 3829 charges in 105 steps in average time

of 14.5272ns
(I) [R:GenericPropagation:telescope2] Propagated 22311 charges in 591 steps in

average time of 24.2817ns
(I) [R:SimpleTransfer:telescope1] Transferred 868 charges to 4 pixels
(I) [R:SimpleTransfer:dut] Transferred 1357 charges to 3 pixels
(I) [R:SimpleTransfer:telescope2] Transferred 795 charges to 4 pixels
(I) [R:DefaultDigitizer:telescope1] Digitized 0 pixel hits
(I) [R:DefaultDigitizer:dut] Digitized 1 pixel hits
(I) [R:DefaultDigitizer:telescope2] Digitized 0 pixel hits
(S) Running event 2 of 5
(I) [R:DepositionGeant4] Deposited 43070 charges in sensor of detector telescope1
(I) [R:DepositionGeant4] Deposited 12060 charges in sensor of detector dut
(I) [R:DepositionGeant4] Deposited 54552 charges in sensor of detector telescope2
(I) [R:GenericPropagation:telescope1] Propagated 21535 charges in 568 steps in

average time of 24.3147ns
(I) [R:GenericPropagation:dut] Propagated 6030 charges in 148 steps in average time

of 16.9307ns
(I) [R:GenericPropagation:telescope2] Propagated 27276 charges in 699 steps in

average time of 24.3384ns
(I) [R:SimpleTransfer:telescope1] Transferred 346 charges to 4 pixels
(I) [R:SimpleTransfer:dut] Transferred 1128 charges to 6 pixels

117

A Appendix

(I) [R:SimpleTransfer:telescope2] Transferred 616 charges to 4 pixels
(I) [R:DefaultDigitizer:telescope1] Digitized 0 pixel hits
(I) [R:DefaultDigitizer:dut] Digitized 1 pixel hits
(I) [R:DefaultDigitizer:telescope2] Digitized 0 pixel hits
(S) Running event 3 of 5
(I) [R:DepositionGeant4] Deposited 63834 charges in sensor of detector telescope1
(I) [R:DepositionGeant4] Deposited 8202 charges in sensor of detector dut
(I) [R:DepositionGeant4] Deposited 52448 charges in sensor of detector telescope2
(I) [R:GenericPropagation:telescope1] Propagated 31917 charges in 790 steps in

average time of 24.3231ns
(I) [R:GenericPropagation:dut] Propagated 4101 charges in 108 steps in average time

of 17.8465ns
(I) [R:GenericPropagation:telescope2] Propagated 26224 charges in 665 steps in

average time of 24.1975ns
(I) [R:SimpleTransfer:telescope1] Transferred 1056 charges to 4 pixels
(I) [R:SimpleTransfer:dut] Transferred 1303 charges to 5 pixels
(I) [R:SimpleTransfer:telescope2] Transferred 607 charges to 4 pixels
(I) [R:DefaultDigitizer:telescope1] Digitized 0 pixel hits
(I) [R:DefaultDigitizer:dut] Digitized 1 pixel hits
(I) [R:DefaultDigitizer:telescope2] Digitized 0 pixel hits
(S) Running event 4 of 5
(I) [R:DepositionGeant4] Deposited 81720 charges in sensor of detector telescope1
(I) [R:DepositionGeant4] Deposited 6514 charges in sensor of detector dut
(I) [R:DepositionGeant4] Deposited 44540 charges in sensor of detector telescope2
(I) [R:GenericPropagation:telescope1] Propagated 40860 charges in 983 steps in

average time of 24.3622ns
(I) [R:GenericPropagation:dut] Propagated 3257 charges in 93 steps in average time

of 18.6067ns
(I) [R:GenericPropagation:telescope2] Propagated 22270 charges in 586 steps in

average time of 24.0374ns
(I) [R:SimpleTransfer:telescope1] Transferred 1189 charges to 4 pixels
(I) [R:SimpleTransfer:dut] Transferred 699 charges to 5 pixels
(I) [R:SimpleTransfer:telescope2] Transferred 1115 charges to 4 pixels
(I) [R:DefaultDigitizer:telescope1] Digitized 0 pixel hits
(I) [R:DefaultDigitizer:dut] Digitized 0 pixel hits
(I) [R:DefaultDigitizer:telescope2] Digitized 0 pixel hits
(S) Running event 5 of 5
(I) [R:DepositionGeant4] Deposited 39998 charges in sensor of detector telescope1
(I) [R:DepositionGeant4] Deposited 13882 charges in sensor of detector dut
(I) [R:DepositionGeant4] Deposited 40484 charges in sensor of detector telescope2
(I) [R:GenericPropagation:telescope1] Propagated 19999 charges in 546 steps in

average time of 23.9672ns
(I) [R:GenericPropagation:dut] Propagated 6941 charges in 168 steps in average time

of 21.0797ns
(I) [R:GenericPropagation:telescope2] Propagated 20242 charges in 557 steps in

average time of 23.7924ns
(I) [R:SimpleTransfer:telescope1] Transferred 944 charges to 4 pixels
(I) [R:SimpleTransfer:dut] Transferred 981 charges to 8 pixels
(I) [R:SimpleTransfer:telescope2] Transferred 873 charges to 4 pixels
(I) [R:DefaultDigitizer:telescope1] Digitized 0 pixel hits
(I) [R:DefaultDigitizer:dut] Digitized 1 pixel hits
(I) [R:DefaultDigitizer:telescope2] Digitized 0 pixel hits
(S) Finished run of 5 events

118

A.1 Output of Example Simulation

(I) [F:DepositionGeant4] Deposited total of 563614 charges in 3 sensor(s) (average
of 37574 per sensor for every event)

(I) [F:GenericPropagation:telescope1] Propagated total of 139326 charges in 3538
steps in average time of 24.2787ns

(I) [F:GenericPropagation:dut] Propagated total of 24158 charges in 622 steps in
average time of 18.1233ns

(I) [F:GenericPropagation:telescope2] Propagated total of 118323 charges in 3098
steps in average time of 24.1464ns

(I) [F:SimpleTransfer:telescope1] Transferred total of 4403 charges to 4 different
pixels

(I) [F:SimpleTransfer:dut] Transferred total of 5468 charges to 8 different pixels
(I) [F:SimpleTransfer:telescope2] Transferred total of 4006 charges to 4 different

pixels
(I) [F:DefaultDigitizer:telescope1] Digitized 0 pixel hits in total
(I) [F:DefaultDigitizer:dut] Digitized 4 pixel hits in total
(I) [F:DefaultDigitizer:telescope2] Digitized 0 pixel hits in total
(I) [F:DetectorHistogrammer:dut] Plotted 4 hits in total, mean position is

(59.25,59)
(S) [F:ROOTObjectWriter] Wrote 91 objects to 7 branches in file:

/tmp/output/allpix-squared-output.root
(S) Finalization completed
(S) Executed 13 instantiations in 2 seconds, spending 85% of time in slowest

instantiation DepositionGeant4
(I) Module GeometryBuilderGeant4 took 0.0319711 seconds
(I) Module DepositionGeant4 took 1.48271 seconds
(I) Module GenericPropagation:telescope1 took 0.148081 seconds
(I) Module GenericPropagation:dut took 0.0216697 seconds
(I) Module GenericPropagation:telescope2 took 0.129036 seconds
(I) Module SimpleTransfer:telescope1 took 0.00613421 seconds
(I) Module SimpleTransfer:dut took 0.00107254 seconds
(I) Module SimpleTransfer:telescope2 took 0.00349426 seconds
(I) Module DefaultDigitizer:telescope1 took 0.000473814 seconds
(I) Module DefaultDigitizer:dut took 0.00089237 seconds
(I) Module DefaultDigitizer:telescope2 took 0.000345705 seconds
(I) Module DetectorHistogrammer:dut took 0.0508717 seconds
(I) Module ROOTObjectWriter took 0.158063 seconds
(S) Average processing time is 350 ms/event, event generation at 3 Hz

119

Acknowledgments

Allpix2 has been developed and is maintained by

• Koen Wolters, CERN

• Daniel Hynds, CERN

• Simon Spannagel, CERN

The following authors, in alphabetical order, have contributed to Allpix2:

• Thomas Billoud, Université de Montréal

• Tobias Bisanz, Georg-August-Universität Göttingen

• Liejian Chen, Institute of High Energy Physics Beijing

• Katharina Dort, CERN Summer Student

• Neal Gauvin, Université de Genève

• Maoqiang Jing, University of South China, Institute of High Energy Physics Beijing

• Moritz Kiehn, Université de Genève

• Salman Maqbool, CERN Summer Student

• Andreas Matthias Nürnberg, CERN

• Marko Petric, CERN

• Edoardo Rossi, DESY

• Andre Sailer, CERN

• Paul Schütze, DESY

• Xin Shi, Institute of High Energy Physics Beijing

• Ondrej Theiner, Charles University

• Mateus Vicente Barreto Pinto, Université de Genève

The authors would also like to express their thanks to the developers of AllPix [3, 4].

121

Bibliography

[1] S. Agostinelli et al. “Geant4 - a simulation toolkit”. In: Nuclear Instruments and Methods
in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment 506.3 (2003), pp. 250–303. issn: 0168-9002. doi: https://doi.org/10.1016/
S0168-9002(03)01368-8.

[2] Rene Brun and Fons Rademakers. “ROOT - An Object Oriented Data Analysis Frame-
work”. In: AIHENP’96 Workshop, Lausanne. Vol. 389. Sept. 1996, pp. 81–86.

[3] Mathieu Benoit and John Idarraga. The AllPix Simulation Framework. Mar. 21, 2017.
url: https://twiki.cern.ch/twiki/bin/view/Main/AllPix.

[4] Mathieu Benoit, John Idarraga, and Samir Arfaoui. AllPix. Generic simulation for pixel
detectors. url: https://github.com/ALLPix/allpix.

[5] Daniel Hynds, Simon Spannagel, and Koen Wolters. The Allpix2 Code Documentation.
Aug. 22, 2017. url: https://cern.ch/allpix-squared/reference/.

[6] The Allpix2 Project Issue Tracker. July 27, 2017. url: https://gitlab.cern.ch/allpix-
squared/allpix-squared/issues.

[7] Gaël Guennebaud, Benoît Jacob, et al. Eigen v3. 2010. url: http://eigen.tuxfamily.org.
[8] Rene Brun and Fons Rademakers. Building ROOT. url: https://root.cern.ch/building-

root.
[9] Geant4 Collaboration. Geant4 Installation Guide. Building and Installing Geant4 for

Users and Developers. 2016. url: http://geant4.web.cern.ch/geant4/UserDocumentation/
UsersGuides/InstallationGuide/html/.

[10] The Allpix2 Project Repository. Aug. 2, 2017. url: https ://gitlab .cern .ch/allpix-
squared/allpix-squared/.

[11] S. Aplin et al. “LCIO: A persistency framework and event data model for HEP”.
In: Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), IEEE.
Anaheim, CA, Oct. 2012, pp. 2075–2079. doi: 10.1109/NSSMIC.2012.6551478.

[12] Simon Spannagel. The Allpix2 Docker Container Registry. Mar. 12, 2018. url: https:
//gitlab.cern.ch/allpix-squared/allpix-squared/container_registry.

[13] X. Llopart et al. “Timepix, a 65k programmable pixel readout chip for arrival time,
energy and/or photon counting measurements”. In: Nuclear Instruments and Methods
in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment 581.1 (2007). VCI 2007, pp. 485–494. issn: 0168-9002. doi: http://dx.doi.
org/10.1016/j.nima.2007.08.079.

[14] Geant4 Collaboration. Geant4 User’s Guide for Application Developers. Visualization.
2016. url: https://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/
ForApplicationDeveloper/html/ch08.html.

123

http://dx.doi.org/https://doi.org/10.1016/S0168-9002(03)01368-8
http://dx.doi.org/https://doi.org/10.1016/S0168-9002(03)01368-8
https://twiki.cern.ch/twiki/bin/view/Main/AllPix
https://github.com/ALLPix/allpix
https://cern.ch/allpix-squared/reference/
https://gitlab.cern.ch/allpix-squared/allpix-squared/issues
https://gitlab.cern.ch/allpix-squared/allpix-squared/issues
http://eigen.tuxfamily.org
https://root.cern.ch/building-root
https://root.cern.ch/building-root
http://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/InstallationGuide/html/
http://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/InstallationGuide/html/
https://gitlab.cern.ch/allpix-squared/allpix-squared/
https://gitlab.cern.ch/allpix-squared/allpix-squared/
http://dx.doi.org/10.1109/NSSMIC.2012.6551478
https://gitlab.cern.ch/allpix-squared/allpix-squared/container_registry
https://gitlab.cern.ch/allpix-squared/allpix-squared/container_registry
http://dx.doi.org/http://dx.doi.org/10.1016/j.nima.2007.08.079
http://dx.doi.org/http://dx.doi.org/10.1016/j.nima.2007.08.079
https://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/ForApplicationDeveloper/html/ch08.html
https://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/ForApplicationDeveloper/html/ch08.html

Bibliography

[15] Rene Brun and Fons Rademakers. ROOT User’s Guide. Trees. url: https://root.cern.
ch/root/htmldoc/guides/users-guide/Trees.html.

[16] Rene Brun and Fons Rademakers. ROOT User’s Guide. Input/Output. url: https:
//root.cern.ch/root/htmldoc/guides/users-guide/InputOutput.html.

[17] Rainer Bartholdus, Su Dong, et al. ATLAS RCE Development Lab. url: https://twiki.
cern.ch/twiki/bin/view/Atlas/RCEDevelopmentLab.

[18] Erwin Fehlberg. Low-order classical Runge-Kutta formulas with stepsize control and their
application to some heat transfer problems. NASA Technical Report NASA-TR-R-315.
1969.

[19] Tom Preston-Werner. TOML. Tom’s Obvious, Minimal Language. url: https://github.
com/toml-lang/toml.

[20] John Gruber and Aaron Swartz. Markdown. url: https://daringfireball.net/projects/
markdown/.

[21] John MacFarlane. Pandoc. A universal document converter. url: http://pandoc.org/.
[22] Michael Kerrisk. Linux Programmer’s Manual. ld.so, ld-linux.so - dynamic linker/loader.

url: http://man7.org/linux/man-pages/man8/ld.so.8.html.
[23] Eric W. Weisstein. Euler Angles. From MathWorld – A Wolfram Web Resource. url:

http://mathworld.wolfram.com/EulerAngles.html.
[24] Beman Dawes. Adopt the File System TS for C++17. Feb. 2016. url: http://www.open-

std.org/jtc1/sc22/wg21/docs/papers/2016/p0218r0.html.
[25] L. Garren et al. Monte Carlo Particle Numbering Scheme. 2015. url: http://hepdata.

cedar.ac.uk/lbl/2016/reviews/rpp2016-rev-monte-carlo-numbering.pdf.
[26] Geant4 Collaboration. Geant4 GPS. url: http : / / geant4 - userdoc . web . cern . ch /

geant4 - userdoc / UsersGuides / ForApplicationDeveloper / html / GettingStarted /
generalParticleSource.html.

[27] Geant4 Collaboration. Geant4 Particles. url: http://geant4-userdoc.web.cern.ch/geant4-
userdoc/UsersGuides/ForApplicationDeveloper/html/TrackingAndPhysics/particle.
html.

[28] S. Hauf et al. “Radioactive Decays in Geant4”. In: IEEE Transactions on Nuclear Science
60.4 (Aug. 2013), pp. 2966–2983. issn: 0018-9499. doi: 10.1109/TNS.2013.2270894.

[29] J. Apostolakis et al. “An implementation of ionisation energy loss in very thin absorbers
for the GEANT4 simulation package”. In: Nucl. Instrum. Meth. A453 (2000), pp. 597–
605. doi: 10.1016/S0168-9002(00)00457-5.

[30] Geant4 Collaboration. Geant4 Physics Lists. url: http://geant4.cern.ch/support/proc_
mod_catalog/physics_lists/referencePL.shtml.

[31] Morris Swartz. A detailed simulation of the CMS pixel sensor. Tech. rep. 2002.
[32] C. Jacoboni et al. “A review of some charge transport properties of silicon”. In: Solid

State Electronics 20 (Feb. 1977), pp. 77–89. doi: 10.1016/0038-1101(77)90054-5.
[33] The EUTelescope Developers. The EUTelescope Analysis Framework. url: http://

eutelescope.web.cern.ch/.

124

https://root.cern.ch/root/htmldoc/guides/users-guide/Trees.html
https://root.cern.ch/root/htmldoc/guides/users-guide/Trees.html
https://root.cern.ch/root/htmldoc/guides/users-guide/InputOutput.html
https://root.cern.ch/root/htmldoc/guides/users-guide/InputOutput.html
https://twiki.cern.ch/twiki/bin/view/Atlas/RCEDevelopmentLab
https://twiki.cern.ch/twiki/bin/view/Atlas/RCEDevelopmentLab
https://github.com/toml-lang/toml
https://github.com/toml-lang/toml
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
http://pandoc.org/
http://man7.org/linux/man-pages/man8/ld.so.8.html
http://mathworld.wolfram.com/EulerAngles.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0218r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0218r0.html
http://hepdata.cedar.ac.uk/lbl/2016/reviews/rpp2016-rev-monte-carlo-numbering.pdf
http://hepdata.cedar.ac.uk/lbl/2016/reviews/rpp2016-rev-monte-carlo-numbering.pdf
http://geant4-userdoc.web.cern.ch/geant4-userdoc/UsersGuides/ForApplicationDeveloper/html/GettingStarted/generalParticleSource.html
http://geant4-userdoc.web.cern.ch/geant4-userdoc/UsersGuides/ForApplicationDeveloper/html/GettingStarted/generalParticleSource.html
http://geant4-userdoc.web.cern.ch/geant4-userdoc/UsersGuides/ForApplicationDeveloper/html/GettingStarted/generalParticleSource.html
http://geant4-userdoc.web.cern.ch/geant4-userdoc/UsersGuides/ForApplicationDeveloper/html/TrackingAndPhysics/particle.html
http://geant4-userdoc.web.cern.ch/geant4-userdoc/UsersGuides/ForApplicationDeveloper/html/TrackingAndPhysics/particle.html
http://geant4-userdoc.web.cern.ch/geant4-userdoc/UsersGuides/ForApplicationDeveloper/html/TrackingAndPhysics/particle.html
http://dx.doi.org/10.1109/TNS.2013.2270894
http://dx.doi.org/10.1016/S0168-9002(00)00457-5
http://geant4.cern.ch/support/proc_mod_catalog/physics_lists/referencePL.shtml
http://geant4.cern.ch/support/proc_mod_catalog/physics_lists/referencePL.shtml
http://dx.doi.org/10.1016/0038-1101(77)90054-5
http://eutelescope.web.cern.ch/
http://eutelescope.web.cern.ch/

Bibliography

[34] The Proteus Developers. The Proteus Testbeam Reconstruction Framework. url: https:
//gitlab.cern.ch/unige-fei4tel/proteus/.

[35] Geant4 Collaboration. Geant4 Visualization Drivers. url: https://geant4.web.cern.
ch/geant4/UserDocumentation/UsersGuides/ForApplicationDeveloper/html/ch08s03.
html.

[36] A. J. Peters and L. Janyst. “Exabyte Scale Storage at CERN”. In: Journal of Physics:
Conference Series 331.5 (2011), p. 052015.

[37] C. Aguado Sanchez et al. “CVMFS - a file system for the CernVM virtual appliance”.
In: XII Advanced Computing and Analysis Techniques in Physics Research (ACAT08).
Vol. ACAT08. 2008, p. 052.

[38] J. Behley, V. Steinhage, and A. B. Cremers. “Efficient radius neighbor search in three-
dimensional point clouds”. In: 2015 IEEE International Conference on Robotics and
Automation (ICRA). May 2015, pp. 3625–3630. doi: 10.1109/ICRA.2015.7139702.

125

https://gitlab.cern.ch/unige-fei4tel/proteus/
https://gitlab.cern.ch/unige-fei4tel/proteus/
https://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/ForApplicationDeveloper/html/ch08s03.html
https://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/ForApplicationDeveloper/html/ch08s03.html
https://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/ForApplicationDeveloper/html/ch08s03.html
http://dx.doi.org/10.1109/ICRA.2015.7139702

	Introduction
	Scope of this Manual
	Support and Reporting Issues
	Contributing Code

	Quick Start
	Installation
	Supported Operating Systems
	Prerequisites
	Downloading the source code
	Initializing the dependencies
	Configuration via CMake
	Compilation and installation
	Docker images

	Getting Started
	Configuration Files
	Parsing types and units
	Main configuration
	Detector configuration

	Framework parameters
	The allpix Executable
	Setting up the Simulation Chain
	Extending the Simulation Chain
	Logging and Verbosity Levels
	Storing Output Data

	Structure & Components of the Framework
	Architecture of the Core
	Configuration and Parameters
	File format
	Accessing parameters

	Modules and the Module Manager
	Files of a Module
	Module structure
	Module instantiation
	Parallel execution of modules

	Geometry and Detectors
	Coordinate systems
	Changing and accessing the geometry
	Detector models

	Passing Objects using Messages
	Methods to process messages
	Message flags
	Persistency

	Redirect Module Inputs and Outputs
	Logging and other Utilities
	Logging system
	Unit system
	Internal utilities

	Error Reporting and Exceptions

	Objects
	Object Types
	Object History

	Modules
	CapacitiveTransfer
	CorryvreckanWriter
	DefaultDigitizer
	DepositionGeant4
	DetectorHistogrammer
	ElectricFieldReader
	GenericPropagation
	GeometryBuilderGeant4
	LCIOWriter
	MagneticFieldReader
	ProjectionPropagation
	RCEWriter
	ROOTObjectReader
	ROOTObjectWriter
	SimpleTransfer
	TextWriter
	VisualizationGeant4

	Examples
	CapacitiveTransfer example files
	Fast Simulation Example
	Magnetic Field Example
	Precise DUT Simulation Example
	Example for Replaying a Simulation
	Source Measurement with Shielding
	TCAD Field Simulation Example

	Module & Detector Development
	Implementing a New Module
	Adding a New Detector Model

	Development Tools & Continuous Integration
	Additional Targets
	Packaging
	Continuous Integration
	Automatic Deployment
	Software deployment to CVMFS
	Documentation deployment to EOS
	Release tarball deployment to EOS
	Building Docker images

	Tests

	Frequently Asked Questions
	Installation & Usage
	Configuration
	Detector Models
	Data Analysis
	Development
	Miscellaneous

	Additional Tools & Resources
	Framework Tools
	ROOT and Geant4 utilities
	Runge-Kutta integrator

	TCAD DF-ISE mesh converter
	ROOT Analysis & Helper Macros

	Appendix
	Output of Example Simulation

	Acknowledgments
	References

