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1 Introduction

Allpix Squared is a generic simulation framework for semiconductor tracker and vertex
detectors written in modern C++, following the C++17 standard. The goal of the
framework is to provide an easy-to-use package for simulating the performance of semi-
conductor detectors, starting with the passage of ionizing radiation through the sensor
and finishing with the digitization of hits in the readout chip.

The framework builds upon other packages to perform tasks in the simulation chain, most
notably Geant4 [1] for the deposition of charge carriers in the sensor and ROOT [2] for
producing histograms and storing the produced data. The core of the framework focuses
on the simulation of charge transport in semiconductor detectors and the digitization to
hits in the frontend electronics.

Allpix Squared is designed as a modular framework, allowing for an easy extension to
more complex and specialized detector simulations. The modular setup also allows to
separate the core of the framework from the implementation of the algorithms in the
modules, leading to a framework which is both easier to understand and to maintain.
Besides modularity, the framework was designed with the following main design goals in
mind:

1. Reflect the physics:

• A run consists of several sequential events. A single event here refers to an
independent passage of one or multiple particles through the setup.

• Detectors are treated as separate objects for particles to pass through.

• All relevant information must be contained at the end of processing every
single event (sequential events).

2. Ease of use (user-friendly):

• Simple, intuitive configuration and execution (“does what you expect”).

• Clear and extensive logging and error reporting capabilities.

• Implementing a new module should be feasible without knowing all details of
the framework.

3. Flexibility:

• Event loop runs sequence of modules, allowing for both simple and complex
user configurations.

• Possibility to run multiple different modules on different detectors.

• Limit flexibility for the sake of simplicity and ease of use.
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1 Introduction

Allpix Squared has been designed following some ideas previously implemented in the
AllPix [3, 4] project. Originally written as a Geant4 user application, AllPix has been
successfully used for simulating a variety of different detector setups.

1.1 Scope of this Manual

This document is meant to be the primary User’s Guide for Allpix Squared. It contains
both an extensive description of the user interface and configuration possibilities, and a
detailed introduction to the code base for potential developers. This manual is designed
to:

• Guide new users through the installation;

• Introduce new users to the toolkit for the purpose of running their own simulations;

• Explain the structure of the core framework and the components it provides to the
simulation modules;

• Provide detailed information about all modules and how to use and configure them;

• Describe the required steps for adding new detector models and implementing new
simulation modules.

Within the scope of this document, only an overview of the framework can be provided
and more detailed information on the code itself can be found in the Doxygen reference
manual [5] available online. No programming experience is required from novice users,
but knowledge of (modern) C++ will be useful in the later chapters and might contribute
to the overall understanding of the mechanisms.

1.2 Support and Reporting Issues

As for most of the software used within the high-energy particle physics community,
only limited support on best-effort basis for this software can be offered. The authors
are, however, happy to receive feedback on potential improvements or problems arising.
Reports on issues, questions concerning the software as well as the documentation and
suggestions for improvements are much appreciated. These should preferably be brought
up on the issues tracker of the project which can be found in the repository [6]. General
support questions are best asked in the forum [7].

The FAQ in Chapter 13 is good place to start looking if a question arises. In particular
Section 13.6 should be consulted before opening a bug report.
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1.3 Contributing Code

1.3 Contributing Code

Since Allpix Squared is a community project that benefits from active participation in
the development and code contributions from users. Users and prospective developers
are encouraged to discuss their needs either via the issue tracker of the repository [6], the
forum [7] or the developer’s mailing list to receive ideas and guidance on how to implement
a specific feature. Getting in touch with other developers early in the development cycle
avoids spending time on features which already exist or are currently under development
by other users.

An introduction to the development of Allpix Squared and its different tools is provided
in Chapter 10, including a “How to contribute” Section describing the steps necessary
to get involved in the development. Chapter 11 details the tools provided with the
repository which ease and facilitate contributions and ensure code quality.

1.4 Quick Start

This section serves as a swift introduction to Allpix Squared for users who prefer to start
quickly and learn the details while simulating. The typical user should skip the next
paragraphs and continue reading the following sections instead.

Allpix Squared provides a modular, flexible and user-friendly structure for the simulation
of independent detectors in arbitrary configurations. The framework currently relies on
the ROOT [2] and Boost.Random [8] libraries, which need to be installed and loaded
before using Allpix Squared. For many use cases, installations of Geant4 [1] and Eigen3 [9]
are required in addition.

The minimal, default installation can be obtained by executing the commands listed
below.

git clone https://gitlab.cern.ch/allpix-squared/allpix-squared
cd allpix-squared
mkdir build && cd build/
cmake ..
make install
cd ..

The binary can then be executed with the provided example configuration file as follows:

bin/allpix -c examples/example.conf

Hereafter, the example configuration can be copied and adjusted to the needs of the user.
This example contains a simple setup of two test detectors. It simulates the whole chain,
starting from the passage of the beam, the deposition of charges in the detectors, the
carrier propagation and the conversion of the collected charges to digitized pixel hits. All
generated data is finally stored on disk in ROOT TTrees or other commonly used data
formats for later analysis.

After this quick start it is highly recommended to proceed to the other chapters of this
user manual. For quickly resolving common issues, the Frequently Asked Questions may
be particularly useful.
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2 Installation

This chapter aims to provide details and instructions on how to build and install Allpix
Squared. An overview of possible build configurations is given. After installing and
loading the required dependencies, there are various options to customize the installation
of Allpix Squared. This chapter contains details on the standard installation process and
information about custom build configurations.

Alternatively, Allpix Squared can installed without building via a Docker image (see
Section 2.7) or via CVMFS (see Section 2.8).

2.1 Supported Operating Systems and Compilers

2.1.1 Operating Systems

Allpix Squared is designed to run without issues on either a recent Linux distribution
or Mac OS X. Furthermore, the continuous integration of the project ensures correct
building and functioning of the software framework on CentOS 7 (with GCC), AlmaLinux
9 and Red Hat Enterprise Linux 9 (with GCC and LLVM), Ubuntu 22.04 LTS (Docker,
GCC) and Mac OS Catalina 10.15 (AppleClang 12.0).

2.1.2 Compilers

Allpix Squared relies on functionality from the C++17 standard and therefore requires a
C++17-compliant compiler. This comprises for example GCC 9+, LLVM/Clang 4.0+
and AppleClang 10.0+. A detailed list of supported compilers can be found at [10].

2.2 Prerequisites

If the framework is to be compiled and executed on CERN’s LXPLUS service, all build
dependencies can be loaded automatically from the CVMFS file system.

The core framework is compiled separately from the individual modules and Allpix
Squared has therefore only two required external dependencies:

• ROOT 6 [2]: ROOT is used for histogramming as well as coordinate transformations.
In addition, some modules implement I/O using ROOT libraries. The latest stable
release of ROOT 6 is recommended and older versions, such as ROOT 5.x, are
not supported. Please refer to [11] for instructions on how to install ROOT.
ROOT has several components of which the GenVector package is required to
run Allpix Squared. This package is included in the default build. ROOT needs

5



2 Installation

to be built using C++17, which is accomplished by supplying the CMake flag
-DCMAKE_CXX_STANDARD=17.

• Boost.Random 1.64.0 or later [8]: Random number generator and distribution library
of the Boost project, used in order to get cross-platform portable, STL-compatible
random number distributions. While STL random number generators are portable
and guarantee to deliver the same random number sequence given the same seed,
random distributions are not, and their implementation is platform-dependent
leading to different simulation results with the same seed. Since the implementation
of some random distributions (most notably of boost::normal_distribution)
has changed in the past, a recent version is required.

For some modules, additional dependencies exist. For details about the dependencies
and their installation see Chapter 8. The following dependencies are needed to compile
the standard installation:

• Geant4 [1]: Simulates the desired particles and their interactions with matter,
depositing charges in the detectors with the help of the constructed geometry.
See the instructions in [12] for details on how to install the software. All Geant4
data sets are required to run the modules successfully, and Geant4 must be built
using C++17. For multithreading to be possible, this must also be enabled in
the Geant4 installation. It is recommended to enable the Geant4 Qt extensions
to allow visualization of the detector setup and the simulated particle tracks. A
recommended set of CMake flags to build a Geant4 package suitable for usage with
Allpix Squared are:

-DGEANT4_INSTALL_DATA=ON
-DGEANT4_USE_GDML=ON
-DGEANT4_USE_QT=ON
-DGEANT4_USE_XM=ON
-DGEANT4_USE_OPENGL_X11=ON
-DCMAKE_CXX_STANDARD=17
-DGEANT4_BUILD_MULTITHREADED=ON
-DGEANT4_BUILD_BUILTIN_BACKTRACE=OFF

• Eigen3 [9]: Vector package used to perform Runge-Kutta integration, used in some
of the charge carrier propagation modules. Eigen is available in almost all Linux
distributions through the package manager. Otherwise it can be easily installed,
comprising a header-only library.

Extra flags need to be set for building an Allpix Squared installation without these
dependencies. Details about these configuration options are given in the Section 2.5.

2.3 Downloading the Source Code

The latest version of Allpix Squared can be downloaded from the CERN Gitlab repos-
itory [13]. For production environments it is recommended to only download and use
tagged software versions, as many of the available git branches are considered development
versions and might exhibit unexpected behavior.
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2.4 Initializing the Dependencies

For developers, it is recommended to always use the latest available version from the git
master branch. The software repository can be cloned as follows:

git clone https://gitlab.cern.ch/allpix-squared/allpix-squared
cd allpix-squared

2.4 Initializing the Dependencies

Before continuing with the build, the necessary setup scripts for ROOT and Geant4
(unless a build without Geant4 modules is attempted) should be executed. In a Bash
terminal on a private Linux machine this means executing the following two commands
from their respective installation directories (replacing <root_install_dir> with the
local ROOT installation directory and likewise for Geant4):

source <root_install_dir>/bin/thisroot.sh
source <geant4_install_dir>/bin/geant4.sh

On the CERN LXPLUS service, a standard initialization script is available to load all
dependencies from the CVMFS infrastructure. This script should be executed as follows
(from the main repository directory):

source etc/scripts/setup_lxplus.sh

2.5 Configuration via CMake

Allpix Squared uses the CMake build system to configure, build and install the core
framework as well as all modules. An out-of-source build is recommended: this means
CMake should not be directly executed in the source folder. Instead, a build folder
should be created, from which CMake should be run. For a standard build without any
additional flags this implies executing:

mkdir build
cd build
cmake ..

CMake can be run with several extra arguments to change the type of installation.
These options can be set with -D<option> (see the end of this section for an example).
Currently the following options are supported:

• CMAKE_INSTALL_PREFIX: The directory to use as a prefix for installing the binaries,
libraries and data. Defaults to the source directory (where the folders bin/ and
lib/ are added).

• CMAKE_BUILD_TYPE: Type of build to install, defaults to RelWithDebInfo (compiles
with optimizations and debug symbols). Other possible options are Debug (for
compiling with no optimizations, but with debug symbols and extended tracing
using the Clang Address Sanitizer library) and Release (for compiling with full
optimizations and no debug symbols).

7



2 Installation

• MODEL_DIRECTORY: Directory to install the internal models to. Defaults to not
installing if the CMAKE_INSTALL_PREFIX is set to the directory containing the
sources (the default). Otherwise the default value is equal to the directory <
CMAKE_INSTALL_PREFIX>/share/allpix/. The install directory is automatically
added to the model search path used by the geometry model parsers to find all of
the detector models.

• BUILD_TOOLS: Enable or disable the compilation of additional tools such as the
mesh converter. Defaults to ON.

• BUILD_<ModuleName>: If the specific module should be installed or not. Defaults
to ON for most modules, however some modules with large additional dependencies
such as LCIO [14] are disabled by default. This set of parameters allows to configure
the build for minimal requirements.

• BUILD_ALL_MODULES: Build all included modules, defaulting to OFF. This overwrites
any selection using the parameters described above.

An example of a custom debug build, without the GeometryBuilderGeant4 module and
with installation to a custom directory is shown below:

mkdir build
cd build
cmake -DCMAKE_INSTALL_PREFIX=../install/ \

-DCMAKE_BUILD_TYPE=DEBUG \
-DBUILD_GeometryBuilderGeant4=OFF ..

2.6 Compilation and Installation

Compiling the framework is now a single command in the build folder created earlier
(replacing <number_of_cores> with the number of cores to use for compilation):

make -j<number_of_cores>

The compiled (non-installed) version of the executable can be found at src/exec/allpix
in the folder. Running Allpix Squared directly without installing can be useful for
developers. It is not recommended for normal users, because the correct library and
model paths are only fully configured during installation.

To install the library to the selected installation location (defaulting to the source directory
of the repository) requires the following command:

make install

The binary is now available as bin/allpix in the installation directory. The example
configuration files are not installed as they should only be used as a starting point
for your own configuration. They can however be used to check if the installation
was successful. Running the allpix binary with the example configuration using bin/
allpix -c examples/example.conf should pass the test without problems if a standard
installation is used.
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2.7 Docker Images

Docker images are provided for the framework to allow anyone to run simulations without
the need of installing Allpix Squared on their system. The only required program is the
Docker executable, all other dependencies are provided within the Docker images. In
order to exchange configuration files and output data between the host system and the
Docker container, a folder from the host system should be mounted to the container’s
data path /data, which also acts as the Docker WORKDIR location.

The following command creates a container from the latest Docker image in the project
registry and start an interactive shell session with the allpix executable already in the
$PATH. Here, the current host system path is mounted to the /data directory of the
container.

docker run --interactive --tty \
--volume "$(pwd)":/data \
--name=allpix-squared \
gitlab-registry.cern.ch/allpix-squared/allpix-squared \
bash

Alternatively it is also possible to directly start the simulation instead of an interactive
shell, e.g. using the following command:

docker run --tty --rm \
--volume "$(pwd)":/data \
--name=allpix-squared \
gitlab-registry.cern.ch/allpix-squared/allpix-squared \
"allpix -c my_simulation.conf"

where a simulation described in the configuration my_simulation.conf is directly exe-
cuted and the container terminated and deleted after completing the simulation. This
closely resembles the behavior of running Allpix Squared natively on the host system.
Of course, any additional command line arguments known to the allpix executable
described in Section 3.5 can be appended.

For tagged versions, the tag name should be appended to the image name, e.g. gitlab-
registry.cern.ch/allpix-squared/allpix-squared:v2.2.2, and a full list of avail-
able Docker containers is provided via the project’s container registry [15]. A short
description of how Docker images for this project are built can be found in Section 11.5.

2.8 Releases on CVMFS

For each release a binary tarball is created, which is published to CERN’s VM file system
(CVMFS) [16]. They can be used to run Allpix Squared without building it beforehand.
Compared to the Docker images mentioned in Section 2.7, which can run on any operating
system, binary releases are tied to a specific operating system.

Binaries for Allpix Squared are currently provided for CentOS 7 (GCC only) and
AlmaLinux 9/Red Hat Enterprise Linux 9/EL9 (both in a GCC and LLVM variant).
Details on the deployment process are given in Setcion 11.4.
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To use Allpix Squared from CVMFS, run:

source /cvmfs/clicdp.cern.ch/software/allpix-squared/<version>/<system-
specifier>/setup.sh↪

Where <version> should be replaced with the desired Allpix Squared version (e.g. 2.4.0
) and <system-specifier> with the specifier for the system CVMFS is running on
(e.g. x86_64-centos7-gcc11-opt).

To verify if Allpix Squared is working, you can run allpix --version.
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This Getting Started guide is written with a default installation in mind, meaning that
some parts may not apply if a custom installation was used. When the allpix binary is
used, this refers to the executable installed in bin/allpix in the installation path. It is
worth noting that before running any Allpix Squared simulation, ROOT and (in most
cases) Geant4 should be initialized. Refer to Section 2.4 for instructions on how to load
these libraries.

3.1 Configuration Files

The framework is configured with simple human-readable configuration files. The config-
uration format is described in detail in Section 4.3. It consists of several section headers
within [ and ] brackets, and a section without header at the start. Each of these sections
contains a set of key/value pairs separated by the = character. Comments are indicated
using the hash symbol (#).

The framework has the following three required layers of configuration files:

• The main configuration: The most important configuration file and the file that is
passed directly to the binary. Contains both the global framework configuration
and the list of modules to instantiate together with their configuration. An example
can be found in the repository at examples/example.conf. More details and a
more thorough example are found in Section 3.2, several advanced simulation chain
configurations are presented in Chapter 9.

• The geometry configuration: It is passed to the framework to determine the detec-
tor setup and passive materials. Describes the detector setup, containing the posi-
tion, orientation and model type of all detectors. Optionally, passive materials can
be added to this configuration. Examples are available in the repository at examples
/ example_detector.conf or examples/example_detector_passive.conf. In-
troduced in Section 3.3.

• The detector model configuration: Contains the parameters describing a particular
type of detector. Several models are already provided by the framework, but new
types of detectors can easily be added. See models/test.conf in the repository
for an example. Please refer to Section 10.5 for more details about adding new
models.
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3.1.1 Parsing Types and Units

The Allpix Squared framework supports the use of a variety of types for all configuration
values. The module specifies how the value type should be interpreted. An error will
be raised if either the key is not specified in the configuration file, the conversion to the
desired type is not possible, or if the given value is outside the domain of possible options.
Please refer to the Chapter 8 for the list of module parameters and their types. Parsing
the value roughly follows common-sense (more details can be found in Section 4.3). A
few special rules do apply:

• If the value is a string, it may be enclosed by a single pair of double quotation
marks ("), which are stripped before passing the value to the modules. If the string
is not enclosed by quotation marks, all whitespace before and after the value is
erased. If the value is an array of strings, the value is split at every whitespace or
comma (,) that is not enclosed in quotation marks.

• If the value is a boolean, either numerical (0, 1) or textual (false, true) repre-
sentations are accepted.

• If the value is a relative path, that path will be made absolute by adding the
absolute path of the directory that contains the configuration file where the key is
defined.

• If the value is an arithmetic type, it may have a suffix indicating the unit. The
list of base units is given in the table below.

Quantity Default unit Auxiliary units

Unity 1 -
Length mm

(millimeter)
nm (nanometer), um (micrometer), cm (centimeter),
dm (decimeter), m (meter), km (kilometer)

Time ns
(nanosecond)

ps (picosecond), us (microsecond), ms (millisecond), s
(second)

Energy MeV (mega-
electronvolt)

eV (electronvolt), keV (kiloelectronvolt), GeV
(gigaelectronvolt)

Tempera-
ture

K (kelvin) -

Charge e (elementary
charge)

ke (kiloelectrons), fC (femtocoulomb), C (coulomb)

Voltage MV
(megavolt)

V (volt), kV (kilovolt)

Magnetic
field
strength

kT (kilotesla) T (tesla), mT (millitesla)

Angle rad (radian) deg (degree), mrad (milliradian)
Radiation
fluence

Neq (1-MeV
neutron-
equivalent)

-
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Warning: If no units are specified, values will always be interpreted in the base units
of the framework. In some cases this can lead to unexpected results. E.g. specifying a
bias voltage as bias_voltage = 50 results in an applied voltage of 50 MV. Therefore
it is strongly recommended to always specify units in the configuration files.

The internal base units of the framework are not chosen for user convenience but for
maximum precision of the calculations and in order to avoid the necessity of conversions
in the code.

Combinations of base units can be specified by using the multiplication sign * and the
division sign / that are parsed in linear order (thus 𝑉 𝑚

𝑠2 should be specified as V*m/s/
s). The framework assumes the default units if the unit is not explicitly specified. It
is recommended to always specify the unit explicitly for all parameters that are not
dimensionless as well as for angles.

Examples of specifying key/values pairs of various types are given below:

# All whitespace at the front and back is removed
first_string = string_without_quotation
# All whitespace within the quotation marks is preserved
second_string = " string with quotation marks "
# Keys are split on whitespace and commas
string_array = "first element" "second element","third element"
# Elements of matrices with more than one dimension are separated
# using square brackets
string_matrix_3x3 = [["1","0","0"], ["0","cos","-sin"], ["0","sin",cos]]
# If the matrix is of dimension 1xN, the outer brackets have to be
# added explicitly
integer_matrix_1x3 = [[10, 11, 12]]
# Integer and floats can be specified in standard formats
int_value = 42
float_value = 123.456e9
# Units can be passed to arithmetic types
energy_value = 1.23MeV
time_value = 42ns
# Units are combined in linear order without grouping or implicit

brackets↪

acceleration_value = 1.0m/s/s
# Thus the quantity below is the same as 1.0deg*kV*K/m/s
random_quantity = 1.0deg*kV/m/s*K
# Relative paths are expanded to absolute paths, e.g. the following

value↪

# will become "/home/user/test" if the configuration file is located
# at "/home/user"
output_path = "test"
# Booleans can be represented in numerical or textual style
my_switch = true
my_other_switch = 0
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Note: In some places, providing configuration variables with units is mandatory.
In case the respective input should be interpreted as base units, or without units
such as a weighting potential, the parameter can be provided as empty string,
i.e. observable_units = "".

3.2 Main Configuration

The main configuration consists of a set of sections specifying the modules used. All
modules are executed in the linear order in which they are defined. There are a few
section names which have a special meaning in the main configuration, namely the
following:

• The global (framework) header sections: These are all zero-length section headers
(including the one at the beginning of the file) and all sections marked with the
header [Allpix] (case-insensitive). These are combined and accessed together
as the global configuration, which contain all parameters of the framework itself
(see Section 3.4 for details). All key-value pairs defined in this section are also
inherited by all individual configurations as long the key is not defined in the
module configuration itself.

• The ignore header sections: All sections with name [Ignore] (case-insensitive)
are ignored. Key-value pairs defined in the section as well as the section itself are
discarded by the parser. These section headers are useful for quickly enabling and
disabling individual modules by replacing their actual name by an ignore section
header.

All other section headers are used to instantiate modules of the respective name. Installed
modules are loaded automatically. If problems arise please review the loading rules
described in Section 4.4.

Modules can be specified multiple times in the configuration files, depending on their type
and configuration. The type of the module determines how the module is instantiated:

• If the module is unique, it is instantiated only a single time irrespective of the
number of detectors. These kinds of modules should only appear once in the whole
configuration file unless different inputs and outputs are used, as explained in
Section 4.7.

• If the module is detector-specific, it is instantiated once for every detector it is
configured to run on. By default, an instantiation is created for all detectors defined
in the detector configuration file (see Section 3.3, lowest priority) unless one or
both of the following parameters are specified:

• name: An array of detector names the module should be executed for. Replaces
all global and type-specific modules of the same kind (highest priority).
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• type: An array of detector types the module should be executed for. Instanti-
ated after considering all detectors specified by the name parameter above.
Replaces all global modules of the same kind (medium priority).

Within the same module, the order of the individual instances in the configu-
ration file is irrelevant.

A valid example configuration using the detector configuration above is:

# Key is part of the empty section and therefore the global
configuration↪

string_value = "example1"
# The location of the detector configuration is a global parameter
detectors_file = "manual_detector.conf"
# The Allpix section is also considered global and merged with the above
[Allpix]
another_random_string = "example2"

# First run a unique module
[MyUniqueModule]
# This module takes no parameters
# [MyUniqueModule] cannot be instantiated another time

# Then run detector modules on different detectors
# First run a module on the detector of type Timepix
[MyDetectorModule]
type = "timepix"
int_value = 1
# Replace the module above for `dut` with a specialized version
# It does not inherit any parameters from earlier modules
[MyDetectorModule]
name = "dut"
int_value = 2
# Run the module on the remaining unspecified detector (`telescope1`)
[MyDetectorModule]
# int_value is not specified, so it uses the default value

3.3 Detector Configuration

The detector configuration consists of a set of sections describing the detectors in the
setup. Each section starts with a header describing the name used to identify the detector;
all names are required to be unique. Every detector has to contain all of the following
parameters:

• A string referring to the type of the detector model. The model should exist in the
search path as described in Section 5.2.

• The 3-dimensional position in the world frame in the order x, y, z. See Section
5.1 for details.
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• The orientation specified as X-Y-Z extrinsic Euler angles. This means the detector
is rotated first around the world’s X-axis, then around the world’s Y-axis and then
around the world’s Z-axis. Alternatively the orientation can be set as Z-Y-X or
Z-X-Z extrinsic Euler angles, refer to section Section 5.1 for details.

In addition to these required parameters, the following parameters allow to randomly
misalign the respective detector from its initial position. The values are interpreted as
width of a normal distribution centered around zero. In order to reproduce misalignments,
a fixed random seed for the framework core can be used as explained in Section 3.4.
Misalignment can be introduced both for shifts along the three global axes and the three
rotations angles with the following parameters:

• The parameter alignment_precision_position allows the specification of the
alignment precision along the three global axes. Each value represents the Gaussian
width with which the detector will be randomly misaligned along the corresponding
axis.

• The parameter alignment_precision_orientation allows to specify the align-
ment precision in the three rotation angles defined by the orientation parameter.
The misalignments are added to the individual angles before combining them into
the final rotation as defined by the orientation_mode parameter.

The optional parameter role accepts the values active for detectors and passive for
passive elements in the setup. If no value is given, active is taken as the default value.

Furthermore it is possible to specify certain parameters of the detector, which is explained
in more detail in Section 5.2. This allows to quickly adapt e.g. the sensor thickness of a
certain detector without altering the actual detector model file.

An example configuration file describing a setup with one CLICpix2 detector and two
Timepix [17] models is the following:

# Placement of first detector, named "telescope1"
[telescope1]
# Type to the detector is the "timepix" model
type = "timepix"
# Position the detector at the origin of the world frame
position = 0 0 0mm
# Default orientation: perpendicular to the incoming beam
orientation = 0 0 0

# Placement of the second detector, the "DUT (device under test)
[dut]
# Detector model is "clicpix2"
type = "clicpix2"
# Position is downstream of "telescope1":
position = 100um 100um 25mm
# Rotated by 20 degrees around the world x-axis
orientation = 20deg 0 0

# Third detector is downstream "telescope2"
[telescope2]
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# Detector type again is "timepix"
type = "timepix"
# Placement 50 mm downstream of the first detector
position = 0 0 50mm
# Default orientation
orientation = 0 0 0

This configuration is used in the rest of this chapter for explaining concepts. A visualiza-
tion of the setup is given below.

Visualization of a Pion passing through the telescope setup defined in the detector
configuration file. A secondary particle is produced in the material of the detector in the
center.

3.3.1 Passive material configuration

Descriptions of passive materials can be added to the detector setup via a set of sections,
with a syntax similar to the detector configuration. Passive geometry entries are identified
by the role parameter set to passive. Each section starts with a header describing the
name used to identify the passive material; all names are required to be unique.

Every passive material has to contain all of the following parameters:
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• The position and orientation of the material as described for the detector, see
Section 3.3.

• A string referring to the type of the passive material. The model should be
interpreted by the module constructing the passive material, for example the
GeometryBuilderGeant4 module.

• A string referring to the material of the passive material. The materials for the
GeometryBuilderGeant4 module are defined in the module documentation.

• A set of size parameters specific for the model that is chosen. All size parameters
that describe the total length of something are placed such that half of this total
length extends from each side of the given position. If a parameter describes the
radius, this means the radius will extend from the position on both sides, making
its total size two times the radius in the given direction. The size parameters for
the specific models in the GeometryBuilderGeant4 module are described in the
module documentation.

In addition, an optional string referring to the mother_volume, which defines another
passive material the volume will be placed in, can be specified.

Note: If a mother volume is chosen, the position defined in the configuration file
will be relative to the center of the mother volume. An error will be given if the
specified mother volume is too small for the specified size or position of this volume.
Per default, the mother volume is the world frame.

Note: If the mother_volume is a hollow material, only the non-hollow part of the
material is considered part of the material. Placing a passive volume in the hollow
part requires a different mother_volume.

Similar to the detector configuration, the parameters orientation_mode (see Section 5.1),
alignment_precision_position and alignment_precision_orientation (see Section
3.3) can be used optionally to define the rotation order and a possible misalignment of
passive materials.

An example configuration file describing a set of passive materials with different configu-
ration options is the following:

# Placement of a box made of lead
[box1]
type = "box"
size = 100mm 100mm 100mm
position = 200mm 200mm 0mm
orientation = 0 0deg 0deg
material = "lead"
role = "passive"
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# Placement of a box made of lead
[box2]
type = "box"
size = 100mm 100mm 100mm
position = 0mm 200mm 0mm
orientation = 0 0deg 0deg
material = "lead"
role = "passive"

# Placement of a box made of lead, with a hollow opening
[box3]
type = "box"
size = 100mm 100mm 100mm
inner_size = 80mm 80mm 100mm
position = -200mm 200mm 0mm
orientation = 0 0deg 0deg
material = "lead"
role = "passive"

# Placement of a box made of aluminum, inside box1
[box4]
type = "box"
size = 50mm 50mm 50mm
position = 0mm 0mm -0mm
orientation = 0 0deg 0deg
material = "aluminum"
mother_volume = box1
role = "passive"

# Placement of a box made of the world material, inside box2
[box5]
type = "box"
size = 50mm 50mm 50mm
position = 0mm 0mm -0mm
orientation = 0 0deg 0deg
material = "world_material"
mother_volume = box2
role = "passive"

# Placement of a cylinder made of lead, with a hollow opening
[cylinder1]
type = "cylinder"
outer_radius = 50mm
inner_radius = 40mm
length = 100mm
position = 200mm 0mm 0mm
orientation = 0 0deg 0deg
material = "lead"
role = "passive"
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# Placement of a cylinder made of lead
[cylinder2]
type = "cylinder"
outer_radius = 50mm
length = 100mm
position = 0mm 0mm 0mm
orientation = 0 0deg 0deg
material = "lead"
role = "passive"

# Placement of a cylinder made of lead, with a hollow opening, starting
the building at an angle of 60deg and continue for 270deg↪

[cylinder3]
type = "cylinder"
outer_radius = 50mm
inner_radius = 20mm
length = 100mm
starting_angle = 60deg
arc_length = 270deg
position = -200mm 0mm 0mm
orientation = 0 0deg 0deg
material = "lead"
role = "passive"

# Placement of a cylinder made of the world material, inside cylinder2
[cylinder4]
type = "cylinder"
outer_radius = 25mm
length = 50mm
position = 0mm 0mm 0mm
orientation = 0 0deg 0deg
material = "world_material"
mother_volume = cylinder2
role = "passive"

# Placement of a sphere made of lead
[sphere1]
type = "sphere"
outer_radius = 50mm
position = 200mm -200mm 0mm
orientation = 0 0deg 0deg
material = "lead"
role = "passive"

# Placement of a sphere made of lead, with a hollow opening, starting
the building at a phi angle of 90deg and continue for 180deg.↪

[sphere2]
type = "sphere"
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outer_radius = 50mm
inner_radius = 30mm
starting_angle_phi = 90deg
arc_length_phi = 180deg
position = 0mm -200mm 0mm
orientation = 0 0deg 0deg
material = "lead"
role = "passive"

# Placement of a sphere made of lead, starting the building at a theta
angle of 0deg and continue for 45deg.↪

[sphere3]
type = "sphere"
outer_radius = 50mm
arc_length_theta = 45deg
position = -200mm -200mm 0mm
orientation = 0 -90deg 0deg
material = "lead"
role = "passive"
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Visualization of the setup described in the geometry file.

3.4 Framework Parameters

The Allpix Squared framework provides a set of global parameters which control and
alter its behavior:

• detectors_file: Location of the file describing the detector configuration (intro-
duced in Section 3.3). The only required global parameter: the framework will fail
to start if it is not specified.

• number_of_events: Determines the total number of events the framework should
simulate. Defaults to one (simulating a single event).

• skip_events: A number of events (and therefore event seeds) to be skipped at start
of the run. After skipping, the full number_of_events will be processed starting
from the new event seed. Defaults to zero, i.e. starting with the first event seed.

• root_file: Location relative to the output_directory where the ROOT output
data of all modules will be written to. The file extension .root will be appended if
not present. Default value is modules.root. Directories within the ROOT file will
be created automatically for all module instantiations.

• log_level: Specifies the lowest log level which should be reported. Possible
values are FATAL, STATUS, ERROR, WARNING, INFO, DEBUG, TRACE and PRNG where
all options are case-insensitive. Defaults to the WARNING level. More details and
information about the log levels, including how to change them for a particular
module, can be found in Section 3.8. Can be overwritten by the -v parameter on
the command line (see Section 3.5).

• log_format: Determines the log message format to display. Possible options are
SHORT, DEFAULT and LONG, where all options are case-insensitive. More information
can be found in Section 3.8.

• log_file: File where the log output should be written to in addition to printing to
the standard output (usually the terminal). Only writes to standard output if this
option is not provided. Another (additional) location to write to can be specified
on the command line using the -l parameter (see Section 3.5).

• output_directory: Directory to write all output files into. Subdirectories are
created automatically for all module instantiations. This directory will also contain
the root_file specified via the parameter described above. Defaults to the current
working directory with the subdirectory output/ attached.

• purge_output_directory: Decides whether the content of an already existing
output directory is deleted before a new run starts. Defaults to false, i.e. files are
kept but will be overwritten by new files created by the framework.

• deny_overwrite: Forces the framework to abort the run and throw an exception
when attempting to overwrite an existing file. Defaults to false, i.e. files are
overwritten when requested. This setting is inherited by all modules, but can be
overwritten in the configuration section of each of the modules.
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• random_seed: Seed for the global random seed generator used to initialize seeds
for module instantiations. The 64-bit Mersenne Twister mt19937_64 from the C++
Standard Library is used to generate seeds. A random seed from multiple entropy
sources will be generated if the parameter is not specified. Can be used to reproduce
an earlier simulation run.

• random_seed_core: Optional seed used for pseudo-random number generators in
the core components of the framework. If not set explicitly, the value random_seed
+ 1 is used. This generator is used to calculate alignment offsets as described in

Section 5.1.

• library_directories: Additional directories to search for module libraries, before
searching the default paths. See Section 4.4 for more information.

• model_paths: Additional files or directories from which detector models should be
read besides the standard search locations.

• performance_plots: Enable the creation of performance plots showing the pro-
cessing time required per event both for individual modules and the full module
stack. Defaults to false.

• multithreading: Enable multithreading for the framework. Defaults to true.
More information about multithreading can be found in Section 4.3.

• workers: Specify the number of workers to use in total, should be strictly larger
than zero. Only used if multithreading is set to true. Defaults to the number
of native threads available on the system minus one, if this can be determined,
otherwise one thread is used.

• buffer_per_worker: Specify the buffer depth available per worker for buffered
modules to cache partially processed events until execution in the correct order can
be guaranteed (see Section 4.10). Defaults to 256.

3.5 The allpix Executable

The allpix executable functions as the interface between the user and the framework.
It is primarily used to provide the main configuration file, but also allows to add and
overwrite options from the main configuration file. This is both useful for quick testing
as well as for batch processing of simulations.

The executable handles the following arguments:

• -c <file>: Specifies the configuration file to be used for the simulation, relative
to the current directory. This is the only required argument, the simulation will fail
to start if this argument is not given.

• -l <file>: Specify an additional location to forward log output to, besides standard
output and the location specified in the framework parameters explained in Section
3.4.
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• -v <level>: Sets the global log verbosity level, overwriting the value specified in
the configuration file described in Section 3.4. Possible values are FATAL, STATUS,
ERROR, WARNING, INFO and DEBUG, TRACE and PRNG where all options are case-
insensitive. The module specific logging level introduced in Section 3.8 is not
overwritten.

• -j <workers>: Enables multithreaded event processing with the given number
of worker threads. This is equivalent to passing the framework parameters -o
multithreading=true -o workers=<workers> to the executable.

• --version: Prints the version and build time of the executable and terminates the
program.

• -o <option>: Passes extra framework or module options which are added and
overwritten in the main configuration file. This argument may be specified multiple
times, to add multiple options. Options are specified as key/value pairs in the same
syntax as used in the configuration files (refer to Section 4.2 for more details), but
the key is extended to include a reference to a configuration section or instantiation
in shorthand notation. There are three types of keys that can be specified:

• Keys to set framework parameters: These have to be provided in exactly
the same way as they would be in the main configuration file (a section does not
need to be specified). An example to overwrite the standard output directory
would be allpix -c <file> -o output_directory="run123456".

• Keys for module configurations: These are specified by adding a dot
(.) between the module and the actual key as it would be given in the
configuration file (thus module.key). An example to overwrite the deposited
particle to a positron would be allpix -c <file> -o DepositionGeant4.
particle_type="e+".

• Keys to specify values for a particular module instantiation: The identifier
of the instantiation and the name of the actual key are split by a dot (.), in
the same way as for keys for module configurations (thus identifier.key).
The unique identifier for a module can contains one or more colons (:) to
distinguish between various instantiations of the same module. The exact
name of an identifier depends on the name of the detector and the optional
input and output name. Those identifiers can be extracted from the logging
section headers. An example to change the temperature of propagation for a
particular instantiation for a detector named dut could be allpix -c <file
> -o GenericPropagation:dut.temperature=273K.

Note that only the single argument directly following the -o is interpreted as the
option. If there is whitespace in the key/value pair this should be properly enclosed
in quotation marks to ensure the argument is parsed correctly.

• -g <option>: Passes extra detector options which are added and overwritten in
the detector configuration file. This argument can be specified multiple times,
to add multiple options. The options are parsed in the same way as described
above for module options, but only one type of key can be specified to overwrite
an option for a single detector. These are specified by adding a dot (.) between
the detector and the actual key as it would be given in the detector configuration
file (thus detector.key). This method also works for customizing detector models
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as described in Section 5.2. An example to overwrite the sensor thickness for a
particular detector named detector1 to 50um would be allpix -c <file> -g
detector1.sensor_thickness=50um.

No interaction with the framework is possible during the simulation. Signals can however
be send using keyboard shortcuts to terminate the simulation, either gracefully or with
force. The executable understand the following signals:

• SIGINT (CTRL+C): Request a graceful shutdown of the simulation. This means the
currently processed events are finished, while events placed on the buffer as well
as all additionally requested events from the configuration file are ignored. After
finishing the current events, the finalization stage is run for every module to ensure
that the simulation terminates properly. This signal can be useful when too many
events are specified and the simulation takes too long to finish entirely, but the
output generated so far should still be kept.

• SIGTERM: Same as SIGINT, request a graceful shutdown of the simulation. This
signal is emitted e.g. by the kill command or by cluster computing schedulers to
ask for a termination of the job.

• SIGQUIT (CTRL+\): Forcefully terminates the simulation. It is not recommended
to use this signal as it will normally lead to the loss of all generated data. This
signal should only be used when graceful termination is for any reason not possible.

3.6 Setting up the Simulation Chain

In the following, the framework parameters are used to set up a fully functional simulation.
Module parameters are shortly introduced when they are first used. For more details about
the module parameters, the respective module documentation in Chapter 8 should be
consulted. A typical simulation in Allpix Squared will contain the following components:

• The geometry builder, responsible for creating the external Geant4 geometry from
the internal geometry. In this document, internal geometry refers to the detector
parameters used by Allpix Squared for coordinate transformations and conversions
throughout the simulation, while external geometry refers to the constructed Geant4
geometry used for charge carrier deposition (and possibly visualization).

• The deposition module that simulates the particle beam creating charge carriers
in the detectors using the provided physics list (containing a description of the
simulated interactions) and the geometry created above.

• A propagation module that propagates the charges through the sensor.

• A transfer module that transfers the charges from the sensor electrodes and assigns
them to a pixel of the readout electronics.

• A digitizer module which converts the charges in the pixel to a detector hit,
simulating the front-end electronics response.

• An output module, saving the data of the simulation. The Allpix Squared standard
file format is a ROOT TTree, which is described in detail in Section 4.7.
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In this example, charge carriers will be deposited in the three sensors defined in the
detector configuration file from Section 3.3. All charge carriers deposited in the different
sensors will be propagated and digitized. Finally, monitoring histograms for the device
under test (DUT) will be recorded in the framework’s main ROOT file and all simulated
objects, including the entry and exit positions of the simulated particles (Monte Carlo
truth), will be stored in a ROOT file using the Allpix Squared format. An example
configuration file implementing this would look like:

# Global configuration
[Allpix]
# Simulate a total of 5 events
number_of_events = 5
# Use the short logging format
log_format = "SHORT"
# Location of the detector configuration
detectors_file = "manual_detector.conf"

# Read and instantiate the detectors and construct the Geant4 geometry
[GeometryBuilderGeant4]

# Initialize physics list and particle source
[DepositionGeant4]
# Use a Geant4 physics lists with EMPhysicsStandard_option3 enabled
physics_list = FTFP_BERT_LIV
# Use a charged pion as particle
particle_type = "pi+"
# Set the energy of the particle
source_energy = 120GeV
# Origin of the beam
source_position = 0 0 -12mm
# The direction of the beam
beam_direction = 0 0 1
# Use a single particle in a single event
number_of_particles = 1

# Propagate the charge carriers through the sensor
[GenericPropagation]
# Set the temperature of the sensor
temperature = 293K
# Propagate multiple charges at once
charge_per_step = 50

# Transfer the propagated charges to the pixels
[SimpleTransfer]
max_depth_distance = 5um

# Digitize the propagated charges
[DefaultDigitizer]
# Noise added by the readout electronics
electronics_noise = 110e
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# Threshold for a hit to be detected
threshold = 600e
# Threshold dispersion
threshold_smearing = 30e
# Noise added by the digitisation
qdc_smearing = 100e

# Save histograms to the ROOT output file
[DetectorHistogrammer]
# Save histograms for the "dut" detector only
name = "dut"

# Store all simulated objects to a ROOT file with TTrees
[ROOTObjectWriter]
# File name of the output file
file_name = "allpix-squared-output"
# Ignore initially deposited charges and propagated carriers:
exclude = DepositedCharge, PropagatedCharge

This configuration is available in the repository [13] at etc/manual.conf. The detector
configuration file can be found at etc/manual_detector.conf.

The simulation is started by passing the path of the main configuration file to the allpix
executable as follows:

allpix -c etc/manual.conf

The detector histograms such as the hit map are stored in the ROOT file output/modules
.root in the TDirectory DetectorHistogrammer/.

If problems occur when exercising this example, it should be made sure that an up-to-date
and properly installed version of Allpix Squared is used (see the installation instructions
in Chapter 2). If modules or models fail to load, more information about potential issues
with the library loading can be found in the detailed framework description in Section
4.4.

3.7 Extending the Simulation Chain

In the following, a few basic modules will be discussed which may be of use during a first
simulation.

3.7.1 Visualization

Displaying the geometry and the particle tracks helps both in checking and interpreting
the results of a simulation. Visualization is fully supported through Geant4, supporting
all the options provided by Geant4 [18]. Using the Qt viewer with OpenGL driver is the
recommended option as long as the installed version of Geant4 is built with Qt support
enabled.
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To add the visualization, the VisualizationGeant4 section should be added at the end
of the configuration file. An example configuration with some useful parameters is given
below:

[VisualizationGeant4]
# Use the Qt gui
mode = "gui"

# Set opacity of the detector models (in percent)
opacity = 0.4
# Set viewing style (alternative is 'wireframe')
view_style = "surface"

# Color trajectories by charge of the particle
trajectories_color_mode = "charge"
trajectories_color_positive = "blue"
trajectories_color_neutral = "green"
trajectories_color_negative = "red"

If Qt is not available, a VRML viewer can be used as an alternative, however it is
recommended to reinstall Geant4 with the Qt viewer included as it offers the best
visualization capabilities. The following steps are necessary in order to use a VRML
viewer:

• A VRML viewer should be installed on the operating system. Good options are
FreeWRL or OpenVRML.

• Subsequently, two environmental parameters have to be exported to the shell environ-
ment to inform Geant4 about the configuration: G4VRMLFILE_VIEWER should point
to the location of the viewer executable and should G4VRMLFILE_MAX_FILE_NUM
typically be set to 1 to prevent too many files from being created.

• Finally, the configuration section of the visualization module should be altered as
follows:

[VisualizationGeant4]
# Do not start the Qt gui
mode = "none"
# Use the VRML driver
driver = "VRML2FILE"

More information about all possible configuration parameters can be found in the
VisualizationGeant4 documentation.

3.7.2 Electric Fields

By default, detectors do not have an electric field associated with them, and no bias
voltage is applied. A field can be added to each detector using the ElectricFieldReader
module.

The section below calculates a linear electric field for every point in active sensor volume
based on the depletion voltage of the sensor and the applied bias voltage. The sensor is
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always depleted from the implant side. The direction of the electric field depends on the
sign of the bias voltage as described in the ElectricFieldReader documentation.

# Add an electric field
[ElectricFieldReader]
# Set the field type to `linear`
model = "linear"
# Applied bias voltage to calculate the electric field from
bias_voltage = -50V
# Depletion voltage at which the given sensor is fully depleted
depletion_voltage = -10V

Allpix Squared also provides the possibility to utilize a full electrostatic TCAD simulation
for the description of the electric field. In order to speed up the lookup of the electric field
values at different positions in the sensor, the adaptive TCAD mesh has to be interpolated
and transformed into a regular grid with configurable feature size before use. Allpix
Squared comes with a converter tool which reads TCAD DF-ISE files from the sensor
simulation, interpolates the field, and writes this out in an appropriate format. A more
detailed description of the tool can be found in Section 14.2. An example electric field
can be found in the repository [13] at etc/example_electric_field.init. A detailed
description of supported field geometries and their mapping onto the sensor plane is
provided in Section 4.5.

Electric fields can be attached to a specific detector using the standard syntax for detector
binding. A possible configuration would be:

[ElectricFieldReader]
# Bind the electric field to the detector named `dut`
name = "dut"
# Specify that the model is provided as meshed electric field map format,

e.g. converted from TCAD↪

model = "mesh"
# Name of the file containing the electric field
file_name = "example_electric_field.init"

3.7.3 Magnetic Fields

For simulating the detector response in the presence of a magnetic field with Allpix
Squared, a constant, global magnetic field can be defined. By default, it is turned off. A
field can be added to the whole setup using the unique module MagneticFieldReader,
passing the field vector as parameter:

# Add a magnetic field
[MagneticFieldReader]
# Constant magnetic field (currently this is the default value)
model = "constant"
# Magnetic field vector
magnetic_field = 0mT 3.8T 0T
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The global magnetic field is used by the interface to Geant4 and therefore exposes
charged primary particles to the Lorentz force, and as a property of each detector present,
enabling a Lorentz drift of the charge carriers in the active sensors, if supported by the
used propagation modules. See the Chapter 8 for more information on the available
propagation modules.

Currently, only constant magnetic fields can be applied. For all parameters, refer to the
MagneticFieldReader documentation.

3.8 Logging and Verbosity Levels

Allpix Squared is designed to identify mistakes and implementation errors as early as
possible and to provide the user with clear indications about the problem. The amount
of feedback can be controlled using different log levels which are inclusive, i.e. lower levels
also include messages from all higher levels. The global log level can be set using the
global parameter log_level. The log level can be overridden for a specific module by
adding the log_level parameter to the respective configuration section. The following
log levels are supported:

• FATAL: Indicates a fatal error that will lead to direct termination of the application.
Typically only emitted in the main executable after catching exceptions as they are
the preferred way of fatal error handling (as discussed in Section 4.9). An example
of a fatal error is an invalid configuration parameter.

• STATUS: Important information about the status of the simulation. Is only used
for messages which have to be logged in every run such as the global seed for
pseudo-random number generators and the current progress of the run.

• ERROR: Severe error that should not occur during a normal well-configured
simulation run. Frequently leads to a fatal error and can be used to provide extra
information that may help in finding the problem (for example used to indicate the
reason a dynamic library cannot be loaded).

• WARNING: Indicate conditions that should not occur normally and possibly lead
to unexpected results. The framework will however continue without problems after
a warning. A warning is for example issued to indicate that an output message is
not used and that a module may therefore perform unnecessary work.

• INFO: Information messages about the physics process of the simulation. Contains
summaries of the simulation details for every event and for the overall simulation.
Should typically produce maximum one line of output per event and module.

• DEBUG: In-depth details about the progress of the simulation and all physics
details of the simulation. Produces large volumes of output per event, and should
therefore only be used for debugging the physics simulation of the modules.

• TRACE: Messages to trace what the framework or a module is currently doing.
Unlike the DEBUG level, it does not contain any direct information about the
physics of the simulation but rather indicates which part of the module or frame-
work is currently running. Mostly used for software debugging or determining
performance bottlenecks in the simulations.
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• PRNG: This level enables printing of every single pseudo-random number requested
from any generator used in the framework. This can be useful in order to investigate
random number distribution among threads and events.

Warning: It is not recommended to set the log_level higher than WARNING in
a typical simulation as important messages may be missed. Setting too low logging
levels should also be avoided since printing many log messages will significantly slow
down the simulation.

The logging system supports several formats for displaying the log messages. The
following formats are supported via the global parameter log_format or the individual
module parameter with the same name:

• SHORT: Displays the data in a short form. Includes only the first character of
the log level followed by the configuration section header and the message.

• DEFAULT: The default format. Displays system time, log level, section header
and the message itself.

• LONG: Detailed logging format. Displays all of the above but also indicates source
code file and line where the log message was produced. This can help in debugging
modules.

More details about the logging system and the procedure for reporting errors in the code
can be found in Section 4.8 and Section 4.9.

3.9 Storing Output Data

Storing the simulation output to persistent storage is of primary importance for subsequent
reprocessing and analysis. Allpix Squared primarily uses ROOT for storing output data,
given that it is a standard tool in High-Energy Physics and allows objects to be written
directly to disk. The ROOTObjectWriter automatically saves all objects created in a
TTree [19]. It stores separate trees for all object types and creates branches for every
unique message name: a combination of the detector, the module and the message output
name as described in Section 4.7. For each event, values are added to the leaves of the
branches containing the data of the objects. This allows for easy histogramming of the
acquired data over the total run using standard ROOT utilities.

Relations between objects within a single event are internally stored as ROOT TRefs [20],
allowing retrieval of related objects as long as these are loaded in memory. An exception
will be thrown when trying to access an object which is not in memory. Refer to Section
7.2 for more information about object history.

In order to save all objects of the simulation, a ROOTObjectWriter module has to be
added with a file_name parameter to specify the file location of the created ROOT file
in the global output directory. The file extension .root will be appended if not present.
The default file name is data, i.e. the file data.root is created in the output directory.
To replicate the default behaviour the following configuration can be used:
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# The object writer listens to all output data
[ROOTObjectWriter]
# specify the output file (default file name is used if omitted)
file_name = "data"

The generated output file can be analyzed using ROOT macros. A simple macro for
converting the results to a tree with standard branches for comparison is described in
Section 14.3.

It is also possible to read object data back in, in order to dispatch them as messages
to further modules. This feature is intended to allow splitting the execution of parts of
the simulation into independent steps, which can be repeated multiple times. The tree
data can be read using a ROOTObjectReader module, which automatically dispatches all
objects to the correct module instances. An example configuration for using this module
is:

# The object reader dispatches all objects in the tree
[ROOTObjectReader]
# path to the output data file, absolute or relative to the

configuration file↪

file_name = "../output/data.root"

The Allpix Squared framework comes with a few more output modules which allow data
storage in different formats, such as the LCIOWriter for the LCIO persistency event data
model [14], the RCEWriter for the native RCE file format [21], or the CorryvreckanWriter
for the Corryvreckan reconstruction framework data format. Consult Chapter 8 for all
output modules.
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This chapter details the technical implementation of the Allpix Squared framework and is
mostly intended to provide insight into the gearbox to potential developers and interested
users.

4.1 Main Components

The framework consists of the following four main components that together form Allpix
Squared:

1. Core: The core contains the internal logic to initialize the modules, provide the
geometry, facilitate module communication and run the event sequence. The
core keeps its dependencies to a minimum (it only relies on ROOT) and remains
independent from the other components as far as possible. It is the main component
discussed in this section.

2. Modules: A module is a set of methods which is executed as part of the simulation
chain. Modules are built as separate libraries and loaded dynamically on demand
by the core. The available modules and their parameters are discussed in detail in
Chapter 8.

3. Objects: Objects form the data passed between modules using the message
framework provided by the core. Modules can listen and bind to messages with
objects they wish to receive. Messages are identified by the object type they are
carrying, but can also be renamed to allow the direction of data to specific modules,
facilitating more sophisticated simulation setups. Messages are intended to be
read-only and a copy of the data should be made if a module wishes to change the
data. All objects are compiled into a separate library which is automatically linked
to every module. More information about the messaging system and the supported
objects can be found in Section 4.6.

4. Physics: In many cases, several modules depend on the same underlying physics
models. These models are separated from the modules themselves. The implemented
physics models are described in Chapter 6.

5. Tools: Allpix Squared provides a set of header-only ‘tools’ and a shared library
that allow access to common logic shared by various modules. Examples are
the Runge-Kutta solver [22] implemented using the Eigen3 library and the set of
template specializations for ROOT and Geant4 configurations. More information
about the tools can be found in Chapter 14. This set of tools is different from the
set of core utilities the framework itself provides, which is part of the core and
explained in Section 4.8.
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Finally, Allpix Squared provides an executable which instantiates the core of the frame-
work, receives and distributes the configuration object and runs the simulation chain.

The chapter is structured as follows. Section 4.2 provides an overview of the architectural
design of the core and describes its interaction with the rest of the Allpix Squared
framework. The different subcomponents such as configuration, modules and messages
are discussed in thereafter. The chapter closes with a description of the available
framework tools in Section 4.8. Some C++ code will be provided in the text, but readers
not interested may skip the technical details.

4.2 Architecture of the Core

The core is constructed as a light-weight framework which provides various subsystems
to the modules. It contains the part of the software responsible for instantiating and
running the modules from the supplied configuration file, and is structured around five
subsystems, of which four are centered around a manager and the fifth contains a set of
general utilities. The systems provided are:

1. Configuration: The configuration subsystem provides a configuration object from
which data can be retrieved or stored, together with a TOML-like [23] parser to
read configuration files. It also contains the Allpix Squared configuration manager
which provides access to the main configuration file and its sections. It is used
by the module manager system to find the required instantiations and access the
global configuration. More information is given in Section 4.3.

2. Module: The module subsystem contains the base class of all Allpix Squared
modules as well as the manager responsible for loading and executing the modules
(using the configuration system). This component is discussed in more detail in
Section 4.4.

3. Geometry: The geometry subsystem supplies helpers for the simulation geometry.
The manager instantiates all detectors from the detector configuration file. A
detector object contains the position and orientation linked to an instantiation of a
particular detector model, itself containing all parameters describing the geometry
of the detector. More details about geometry and detector models is provided in
Chapter 5.

4. Messenger: The messenger is responsible for sending objects from one module to
another. The messenger object is passed to every module and can be used to bind
to messages to listen for. Messages with objects are also dispatched through the
messenger as described in Section 4.6.

5. Utilities: The framework provides a set of utilities for logging, file and directory
access, and unit conversion. An explanation on how to use of these utilities can be
found in Section 4.8. A set of C++ exceptions is also provided in the utilities, which
are inherited and extended by the other components. Proper use of exceptions,
together with logging information and reporting errors, makes the framework easier
to use and debug. A few notes about the use and structure of exceptions are
provided in Section 4.9.
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4.3 Configuration and Parameters

Individual modules as well as the framework itself are configured through configura-
tion files, which all follow the same format. Explanations on how to use the various
configuration files together with several examples have been provided in Section 3.1.

4.3.1 File format

Throughout the framework, a simplified version of TOML [23] is used as standard format
for configuration files. The format is defined as follows:

1. All whitespace at the beginning or end of a line are stripped by the parser. In
the rest of this format specification the line refers to the line with this whitespace
stripped.

2. Empty lines are ignored.

3. Every non-empty line should start with either #, [ or an alphanumeric character.
Every other character should lead to an immediate parse error.

4. If the line starts with a hash character (#), it is interpreted as comment and all
other content on the same line is ignored.

5. If the line starts with an open square bracket ([), it indicates a section header (also
known as configuration header). The line should contain a string with alphanumeric
characters and underscores, indicating the header name, followed by a closing square
bracket (]), to end the header. After any number of ignored whitespace characters
there could be a # character. If this is the case, the rest of the line is handled as
specified in point 3. Otherwise there should not be any other character (except
the whitespace) on the line. Any line that does not comply to these specifications
should lead to an immediate parse error. Multiple section headers with the same
name are allowed. All key-value pairs following this section header are part of this
section until a new section header is started.

6. If the line starts with an alphanumeric character, the line should indicate a key-value
pair. The beginning of the line should contain a string of alphabetic characters,
numbers, dots (.), colons (:) and underscores (_), but it may only start with an
alphanumeric character. This string indicates the key. After an optional number
of ignored whitespace, the key should be followed by an equality sign (=). Any
text between the = and the first # character not enclosed within a pair of single or
double quotes (' or ") is known as the non-stripped string. Any character after the
# is handled as specified in point 3. If the line does not contain any non-enclosed #
character, the value ends at the end of the line instead. The ‘value’ of the key-value
pair is the non-stripped string with all whitespace in front and at the end stripped.
The value may not be empty. Any line that does not comply to these specifications
should lead to an immediate parse error.

7. The value may consist of multiple nested dimensions which are grouped by pairs
of square brackets ([ and ]). The number of square brackets should be properly
balanced, otherwise an error is raised. Square brackets which should not be used for
grouping should be enclosed in quotation marks. Every dimension is split at every
whitespace sequence and comma character (,) not enclosed in quotation marks.

35



4 Structure of the Framework

Implicit square brackets are added to the begin and end of the value, if these are
not explicitly added. A few situations require explicit addition of outer brackets
such as matrices with only one column element, i.e. with dimension 1xN.

8. The sections of the value which are interpreted as separate entities are named
elements. For a single value the element is on the zeroth dimension, for arrays
on the first dimension and for matrices on the second dimension. Elements can
be forced by using quotation marks, either single or double quotes (' or "). The
number of both types of quotation marks should be properly balanced, otherwise
an error is raised. The conversion to the elements to the actual type is performed
when accessing the value.

9. All key-value pairs defined before the first section header are part of a zero-length
empty section header.

4.3.2 Accessing parameters

Values are accessed via the configuration object. In the following example, the key is a
string called key, the object is named config and the type TYPE is a valid C++ type
the value should represent. The values can be accessed via the following methods:

// Returns true if the key exists and false otherwise
config.has("key")
// Returns the number of keys found from the provided initializer list:
config.count({"key1", "key2", "key3"});
// Returns the value in the given type, throws an exception if not

existing or a conversion to TYPE is not possible↪

config.get<TYPE>("key")
// Returns the value in the given type or the provided default value if

it does not exist↪

config.get<TYPE>("key", default_value)
// Returns an array of elements of the given type
config.getArray<TYPE>("key")
// Returns a matrix: an array of arrays of elements of the given type
config.getMatrix<TYPE>("key")
// Returns an absolute (canonical if it should exist) path to a file
config.getPath("key", true /* check if path exists */)
// Return an array of absolute paths
config.getPathArray("key", false /* do not check if paths exists */)
// Returns the value as literal text including possible quotation marks
config.getText("key")
// Set the value of key to the default value if the key is not defined
config.setDefault("key", default_value)
// Set the value of the key to the default array if key is not defined
config.setDefaultArray<TYPE>("key", vector_of_default_values)
// Create an alias named new_key for the already existing old_key or

throws an exception if the old_key does not exist↪

config.setAlias("new_key", "old_key")
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Conversions to the requested type are using the from_string and to_string methods
provided by the string utility library described in Section 4.8. These conversions largely
follow standard parsing, with one important exception. If (and only if) the value is
retrieved as a C/C++ string and the string is fully enclosed by a pair of " characters,
these are stripped before returning the value. Strings can thus also be provided with or
without quotation marks.

Warning: It should be noted that a conversion from string to the requested type
is a comparatively heavy operation. For performance-critical sections of the code,
one should consider fetching the configuration value once and caching it in a local
variable.

4.4 Modules and the Module Manager

Allpix Squared is a modular framework and one of the core ideas is to partition functional-
ity in independent modules which can be inserted or removed as required. These modules
are located in the subdirectory src/modules/ of the repository, with the name of the
directory the unique name of the module. The suggested naming scheme is CamelCase,
thus an example module name would be GenericPropagation. There are two different
kind of modules which can be defined:

• Unique: Modules for which a single instance runs, irrespective of the number of
detectors.

• Detector: Modules which are concerned with only a single detector at a time.
These are then replicated for all required detectors.

The type of module determines the constructor used, the internal unique name and the
supported configuration parameters. More details about the instantiation logic for the
different types of modules are given in the next section.

4.4.1 Module instantiation

Modules are dynamically loaded and instantiated by the Module Manager. They are
constructed, initialized, executed and finalized in the linear order in which they are defined
in the configuration file; for this reason the configuration file should follow the order of
the real process. For each section in the main configuration file (see Section 4.3 for more
details), a corresponding library is searched for which contains the module (the exception
being the global framework section). Module libraries are always named following
the scheme libAllpixModule<ModuleName>, reflecting the ModuleName configured via
CMake. The module search order is as follows:

1. Modules already loaded before from an earlier section header

2. All directories in the global configuration parameter library_directories in the
provided order, if this parameter exists.
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3. The internal library paths of the executable, that should automatically point to the
libraries that are built and installed together with the executable. These library
paths are stored in RPATH on Linux, see the next point for more information.

4. The other standard locations to search for libraries depending on the operating
system. Details about the procedure Linux follows can be found in [24].

If the loading of the module library is successful, the module is checked to determine if
it is a unique or detector module. As a single module may be called multiple times in
the configuration, with overlapping requirements (such as a module which runs on all
detectors of a given type, followed by the same module but with different parameters
for one specific detector, also of this type) the Module Manager must establish which
instantiations to keep and which to discard. The instantiation logic determines a unique
name and priority, where a lower number indicates a higher priority, for every instantiation.
The name and priority for the instantiation are determined differently for the two types
of modules:

• Unique: Combination of the name of the module and the input and output
parameter (both defaulting to an empty string). The priority is always zero.

• Detector: Combination of the name of the module, the input and output param-
eter (both defaulting to an empty string) and the name of detector this module is
executed for. If the name of the detector is specified directly by the name parameter,
the priority is high. If the detector is only matched by the type parameter, the
priority is medium. If the name and type are both unspecified and the module is
instantiated for all detectors, the priority is low.

In the end, only a single instance for every unique name is allowed. If there are multiple
instantiations with the same unique name, the instantiation with the highest priority is
kept. If multiple instantiations with the same unique name and the same priority exist,
an exception is raised.

4.4.2 Multithreading: Parallel execution of events

The framework supports running several events in parallel via its multithreading feature.
By default, this feature is disabled for new modules. If supported by all modules in
the simulation, multithreading is enabled by default, but can be disabled by the user
as described in Section 3.4. When enabled this feature can provide a significant speed
improvement, depending on the simulation chain.

The framework allows to parallelize the execution of the same module for multiple events,
if these would otherwise be executed directly after each other in a linear order. Thus,
events are added to a work queue and then distributed to a set of worker threads as
specified in the configuration or determined from system parameters.

Detailed description of how the framework implements the multithreading feature can be
found in Section 4.10 and an overview of important considerations when writing a new
module capable of multithreading is provided in Section 10.4.
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4.5 Field Maps

Allpix Squared allows to load externally generated field maps for various quantities such
as the electric field or the doping profile of the sensor. These maps have to be provided
as regularly spaced meshes in one of the supported field file formats. A conversion and
interpolation tool to translate adaptive-mesh fields from TCAD applications to the format
required by Allpix Squared is provided together with the framework and is described in
Section 14.2.

This section of the manual provides an overview of the different field types and possibilities
of mapping field of single pixels or fractions thereof to full sensor simulations in Allpix
Squared.

4.5.1 Mapping of Fields to the Sensor Plane

Examples for pixel geometries in field maps. The dark spot represents the pixel center,
the red extent the electric field. Pixel boundaries are indicated with a dotted line where
applicable.

Fields are always expected to be provided as rectangular maps, irrespective of the actual
pixel shape. Maps are loaded once and assigned on a per-pixel basis. Depending on the
symmetries of the pixel unit cell and the pixel grid, different geometries are supported as
indicated in the figure above. The field for a quarter of the pixel plane, for half planes
(see figures below) as well as for full planes (see figure above). The size of the field is not
limited to a single pixel cell, however, for some quantities such as the electric field only
the volume within the pixel cell is used and periodic boundary conditions are assumed
and expected. Larger fields are for example useful for the weighting potential, where also
potential differences to neighboring pixels are of interest.

A special case is the field presented in the right panel of the figure above. Here, the field
is not centered at the pixel unit cell center, but at the corner of four adjacent rectangular
pixels.

Not all mapping geometries might be available for all types of fields used in Allpix
Squared as will be detailed below.
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Location and orientation of the field map with respect to the pixel center when providing
a half of the pixel plane. Here, (0, 0) denotes the pixel center, the red field portion is read
from the field map and the green ones are replicated through mirroring.

Location and orientation of the field map with respect to the pixel center when providing
one quadrant in the pixel plane. Here, (0, 0) denotes the pixel center, the red field portion
is read from the field map and the green ones are replicated through mirroring.

The parameter field_mapping of the respective module defines how the map read
from the mesh file should be interpreted and applied to the sensor, and the following
possibilities are available:

• SENSOR: The map is read from the file and applied periodically to the full sensor,
starting with the lower-left corner of the first pixel, i.e. at index 0,0. The field is
then flipped at its edges to the right and upwards and the procedure is repeated
until the other sensor edge is reached. This mode allows to apply fields that span
several pixel to e.g. simulate even-odd differences in double columns, but only works
well for regular, Cartesian pixel grids.

• PIXEL_FULL: The map is interpreted as field spanning the full Euclidean angle and
aligned on the center of the pixel unit cell. No transformation is performed, but
field values are obtained from the map with respect to the pixel center.

• PIXEL_FULL_INVERSE: The map is interpreted as full field, but with inverse align-
ment on the pixel corners as shown above. Consequently, the field value lookup
from the four quadrants take into account their offset.

• PIXEL_HALF_LEFT: The map represents the left Euclidean half-plane, aligned at the
𝑦 axis through the center of the pixel unit cell. Field values in the other half-plane
are obtained by mirroring at the 𝑦 axis as indicated in the figure above.
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• PIXEL_HALF_RIGHT: The map represents the right Euclidean half-plane, aligned
at the 𝑦 axis through the center of the pixel unit cell. Field values in the other
half-plane are obtained by mirroring at the 𝑦 axis as indicated in the figure above.

• PIXEL_HALF_TOP: The map represents the top Euclidean half-plane, aligned at the
𝑥 axis through the center of the pixel unit cell. Field values in the other half-plane
are obtained by mirroring at the 𝑥 axis as indicated in the figure above.

• PIXEL_HALF_BOTTOM: The map represents the bottom Euclidean half-plane, aligned
at the 𝑥 axis through the center of the pixel unit cell. Field values in the other
half-plane are obtained by mirroring at the 𝑥 axis as indicated in the figure above.

• PIXEL_QUADRANT_I: The map represents the quadrant of the plane where both
vector components have a positive sign. Field values in the other three quadrants
are obtained by mirroring at the axes of the coordinate system as shown in the
figure above.

• PIXEL_QUADRANT_II: The map represents the quadrant of the plane where the
vector component 𝑥 has a negative and 𝑦 a positive sign. Field values in the other
three quadrants are obtained by mirroring at the axes of the coordinate system as
shown in the figure above.

• PIXEL_QUADRANT_III: The map represents the quadrant of the plane where both
vector components have a negative sign. Field values in the other three quadrants
are obtained by mirroring at the axes of the coordinate system as shown in the
figure above.

• PIXEL_QUADRANT_IV: The map represents the quadrant of the plane where the
vector component 𝑥 has a positive and 𝑦 a negative sign. Field values in the other
three quadrants are obtained by mirroring at the axes of the coordinate system as
shown in the figure above.

All axes mentioned here are Cartesian axes aligning with the local coordinate system
of the sensor, described in Section 5.2, and passing through the center of the pixel unit
cell regarded. It should be noted that some of these mappings are equivalent to rotating
or mirroring the field before loading it in Allpix Squared, and are only provided for
convenience.

In addition to these mappings, the field maps can be shifted and stretched using the
field_offset and field_scale parameters of the respective module. The values of
these parameters are always interpreted as fractions of the field map size that has been
loaded. This means for example, that an offset of field_offset = 0.5, 0.5 applied to
a field map with a size of 100um x 50um will shift the respective field by 50um along x
and 25um along y.

4.5.2 Weighting Potential Maps & Induction

Induced currents in Allpix Squared are calculated following the Shockley-Ramo theorem
[25,26]. The induced current of a moving charge carrier requires the knowledge of the
weighting potential in addition to the electric field of the sensor. The weighting potential
for a given sensor geometry can be calculated analytically or by means of a finite-element

41



4 Structure of the Framework

simulation by setting the electrode of the pixel under consideration to unit potential, and
all other electrodes to ground [27].

The Shockley-Ramo theorem then states that the charge 𝑄𝑖𝑛𝑑
𝑛 induced by the motion of a

charge carrier is equivalent to the difference in weighting potential between the previous
location ⃗𝑥0 and its current position ⃗𝑥1, viz.

𝑄𝑖𝑛𝑑
𝑛 = ∫

𝑡1

𝑡0

𝐼 𝑖𝑛𝑑
𝑛 d𝑡 = 𝑞 [𝜙( ⃗𝑥1) − 𝜙( ⃗𝑥0)] ,

assuming discrete time steps. Here, 𝑞 is the charge of the carrier, 𝜙( ⃗𝑥) the weighting
potential at position ⃗𝑥 and 𝐼 𝑖𝑛𝑑

𝑛 the induced current in the particular time step. A detailed
description of the procedure is provided in [28] along with examples of application.

Since this procedure requires a realignment of the weighting potential for every pixel
or electrode in question, the SENSOR mapping geometry is not a viable option. The
weighting potential map needs to be centered around the electrode on unit potential.

The following drawings indicate how the induced current calculations are performed in
Allpix Squared. Here, the pixels in the region of interest for which the induced current
is calculated are shown in blue. The charge carrier position is indicated by the red dot
and the weighting potential is displayed in orange, with its electrode at unit potential as
small black square and its full extent indicated by the orange line.

The weighting potential is centered with its readout electrode on unit potential on the
pixel of interest for which the induced current by the charge carrier movement is to be
calculated. For the subsequent pixel of interest, the position of the weighting potential is
adjusted accordingly.

Calculation of the induced current in the pixel under which the charge carrier is moving.
The weighting potential is therefore centered on this pixel. The weighting potential
difference is calculated from the two carrier positions in the center of the 3x3 pixel map.
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Calculation of the induced current in a pixel neighboring the one under which the charge
carrier is moving. The weighting potential is shifted accordingly to be centered on the
neighbor pixel in question. The weighting potential difference is calculated from the two
carrier positions in the lower-right pixel of the 3x3 pixel map.

Calculation of the induced current in a pixel neighboring the one under which the charge
carrier is moving. The weighting potential is shifted accordingly to be centered on the
neighbor pixel in question. The weighting potential difference is calculated from the two
carrier positions in the center-left pixel of the 3x3 pixel map.

For the special case of a strongly confined weighting potential at the collection electrode,
it suffices to consider the potential of a single pixel cell. In this case, the induced current
in all neighboring pixels is zero since they reside outside the defined weighting potential.
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The induced current in the lower-left pixel neighboring the one under which the charge
carrier moves is zero, since the weighting potential has a size of only 1x1 pixels and the
potential at the position of the charge carrier with respect to the pixel in question os by
definition zero.

4.6 Passing Objects using Messages

Communication between modules is performed by the exchange of messages. Messages
are templated instantiations of the Message class carrying a vector of objects. The list
of objects available in the Allpix Squared objects library is given in Section 7.1. The
messaging system has a dispatching mechanism to send messages and a receiving part
that fetches incoming messages. Messages are always received by modules in the order
they have been dispatched by preceding modules.

The dispatching module can specify an optional name for the messages, but modules
should normally not specify this name directly. If the name is not given (or equal to
-) the output parameter of the module is used to determine the name of the message,
defaulting to an empty string. Dispatching messages to their receivers is then performed
following these rules:

1. The receiving module will only receive a message if it has the same type as the
message dispatched (thus carrying the same objects). If the receiver is however
listening to the BaseMessage type which does not specify the type of objects it is
carrying, it will instead receive all dispatched messages.

2. The receiving module will only receive messages with the exact name it is listening
for. The module uses the input parameter to determine which message names it
should listen for; if the input parameter is equal to * the module will listen to all
messages. Each module by default listens to messages with no name specified (thus
receiving the messages of dispatching modules without output name specified).

3. If the receiving module is a detector module, it will only receive messages bound to
that specific detector or messages that are not bound to any detector.

An example of how to dispatch a message containing an array of Object types bound to
a detector named dut is provided below. As usual, the message is dispatched at the end
of the run() function of the module.

void run(Event* event) {
std::vector<Object> data;
// ..fill the data vector with objects ...

// The message is dispatched only for the module's detector, stored
in "detector_"↪

auto message = std::make_shared<Message<Object>>(data, detector_);

// Send the message using the Messenger object for the given event
messenger->dispatchMessage(this, message, event);

}
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4.6.1 Methods to process messages

The message system has multiple methods to process received messages. The first two are
the most common methods and the third should be avoided in almost every instance.

1. Bind a single message to the input of this module. This should usually be the
preferred method, where a module expects only a single message to arrive per event
containing the list of all relevant objects. The following example binds to a message
containing an array of objects and is placed in the constructor of a detector-type
TestModule:

TestModule(Configuration&, Messenger* messenger,
std::shared_ptr<Detector>) {↪

// Subscribe to a single message, with no special messenger
flags↪

messenger->bindSingle<ExampleMessage>(this, MsgFlags::NONE);
}

2. Bind a set of messages to the input of the module. This method should be used if
the module can (and expects to) receive the same message multiple times (possibly
because it wants to receive the same type of message for all detectors). An example
to bind multiple messages containing an array of objects in the constructor of a
unique-type TestModule would be:

TestModule(Configuration&, Messenger* messenger, GeometryManager*
geo_manager) {↪

// Subscribe to multiple messages, with no special messenger
flags↪

messenger->bindMulti<Message<Object>>(this, MsgFlags::NONE);
}

3. Listen to a particular message type and execute a filter function as soon as an
object is received. This can be used for more advanced strategies of retrieving
messages, but the other methods should be preferred whenever possible. The
listening module should not do any heavy work in the filtering function as this
is supposed to take place in the module run method instead. The filter function
should return a boolean, indicating whether the message is wanted or not. Using a
filter function can lead to unexpected behavior because the function is executed
during the run method of the dispatching module. This means that logging is
performed at the level of the dispatching module and that the filter method can be
accessed from multiple threads if the dispatching module is parallelized. Listening
to a message containing an array of objects in a detector-specific TestModule could
be performed as follows:

TestModule(Configuration&, Messenger* messenger,
std::shared_ptr<Detector>) {↪

messenger->registerFilter(this,
/* Pointer to the filter method */
&TestModule::filter,
/* No special message flags */
MsgFlags::NONE);
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}
bool filter(std::shared_ptr<Message<Object>> message) const {

// Decide if the message is wanted ...
}

It should be noted that the registerFilter function by default adds the IGNORE_NAME
message flag to receive all available messages if called without the message flag parame-
ter:

messenger->registerFilter(this, &TestModule::filter);

This means that a possibly set input parameter of the respective module has no effect.
If this behavior is undesired, the filter should be registered explicitly stating the desired
message flags or MsgFlags::NONE. The available message flags are described in detail in
the following section.

4.6.2 Message flags

Flags can be added to the bind and listening methods which enable a particular behavior
of the framework.

• REQUIRED: Specifies that this message is required during the event processing. If
this particular message is not received before it is time to execute the module’s run
function, the execution of the method is automatically skipped by the framework
for the current event. This can be used to ignore modules which cannot perform any
action without received messages, for example charge carrier propagation without
any deposited charge carriers.

• ALLOW_OVERWRITE: By default an exception is automatically raised if a single bound
message is overwritten (thus receiving it multiple times instead of once). This flag
prevents this behavior. It can only be used for variables bound to a single message.

• IGNORE_NAME: If this flag is specified, the name of the dispatched message is not
considered. Thus, the input parameter is ignored and forced to the value *.

• UNNAMED_ONLY: If this flag is specified, the module will only receive messages
without explicit name. The input parameter is ignored and forced to the value ?
and all named messages are discarded. It should be noted that IGNORE_NAME takes
precedence over this parameter.

4.6.3 Persistency

As objects may contain information relating to other objects, in particular for storing their
corresponding Monte Carlo history (see Section 7.2), objects are by default persistent
until the end of each event. All messages are stored as shared pointers and are released
at the end of each event. If no other copies of the shared message pointer are created,
then these will be subsequently deleted, including the objects stored therein. Where a
module requires access to data from a previous event (such as to simulate the effects of
pile-up etc.), local copies of the data objects must be created. Note that at the point of
creating copies the corresponding history will be lost.
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4.7 Redirect Module Inputs and Outputs

In the Allpix Squared framework, modules exchange messages typically based on their
input and output message types and the detector type. It is, however, possible to specify
a name for the incoming and outgoing messages for every module in the simulation.
Modules will then only receive messages dispatched with the name provided and send
named messages to other modules listening for messages with that specific name. This
enables running the same module several times for the same detector, e.g. to test different
parameter settings.

The message output name of a module can be changed by setting the output parameter
of the module to a unique value. The output of this module is then not sent to modules
without a configured input, because by default modules listens only to data without a
name. The input parameter of a particular receiving module should therefore be set to
match the value of the output parameter. In addition, it is permitted to set the input
parameter to the special value * to indicate that the module should listen to all messages
irrespective of their name.

An example of a configuration with two different settings for the digitization module is
shown below:

# Digitize the propagated charges with low noise levels
[DefaultDigitizer]
# Specify an output identifier
output = "low_noise"
# Low amount of noise added by the electronics
electronics_noise = 100e
# Default values are used for the other parameters

# Digitize the propagated charges with high noise levels
[DefaultDigitizer]
# Specify an output identifier
output = "high_noise"
# High amount of noise added by the electronics
electronics_noise = 500e
# Default values are used for the other parameters

# Save histogram for 'low_noise' digitized charges
[DetectorHistogrammer]
# Specify input identifier
input = "low_noise"

# Save histogram for 'high_noise' digitized charges
[DetectorHistogrammer]
# Specify input identifier
input = "high_noise"
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4.8 Logging and other Utilities

The Allpix Squared framework provides a set of utilities which improve the usability of
the framework and extend the functionality provided by the C++ Standard Template
Library (STL). The former includes a flexible and easy-to-use logging system and an
easy-to-use framework for units that supports converting arbitrary combinations of units
to common base units which can be used transparently throughout the framework. The
latter comprise tools which provide functionality the C++17 standard does not contain.
These utilities are used internally in the framework and are only shortly discussed.

Logging system

The logging system is built to handle input/output in the same way as std::cin and
std::cout do. This approach is both flexible and easy to read. The system is globally
configured, thus only one logger instance exists. The following commands are available
for sending messages to the logging system at a level of LEVEL:

• LOG(LEVEL): Sends a message with severity level LOG(LEVEL) to the logging system.
Example:

LOG(LEVEL) << "this is an example message with an integer and a
double " << 1 << 2.0;↪

A new line and carriage return is added at the end of every log message. Multi-line
log messages can be used by adding new line commands to the stream. The logging
system will automatically align every new line under the previous message and will
leave the header space empty on new lines.

• LOG_ONCE(LEVEL): Same as LOG(), but will only log this message once over the
full run, even if the logging function is called multiple times. Example:

LOG_ONCE(INFO) << "This message will appear once only, even if
present in every event...";↪

This can be used to log warnings or messages e.g. from the run() function of a
module without flooding the log output with the same message for every event. The
message is preceded by the information that further messages will be suppressed.

• LOG_N(LEVEL, NUMBER): Same as LOG_ONCE() but allows to specify the number of
times the message will be logged via the additional parameter NUMBER. Example:

LOG_N(INFO, 10) << "This message will appear maximally 10 times
throughout the run.";↪

The last message is preceded by the information that further messages will be
suppressed.

• LOG_PROGRESS(LEVEL, IDENTIFIER): This function allows to update the message
to be updated on the same line for simple progressbar-like functionality. Example:

LOG_PROGRESS(STATUS, "EVENT_LOOP") << "Running event " << n << " of
" << number_of_events;↪
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Here, the IDENTIFIER is a unique string identifying this output stream in order not
to mix different progress reports.

If the output is a terminal screen the logging output will be coloured to make it easier to
identify warnings and error messages. This is disabled automatically for all non-terminal
outputs.

More details about the logging levels and formats can be found in Section 3.8.

Unit system

Correctly handling units and conversions is of paramount importance. Having a separate
C++ type for every unit would however be too cumbersome for a lot of operations,
therefore units are stored in standard C++ floating point types in a default unit which
all code in the framework should use for calculations. In configuration files, as well as for
logging, it is however useful to provide quantities in different units.

The unit system allows adding, retrieving, converting and displaying units. It is a global
system transparently used throughout the framework. Examples of using the unit system
are given below:

// Define the standard length unit and an auxiliary unit
Units::add("mm", 1);
Units::add("m", 1e3);
// Define the standard time unit
Units::add("ns", 1);
// Get the units given in m/ns in the defined framework unit (mm/ns)
Units::get(1, "m/ns");
// Get the framework unit (mm/ns) in m/ns
Units::convert(1, "m/ns");
// Return the unit in the best type (lowest number larger than one) as

string.↪

// The input is in default units 2000mm/ns and the 'best' output is
2m/ns (string)↪

Units::display(2e3, {"mm/ns", "m/ns"});

A description of the use of units in config files within Allpix Squared was presented in
Section 3.1.

Internal utilities

STL only provides string conversions for standard types using std::stringstream and
std::to_string, which do not allow parsing strings encapsulated in pairs of double
quote (") characters nor integrating different units. Furthermore it does not provide wide
flexibility to add custom conversions for other external types in either way.

The framework’s to_string and from_string methods provided by its string utilities
do allow for these flexible conversions, and are extensively used in the configuration
system. Conversions of numeric types with a unit attached are automatically resolved
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using the unit system discussed above. The string utilities also include trim and split
strings functions missing in the STL.

Furthermore, the Allpix Squared tool system contains extensions to allow automatic
conversions for ROOT and Geant4 types as explained in Section 14.1.

To be able to provide cross-platform reproducibility of simulations, Allpix Squared uses
random number distributions from the Boost.Random library. Their implementation is
fixed and therefore does not depend on the standard library of the respective platform.
For ease of use, the most common ones are exported to the allpix:: namespace.

The pseudo-random number generator used for event seeds and random number generation
within modules is the std::mt19937_64, a 64-bit Mersenne Twister algorithm. In order
to allow for debugging of the random number distribution in a multithreaded environment,
Allpix Squared provides the allpix::RandomNumberGenerator wrapper around the STL
object, which allows to print every random number drawn from the generator to the
logging facilities when setting the log level to PRNG.

4.9 Error Reporting and Exceptions

Allpix Squared generally follows the principle of throwing exceptions in all cases where
something is definitely wrong. Exceptions are also thrown to signal errors in the user
configuration. It does not attempt to circumvent problems or correct configuration
mistakes, and the use of error return codes is to be discouraged. The asset of this method
is that errors cannot easily be ignored and the code is more predictable in general.

For warnings and information messages, the logging system should be used extensively.
This helps both in following the progress of the simulation and in debugging problems.
Care should however be taken to limit the amount of messages in levels higher than
DEBUG or TRACE. More details about the logging levels and their usage can be found in
Section 3.8.

The base exceptions in Allpix Squared are available via the utilities. The most important
exception base classes are the following:

• ConfigurationError: All errors related to incorrect user configuration. This could
indicate a non-existing configuration file, a missing key or an invalid parameter
value.

• RuntimeError: All other errors arising at run-time. Could be related to incorrect
configuration if messages are not correctly passed or non-existing detectors are
specified. Could also be raised if errors arise while loading a library or executing a
module.

• LogicError: Problems related to modules which do not properly follow the specifi-
cations, for example if a detector module fails to pass the detector to the constructor.
These methods should never be raised for correctly implemented modules and should
therefore not be of any concern for the end users. Reporting this type of error can
help developers during the development of new modules.
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There are only four exceptions that are supposed to be used in specific modules, outside
of the core framework. These exceptions should be used to indicate errors that modules
cannot handle themselves:

• InvalidValueError: Derived from configuration exceptions. Signals any problem
with the value of a configuration parameter not related to parsing or conversion
to the required type. Can for example be used for parameters where the possible
valid values are limited, like the set of logging levels, or for paths that do not exist.
An example is shown below:

void run(Event* event) {
// Fetch a key from the configuration
std::string value = config.get("key");

// Check if it is a 'valid' value
if(value != 'A' && value != "B") {

// Raise an error if it the value is not valid
// provide the configuration object, key and an

explanation↪

throw InvalidValueError(config, "key", "A and B are the only
allowed values");↪

}
}

• InvalidCombinationError: Derived from configuration exceptions. Signals any
problem with a combination of configuration parameters used. This could be used
if several optional but mutually exclusive parameters are present in a module, and
it should be ensured that only one is specified at the time. The exceptions accepts
the list of keys as initializer list. An example is shown below:

void run(Event* event) {
// Check if we have mutually exclusive options defined:
if(config.count({"exclusive_opt_a", "exclusive_opt_b"}) > 1) {

// Raise an error if the combination of keys is not valid
// provide the configuration object, keys and an

explanation↪

throw InvalidCombinationError(config, {"exclusive_opt_a",
"exclusive_opt_b"},↪

"Options A and B are mutually exclusive, specify only
one.");↪

}
}

• ModuleError: Derived from module exceptions. Should be used to indicate any
runtime error in a module not directly caused by an invalid configuration value, for
example that it is not possible to write an output file. A reason should be given to
indicate what the source of problem is.

• EndOfRunException: Derived from module exceptions. Should be used to request
the end of event processing in the current run, e.g. if a module reading in data from
a file reached the end of its input data.
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4.10 Multithreading

Allpix Squared supports multithreading by running events in parallel. The module
manager creates a thread pool with the configured number of workers or determines
them from system parameters if not specified. Each event is represented by an instance
of the Event class which encapsulates the data used during this event. The configured
number of events are then submitted to the thread pool and executed by the thread
pool’s workers.

The thread pool features two independent queues. A FIFO-like unsorted queue for events
to be processed, and a second, priority-ordered queue for buffered events. The former is
constantly filled with new events to be processed by the main thread, while the latter is
used to temporarily buffer events which wait to be picked up in the correct sequence by
a SequentialModule.

By default modules are assumed to not operate in a thread-safe way and therefore cannot
participate in multithreaded processing of events. Therefore each module must explicitly
enable multithreading in its constructor in order to signal its multithreading capabilities
to Allpix Squared. To support multithreading, the module run() method should be
re-entrant and any shared member variables should be protected. If multithreading is
enabled in the run configuration, the module manager will check if all the loaded modules
support multithreading. In case one or more modules do not support multithreading, a
warning is printed and the feature is disabled. Modules can inform themselves about the
decision via the multithreadingEnabled() method.

Seed Distribution

A stable seed distribution to modules and core components of Allpix Squared is guaranteed
in order to be able to provide reproducibility of simulation results from the same inputs
even when the number of workers is different. Each event is seeded upon its creation
by the main thread from a central event seed generator, in increasing sequence of event
numbers. The event provides access to a random engine that can be used by each module
in the run() method.

To avoid the memory overhead of maintaining random engine objects equal to the number
of events, the storage of the engines is made static and thread-local, and is only provided
to the event for temporary usage. This way ensures that the framework maintains the
minimum number of such heavy objects equal to the number of workers used. When a
worker starts to execute a new event, it seeds its local random engine first and passes it
to the event object.

Using Messenger in Parallel

The Messenger handles communication in different events concurrently. It supports
dispatching and fetching messages via the LocalMessenger. Each event has its own local
messenger which stores all messages that was produced in this event. The Messenger
owns the global message subscription information and internally forwards the module’s
requests to dispatch or fetch messages to the local messenger of the event in a thread-safe
manner.
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Running Events in order using SequentialModule

The SequentialModule class is made available for modules that require processing of
events in the correct order without disabling multithreading. Inheriting from this class
will allow the module to transparently check if the given event is in the correct sequence
and decide whether to execute it immediately or to request buffering in the prioritized
buffer queue if the thread pool if it is out of order.

Using the SequentialModule is suitable for I/O modules which read or write to the file
system and do not allow random read or write access to events. This enables output
modules to produce the same output file for the same simulation inputs without sacrificing
the benefits of using multithreading for other modules.

Since random number generators are thread-local and shared between events processed
on the same thread, their state is stored internally when being written into the buffer and
restored before processing. This ensures that the sequence of pseudo-random numbers is
exactly the same regardless of whether the event was buffered or directly processed.

Geant4 Modules

The usage of the Geant4 library in Allpix Squared has some constraints because the
Geant4 multithreaded run manager expects to handle parallelization internally which
violates the Allpix Squared design. Furthermore, Geant4 does not guarantee results
reproducibility between its multithreaded and sequential run managers. Modules that
would like to use the Geant4 library shall not use the run managers provided by Geant4.
Instead, they must use the custom run managers provided by Allpix Squared as described
in Section 14.1.

Object History, TRefs and PointerWrappers

Allpix Squared uses ROOTs TRef objects to store the persistent links of the simulation
object history. These references act similar to C pointers and allow accessing the referenced
object directly without additional bookkeeping or lookup of indices. Furthermore they
persist when being written to a ROOT file and read back to memory. ROOT implements
this via a central lookup table that keeps track of the referenced objects and their location
in memory as described in the ROOT documentation.

This approach comes with some drawbacks, especially in multithreaded environments.
Most importantly the lookup table is a global object, which means mutexes are required
for accessing it. Multiple threads generating or using TRef references will have to
share this mutex and will consequently be subject to significant waiting for lock release.
Furthermore generating more and more TRef relations over the course of a simulation will
increase the size of the central reference table. This table is initialized with a fixed size,
and once the number of TRef objects outgrows this pre-allocated space, new memory has
to be acquired, leading to a reallocation of memory for the entire new size of the table.
With potentially millions of entries, this quickly becomes a computationally expensive
operation, slowing down the simulation significantly.

Allpix Squared solves these limitations by wrapping the TRef objects into a class called
PointerWrapper. It contains both a direct, but transitional C pointer and a TRef to the
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referenced object. The latter, however, is only generated when required, i.e. if the object
holding the PointerWrapper as well as referenced object are going to be written to file.
This is achieved by first going through all relevant objects, marking them for storage:

for(auto& object : objects) {
object.markForStorage();

}

Now, the required history references can be identified and TRef objects are generated
only for relations between two objects that are both marked for storage:

for(auto& object : objects) {
object.petrifyHistory();

}

Objects can now be written to file and will contain the persistent reference to the related
object.

This approach solves the above problems. File writing has to be performed single-threaded
anyway, so generating TRef objects on the same thread does not lead to additional locking
of the central reference table mutex in root. In addition, TRef entries are only generated
and stored in the table for objects that require it - all references to objects not to be
stored will be nullptr in either case since the target object is not available anymore
when reading in the data. Since now the generation of TRef objects and access to the
reference table is performed by a single thread and one single event at a time, it is also
possible to reset the ROOT-internal object ID of TRef references after the event has been
processed. The subsequent event will reuse the same IDs again, preventing a continuous
growth of the reference table and related memory re-allocation issues.

As a consequence, when reading objects back from file in a multithreaded environment,
the TRef has to be converted back to a C memory pointer in the reading thread, both
to prevent mixing of reused TRef object IDs from different events and to avoid locking
access to the central reference table when looking up the memory location from there.
This is performed similarly to the generation of history relations, and here only relations
to valid TRefs are loaded, other relations will hold a nullptr:

for(auto& object : objects) {
object.loadHistory();

}

For single-threaded applications such as ROOT analysis macros, this step is not necessary
and the reference will be lazy-loaded when accessed, i.e. the TRef reference will be
converted to a direct raw pointer only when actually used. Since events are processed
sequentially and memory is freed between events, no mixing of IDs occurs.
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This chapter introduces the coordinate systems used throughout the Allpix Squared
framework and details the different implemented detector models as well as additional
features such as support layers.

5.1 Simulation Geometry

Simulations are frequently performed for a set of different detectors (such as a beam
telescope and a device under test). All of these individual detectors together form what
Allpix Squared defines as the geometry. Each detector has a set of properties attached to
it:

• A unique detector name to refer to the detector in the configuration.

• The position in the world frame. This is the position of the geometric center of
the sensitive device (sensor) given in world coordinates as X, Y and Z s defined
in Section 5.1.1 (note that any additional components like the chip and possible
support layers are ignored when determining the geometric center).

• An orientation_mode that determines the way that the orientation is applied. This
can be either xyz, zyx or zxz, where xyz is used as default if the parameter
is not specified. Three angles are expected as input, which should always be
provided in the order in which they are applied.

• The xyz option uses extrinsic Euler angles to apply a rotation around the
global X axis, followed by a rotation around the global Y axis and finally a
rotation around the global Z axis.

• The zyx option uses the extrinsic Z-Y-X convention for Euler angles, also
known as Pitch-Roll-Yaw or 321 convention. The rotation is represented by
three angles describing first a rotation of an angle 𝜙 (yaw) about the Z axis,
followed by a rotation of an angle 𝜃 (pitch) about the initial Y axis, followed
by a third rotation of an angle 𝜓 (roll) about the initial X axis.

• The zxz uses the extrinsic Z-X-Z convention for Euler angles instead. This
option is also known as the 3-1-3 or the “x-convention” and the most widely
used definition of Euler angles [29].

Note: It is highly recommended to always explicitly state the orientation
mode instead of relying on the default configuration.
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• The orientation to specify the Euler angles in logical order (e.g. first X, then Y,
then Z for the xyz method), interpreted using the method above (or with the xyz
method if the orientation_mode is not specified). An example for three Euler
angles would be

orientation_mode = "zyx"
orientation = 45deg 10deg 12deg

which describes the rotation of 45° around the Z axis, followed by a 10° rotation
around the initial Y axis, and finally] a rotation of 12° around the initial X axis.

Note: All supported rotations are extrinsic active rotations, i.e. the vector
itself is rotated, not the coordinate system. All angles in configuration files
should be specified in the order they will be applied.

• A type parameter describing the detector model, for example timepix or mimosa26
. These models define the geometry and parameters of the detector. Multiple
detectors can share the same model, several of which are shipped ready-to-use with
the framework.

• An alignment_precision_position optional parameter to specify the alignment
precision along the three global axes as described in Section 3.3.

• An optional parameter alignment_precision_orientation for the alignment
precision in the three rotation angles as described in Section 3.3.

• An optional electric or magnetic field in the sensitive device. These fields can
be added to a detector by special modules as demonstrated in Section 3.7.

The detector configuration is provided in the detector configuration file as explained in
Section 3.3.

Note: The framework parameter random_seed_core controls the seed used for
the pseudo-random number generator that is responsible for geometry operations
before the simulation commences. Most notably, this concerns the alignment of
individual detectors as described above. By fixing the random_seed_core parameter
but leaving random_seed free, multiple independent simulations can be conducted
with the same geometric alignment of detectors.

5.1.1 Coordinate systems

Local coordinate systems for each detector and a global frame of reference for the full
setup are defined. The global coordinate system is chosen as a right-handed Cartesian
system, and the rotations of individual devices are performed around the geometric center
of their sensor.

Local coordinate systems for the detectors are also right-handed Cartesian systems, with
the x- and y-axes defining the sensor plane. The origin of this coordinate system is the
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center of the lower left pixel in the grid, i.e. the pixel with indices (0,0), whereas the
z-axis pointing towards the readout connected to the sensor. This simplifies calculations
in the local coordinate system as all positions can either be stated in absolute numbers
or in fractions of the pixel pitch.

A sketch of the actual coordinate transformations performed, including the order of
transformations, is given below. The global coordinate system used for tracking of
particles through the detector setup is shown on the left side, while the local coordinate
system used to describe the individual sensors is located at the right. Both local and
global coordinate systems are aligned by default. Therefore, without any rotation, the
sensor backplane (opposite to the plane where the readout is performed) is turned to the
negative side of the z-axis.

Coordinate transformations from global to local and reverse. The first row shows the
detector positions in the respective coordinate systems in top view, the second row in side
view.

The global reference for time measurements is the beginning of the event, i.e. the start
of the particle tracking through the setup. The local time reference is the time of entry
of the first primary particle of the event into the sensor. This means that secondary
particles created within the sensor inherit the local time reference from their parent
particles in order to have a uniform time reference in the sensor. It should be noted
that Monte Carlo particles that start the local time frame on different detectors do not
necessarily have to belong to the same particle track. Few exceptions to these definitions
exist and are commented on in the corresponding module descriptions.
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5.1.2 Changing and accessing the geometry

The geometry is needed at an early stage because it determines the number of detector
module instantiations as explained in Section 4.4. The procedure of finding and loading
the appropriate detector models is explained in more detail in the next section.

The geometry is directly added from the detector configuration file described in Section
3.3. The geometry manager parses this file on construction, and the detector models are
loaded and linked later during geometry closing as described above. It is also possible to
add additional models and detectors directly using addModel and addDetector (before
the geometry is closed). Furthermore it is possible to add additional points which should
be part of the world geometry using addPoint. This can for example be used to add the
beam source to the world geometry.

The detectors and models can be accessed by name and type through the geometry
manager using getDetector and getModel, respectively. All detectors can be fetched at
once using the getDetectors method. If the module is a detector-specific module its
related detector can be accessed through the getDetector method of the module base
class instead (returns a null pointer for unique modules) as follows:

void run(Event* event) {
// Returns the linked detector
std::shared_ptr<Detector> detector = this->getDetector();

}

5.2 Detector Models

Different types of detector models are available and distributed together with the frame-
work: these models use the configuration format introduced in Section 4.3 and can
be found in the models directory of the repository. Every model extends from the
DetectorModel base class, which defines the minimum required parameters of a detector
model within the framework. The coordinates place the detector in the global coordinate
system, with the reference point taken as the geometric center of the active matrix. This is
defined by the number of pixels in the sensor in both the x- and y-direction, and together
with the pitch of the individual pixels the total size of the pixel matrix is determined.
Outside the active matrix, the sensor can feature excess material in all directions in the
x-y-plane. A detector of base class type does not feature a separate readout chip, thus
only the thickness of an additional, inactive silicon layer can be specified. Derived models
allow for separate readout chips, optionally connected with bump bonds.

The base detector model can be extended to provide different sensor geometries, and new
assembly types can be added for more complex detector assembly setups. Currently, two
assembly types are implemented, MonolithicAssembly, which describes a monolithic
detector with all electronics directly implemented in the same wafer as the sensor, and
the HybridAssembly, which in addition to the features described above also includes a
separate readout chip with configurable size and bump bonds between the sensor and
readout chip.
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5.2.1 Detector model parameters

Models are defined in configuration files which are used to instantiate the actual model
classes; these files contain various types of parameters, some of which are required for all
models while others are optional or only supported by certain model types. For more
details on how to add and use a new detector model, Section 10.5 should be consulted.

The set of base parameters supported by every model is provided below. These parameters
should be given at the top of the file before the start of any sub-sections.

• geometry: A required parameter describing the geometry of the model. At the mo-
ment either pixel or radial_strip. This value determines some of the supported
parameters as discussed later.

• type: A required parameter describing the type of the detector assembly. At
the moment either monolithic or hybrid. This value determines some of the
supported parameters as discussed later.

• number_of_pixels: The number of pixels in the 2D pixel matrix. Determines the
base size of the sensor together with the pixel_size parameter below.

• pixel_size: The pitch of a single pixel in the pixel matrix. Provided as 2D
parameter in the x-y-plane. This parameter is required for all models.

• sensor_material: Semiconductor material of the sensor. This can be any
of the sensor materials supported by Allpix Squared, currently SILICON,
GALLIUM_ARSENIDE, GERMANIUM, CADMIUM_TELLURIDE, CADMIUM_ZINC_TELLURIDE,
DIAMOND and SILICON_CARBIDE. Defaults to SILICON if not specified.

• sensor_thickness: Thickness of the active area of the detector model containing
the individual pixels. This parameter is required for all models.

• sensor_excess_<direction>: With <direction> either top, bottom, right or
left, where the top, bottom, right and left direction are the positive y-axis, the
negative y-axis, the positive x-axis and the negative x-axis, respectively. Specifies
the extra material added to the sensor outside the active pixel matrix in the given
direction.

• sensor_excess: Fallback for the excess width of the sensor in all four directions
(top, bottom, right and left). Used if the specialized parameters described below
are not given. Defaults to zero, thus having a sensor size equal to the number of
pixels times the pixel pitch.

• chip_thickness: Thickness of the readout chip, placed next to the sensor.

The base parameters described above are the only set of parameters supported by the
monolithic assembly. For this assembly, the chip_thickness parameter represents the
first few micrometers of sensor material which contain the chip circuitry and are shielded
from the bias voltage and thus do not contribute to the signal formation.

The hybrid assembly adds bump bonds between the chip and sensor while automatically
making sure the chip and support layers are shifted appropriately. Furthermore, it allows
the user to specify the chip dimensions independently from the sensor size, as the readout
chip is treated as a separate entity. The additional parameters for the hybrid assembly
are the following:
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• chip_excess_<direction>: With direction either top, bottom, right or left.
The chip excess in the specific direction, similar to the sensor_excess_<direction
> parameter described above.

• chip_excess: Fallback for the excess width of the chip, defaults to zero and thus
to a chip size equal to the dimensions of the pixel matrix. See the sensor_excess
parameter above.

• bump_height: Height of the bump bonds (the separation distance between the chip
and the sensor).

• bump_sphere_radius: The individual bump bonds are simulated as union solids
of a sphere and a cylinder. This parameter sets the radius of the sphere to use.

• bump_cylinder_radius: The radius of the cylinder part of the bump. The height
of the cylinder is determined by bump_height the parameter.

• bump_offset: A 2D offset of the grid of bumps. The individual bumps are by
default positioned at the center of each single pixel in the grid.

5.2.2 Specializing detector models

A detector model contains default values for all parameters. Some parameters like the
sensor thickness can however vary between different detectors of the same model. To
allow for easy adjustment of these parameters, models can be specialized in the detector
configuration file introduced in Section 3.3. All model parameters, except the type
parameter and the support layers, can be changed by adding a parameter with the
same key and the updated value to the detector configuration. The framework will then
automatically create a copy of this model with the requested change.

Note: Before re-implementing models, it should be checked if the desired change can
be achieved using the detector model specialization. For most cases this provides a
quick and flexible way to adapt detectors to different needs and setups (for example,
detectors with different sensor thicknesses).

5.2.3 Search order for models

To support different detector models and storage locations, the framework searches
different paths for model files in the following order:

1. If defined, the paths provided in the global model_paths parameter are searched
first. Files are read and parsed directly. If the path is a directory, all files in the
directory are added (without recursing into subdirectories).

2. The location where the models are installed to (refer to the description of the
MODEL_DIRECTORY variable in Section 2.5).
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3. The standard data paths on the system as given by the environmental variable
XDG_ DATA_DIRS with Allpix/models appended. The variable defaults to /usr/
local/share/ (thus effectively /usr/local/share/Allpix/models) followed by
/usr/share/ (effectively /usr/share/Allpix/models).

4. The path of the main configuration file.

5.2.4 Implants

Multiple implants per pixel cell can be simulated in Allpix Squared. Here, implants are
any volume in the sensor in which charge carriers do not propagated, such as collection
diodes, ohmic volumes or columns, as well as trenches filled with different materials
e.g. for alpha conversion.

When charge carriers reach an implant, their propagation is stopped. Depending on the
type of implant, they might be either discarded by the transfer module for back-side
implants, or taken into account when forming the front-end electronics input signal for
front-side implants.

Each implant should be defined in its own section headed with the name [implant]. By
default, no implants are added. Implants allow for the following parameters:

• type: Type of the implant. This parameter can be set to either frontside for an
implant from the sensor front side, collecting charge carriers, or to backside for
an implant connected to the ohmic contact at the sensor back side.

• shape: Shape of the implant, supported shapes are rectangle and ellipse.
Defaults to rectangle.

• size: The size of the implant as 3D vector with size in 𝑥 and 𝑦 as well as the
implant depth. Depending on the implant shape, the 𝑥 and 𝑦 values are either
interpreted as the side lengths of the rectangle or the major and minor axes of the
ellipse.

• orientation: Rotation of the implant around its 𝑧 axis. Defaults to 0 degrees,
i.e. the implant axes are aligned with the local coordinate system of the sensor.

• offset: 2D values in the x-y plane, defining the offset of the implant from the
center of the pixel cell. This parameter is optional and defaults to 0, 0, i.e. a position
at the pixel center be default.

5.2.5 Support Layers

In addition to the active layer, multiple layers of support material can be added to the
detector description. It is possible to place support layers at arbitrary positions relative
to the sensor, while the default position is behind the readout chip or inactive sensor layer.
The defined support materials will always be positioned relative to the corresponding
detector. The support material can be chosen either from a set of predefined materials,
including PCB and Kapton, or any material available via the Geant4 material database.
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Every support layer should be defined in its own section headed with the name [support
]. By default, no support layers are added. Support layers allow for the following
parameters.

• size: Size of the support in 2D (the thickness is given separately below). This
parameter is required for all support layers.

• thickness: Thickness of the support layers. This parameter is required for all
support layers.

• location: Location of the support layer. Either sensor to attach it to the sensor
(opposite to the readout chip/inactive sensor layer), chip to add the support layer
behind the chip/inactive layer or absolute to specify the offset in the z-direction
manually. Defaults to chip if not specified. If the parameter is equal to sensor
or chip, the support layers are stacked in the respective direction when multiple
layers of support are specified.

• offset: If the location parameter is equal to sensor or chip, an optional 2D
offset can be specified using this parameter, the offset in the z-direction is then
automatically determined. These support layers are by default centered around the
middle of the pixel matrix (the rotation center of the model). If the location is
set to absolute, the offset is a required parameter and should be provided as a 3D
vector with respect to the center of the model (thus the center of the active sensor).
Care should be taken to ensure that these support layers and the rest of the model
do not overlap.

• hole_size: Adds an optional cut-out hole to the support with the 2D size provided.
The hole always cuts through the full support thickness. No hole will be added if
this parameter is not present.

• hole_type: Type of hole to be punched into the support layer. Currently supported
are rectangle and cylinder. Defaults to rectangle.

• hole_offset: If present, the hole is by default placed at the center of the support
layer. A 2D offset with respect to its default position can be specified using this
parameter.

• material: Material of the support. Allpix Squared does not provide a set of
materials to choose from; it is up to the modules using this parameter to imple-
ment the materials such that they can use it. Chapter 8 provides details about
the materials supported by the geometry builder modules (for example in the
GeometryBuilderGeant4 module documentation).

5.2.6 Accessing specific detector models within the framework

Some modules are written to act on only a particular type of detector model. In order to
ensure that a specific detector model has been used, the model should be downcast: the
downcast returns a null pointer if the class is not of the appropriate type. An example
for fetching a HybridPixelDetectorModel would thus be:
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// "detector" is a pointer to a Detector object
auto model = detector->getModel();
auto hybrid_model =

std::dynamic_pointer_cast<HybridPixelDetectorModel>(model);↪

if(hybrid_model != nullptr) {
// The model of this Detector is a HybridPixelDetectorModel

}

5.3 Sensor Geometries

Allpix Squared implements different sensor geometries such as rectangular, Cartesian
pixel grids, hexagon patterns, or radial strip-like channels. This section details the
different geometries and their respective coordinate system. Geometries are selected via
the parameter geometry in the detector model file.

5.3.1 Rectangular Pixels on a Cartesian Grid

This geometry is the default assumed for any detector without the geometry keyword.
The individual channels are rectangular pixels, the pixel_size parameter denotes the
pitch in Cartesian x and y direction.

This geometry can be selected using geometry = pixel.

5.3.2 Staggered Pixel Matrix on a Cartesian Grid

This geometry is an extension of the regular Cartesian grid and, in addition to the pixel
pitch described above, it allows to configure a pixel offset for odd rows of the detector
matrix using the pixel_offset parameter. The pixel offset needs to be provided in
fractions of the pixel pitch and needs to be between $-1.0 < p < 1.0$.

63



5 Geometry and Detectors

Definition of a staggered pixel matrix. 𝑝𝑥 and 𝑝𝑦 indicate the pixel pitches along these
Cartesian coordinates, 𝛿 denotes the relative offset of the odd rows

This geometry can be selected using geometry = staggered.

5.3.3 Hexagonal Pixels

Hexagonal pixel grids in Allpix Squared use an axial coordinate system to describe the
relative positions and indices of hexagons on the grid, following largely the definitions
provided in [30]. Similar to the Cartesian coordinate system used for regular pixel layouts,
the origin is the lower-left corner of the sensor, with the hexagon indices (0, 0). Owing to
the orientation of the grid axes, negative can occur in the top-left region of the sensor.

Two orientations of hexagons are supported, subsequently referred to as pointy with sides
parallel to the 𝑦 axis of the Cartesian coordinate system and corners at the top and
bottom, and flat with sides parallel to the Cartesian 𝑥 axis and corners to the left and
right. The pitches 𝑝𝑥 and 𝑝𝑦 of the hexagon align with the axial coordinate system and
are rotated differently with respect to the Cartesian system between the two variants.
The orientation of the pitches as well as the resulting corner positions in Cartesian
coordinates are shown in the figure below:

64



5.3 Sensor Geometries

Definition of the pitches 𝑝𝑥 and 𝑝𝑦, and corner positions for the pointy (left) and flat
(right) hexagon orientation in Cartesian coordinates. The pitches align with the axes of
the axial coordinate system of the hexagonal grid.

The additional parameters for the hexagonal model are as follows:

• pixel_type: The shape/orientation of the hexagonal pixels within the grid, either
hexagon_pointy or hexagon_flat.

The number of pixels in a hexagonal grid are counted along the Cartesian axes, taking
the offset pixels into account. For example, an 8-by-4 grid comprises 32 pixels both for
pointy and flat hexagon orientation, but results in different overall grid dimensions as
demonstrated below:

Grid layouts for pointy (left) and flat (right) hexagons with a size of 8-by-4 pixels.

This geometry can be selected using geometry = hexagonal.

5.3.4 Radial Strips

Radial strip detectors feature a trapezoidal shape with curved edges and radial geometry
– the strips on such a sensor are arranged in a fan-like geometry, pointing to a common
focal point. Shape, size and segmentation of a radial strip detector are defined using four
parameters, each passed as an array with the number of elements equal to the number of
strip rows:
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Figure 5.1: Radial strips parameters

• number_of_strips
• angular_pitch
• inner_pitch
• strip_length

Additionally, model parameters have to be set to type = monolithic and geometry =
radial_strip. Due to the complexity of the geometry, this detector model currently
doesn’t allow the creation of passive support structures.

For radial strip detectors, the coordinate origin is placed in the center of concentric arcs,
which form the strip row edges, to enable easier transformation to polar coordinates
utilized by the detector model’s member functions.

The optional parameter stereo_angle can be used to shift the strip focal point around
the center of the sensor to create an asymmetrical sensor. By default, the stereo angle is
disabled.

An examples of radial strip detector model implementation can be seen in models/
atlas_itk_r0 and further in the examples/atlas_itk_petal example.
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Figure 5.2: Radial stips stereo angle
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Allpix Squared implements a variety of properties and models to describe the physics
of semiconductor detectors. Models are implemented module-independently and can be
selected via configuration parameters in the respective models, while sensor material
properties serve as a default to module parameters and can be overwritten in the respective
configuration section. This chapter serves as central reference for the different properties
and models.

6.1 Sensor Material Properties

Allpix Squared supports the definition of a variety of semiconductor sensor materials. To
simplify the setup of simulations with certain materials and to avoid inconsistent results,
a set of default material properties is defined for each available material. These stored
values serve as defaults to modules depending on one of these properties and may thus
be overwritten using the corresponding configuration key in the respective section of the
main configuration file.

The following parameters are currently provided by the framework:

• Charge creation energy

• Fano factor

The values for various materials are listed in the table below. It should be noted that for
many of the following values a significant variation on measurements exist throughout
literature, among others owed to a variation of material quality and composition and of
vendors. The sources for the chosen default values are provided in the table.

Material
Energy
[𝑒𝑉 ]

Fano
factor References

Silicon 3.64 0.115 [31, 32]
Germanium 2.97 0.112 [33]
Gallium Arsenide 4.2 0.14 [34]
Gallium Nitride 8.33 0.07 [35]
Cadmium Telluride 4.43 0.24 [36, 37]
Cadmium Zinc Telluride
(Cd0.8Zn0.2Te)

4.6 0.14 [38, 39]

Diamond 13.1 0.382 [40]
Silicon Carbide (4H-SiC) 7.6 0.1 [41, 42]
Cesium Lead Bromide (CsPbBr3) 5.3 0.1 [CsPbBr3_Creation,CsPbBr3_Fano]
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It should be noted that material properties such as the density and composition
of materials are defined only in case of constructing a Geant4 geometry via the
GeometryBuilderGeant4 module, therefore these values are implemented within the
respective module.

6.2 Charge Carrier Mobility

Allpix Squared provides different charge carrier mobility models, the best-suited model
depends on the simulated device and other simulation parameters. Some models depend on
the electric field strength to parametrize the mobility, others on the doping concentration
of the device. The charge carrier mobility models are used by all propagation modules
and comprise the following models:

6.2.1 Jacoboni-Canali Model

The Jacoboni-Canali model [43] is the most widely used parametrization of charge carrier
mobility in Silicon as a function of the electric field 𝐸. It has originally been derived for
⟨111⟩ silicon lattice orientation, but is widely used also for the common ⟨100⟩ orientation.
The mobility is parametrized as:

𝜇(𝐸) = 𝑣𝑚
𝐸𝑐

1
(1 + (𝐸/𝐸𝑐)𝛽)1/𝛽

where 𝑣𝑚, 𝐸𝑐, and 𝛽 are phenomenological parameters, defined for electrons and holes
respectively. The temperature dependence of these parameters is taken into account by
scaling them with respect to a reference parameter value

𝐴 = 𝐴𝑟𝑒𝑓 ⋅ 𝑇 𝛾

where 𝐴𝑟𝑒𝑓 is the reference parameter value, 𝑇 the temperature in units of Kelvin, and 𝛾
the temperature scaling factor.

The parameter values implemented in Allpix Squared are taken from Table 5 of [43] as

𝑣𝑚,𝑒 = 1.53 × 109 cm s−1 ⋅ 𝑇 −0.87

𝐸𝑐,𝑒 = 1.01Vcm−1 ⋅ 𝑇 1.55

𝛽𝑒 = 2.57 × 10−2 ⋅ 𝑇 0.66

𝑣𝑚,ℎ = 1.62 × 108 cm s−1 ⋅ 𝑇 −0.52

𝐸𝑐,ℎ = 1.24Vcm−1 ⋅ 𝑇 1.68

𝛽ℎ = 0.46 ⋅ 𝑇 0.17

for electrons and holes, respectively.

This model can be selected in the configuration file via the parameter mobility_model
= "jacoboni".
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6.2.2 Canali Model

The Canali model [44] differs from the Jacoboni-Canali model in the equation only by the
value of 𝑣𝑚 for electrons. The difference is most likely a typo in the Jacoboni reproduction
of the parametrization, so this one can be considered the original parametrization derived
from data. The altered value is taken from equation 2a in [44] and amounts to

𝑣𝑚,𝑒  =  1.43 × 109 cm s−1 ⋅ 𝑇 −0.87.

A comparison with other models exhibits a better accordance of the electron mobility
compared to the Jacoboni-Canali parameter value, especially at very high values of the
electric field.

This model can be selected in the configuration file via the parameter mobility_model
= "canali".

6.2.3 CanaliFast Model

The CanaliFast model is an alternative implementation of the Canali model described
above. Instead of calculating the powers 𝑥𝛽 and 𝑦1/𝛽 directly for every requested mobility
value, it uses pre-calculated lookup tables with fixed binning and interpolates between
the nearest bins. Depending on the simulation settings, this can provide a speed-up of
more than 30%.

The boundary values and the binning are chosen according to the expected range of the
base. For the Canali model, values from zero up to a field strength of 1000kV/cm are
tabulated in 1000 bins. Separate lookup tables are built for the two power calculations
for electrons and holes, respectively.

For the calculation of 𝑥𝛽, the lower boundary is set to 0 since the electric field strength
is positive. The upper boundary is set to the argument of the Canali model formula,
i.e. the maximum field strength divided by the critical field strength provided by the
model.

For the calculation of 𝑦1/𝛽, the lower boundary is set to 1 owing to the offset present
in the Canali formula. The upper boundary is again set to the formula argument,
i.e. 1 + (𝐸/𝐸𝐶)𝛽 with 𝐸 being the maximum tabulated field strength.

For field strengths outside the range, the first and last bin are extrapolated linearly,
respectively.

The following plots show a comparison of the mobility and velocity of electrons and
holes as calculated from the Canali and the CanaliFast models. The maximum relative
difference occurs at very low electric field strengths and is less than 0.004.
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Comparison of the electron and hole mobilities calculated using the Canali and CanaliFast
models as a function of the electric field strength.

Comparison of the electron and hole velocities calculated using the Canali and CanaliFast
models as a function of the electric field strength.

6.2.4 Hamburg Model

The Hamburg model [45] presents an empirical parametrization of electron and hole
mobility as a function of the electric field 𝐸 based on measurements of drift velocities in
high-ohmic silicon with ⟨100⟩ lattice orientation. The mobility is parametrized as

𝜇−1
𝑒 (𝐸) = 1/𝜇0,𝑒 + 𝐸/𝑣𝑠𝑎𝑡

𝜇−1
ℎ (𝐸) = 1/𝜇0,ℎ for 𝐸 < 𝐸0

= 1/𝜇0,ℎ + 𝑏 ⋅ (𝐸 − 𝐸0) + 𝑐 ⋅ (𝐸 − 𝐸0)2 for 𝐸 ≥ 𝐸0

as taken from equations 3 and 5 of [45].
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The temperature dependence of the model parameters are calculated with respect to
their reference values at a temperature of 300 Kelvin via equation 6 of [45] as:

𝐴𝑖 = 𝐴𝑖(𝑇 = 300K) ⋅ ( 𝑇
300K

)
𝛾𝑖

The hole mobility parameter 𝑐 is assumed to have no temperature dependence.

The parameter values implemented in Allpix Squared are taken from Table 4 of [45] as

𝜇0,𝑒 = 1530 cm2 V−1 s−1 ⋅ (𝑇 / 300K)−2.42

𝑣𝑠𝑎𝑡 = 1.03 × 107 cm s−1 ⋅ (𝑇 / 300K)−0.226

𝜇0,ℎ = 464 cm2 V−1 s−1 ⋅ (𝑇 / 300K)−2.20

𝑏 = 9.57 × 10−8 cm s−1 ⋅ (𝑇 / 300K)−0.101

𝑐 = −3.31 × 10−13 sV−1

𝐸0 = 2640Vcm−1 ⋅ (𝑇 / 300K)0.526

for electrons and holes, respectively.

This model can be selected in the configuration file via the parameter mobility_model
= "hamburg".

6.2.5 Hamburg High-Field Model

The Hamburg high-field model [45] takes the same form as the Hamburg model, but
uses a different set of parameter values. The values are taken from Table 3 of [45]
and are suitable for electric field strengths above 2.5 kV cm−1. Again, no temperature
dependence is assumed on hole mobility parameter 𝑐, while all other parameters are
scaled to temperatures different than 300 Kelvin using the equation from the Hamburg
model.

The parameter values implemented in Allpix Squared are

𝜇0,𝑒 = 1430 cm2 V−1 s−1 ⋅ (𝑇 / 300K)−1.99

𝑣𝑠𝑎𝑡 = 1.05 × 107 cm s−1 ⋅ (𝑇 / 300K)−0.302

𝜇0,ℎ = 457 cm2 V−1 s−1 ⋅ (𝑇 / 300K)−2.80

𝑏 = 9.57 × 10−8 cm s−1 ⋅ (𝑇 / 300K)−0.155

𝑐 = −3.24 × 10−13 sV−1

𝐸0 = 2970Vcm−1 ⋅ (𝑇 / 300K)0.563

for electrons and holes, respectively.

This model can be selected in the configuration file via the parameter mobility_model
= "hamburg_highfield".
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6.2.6 Masetti Model

The Masetti mobility model [46] parametrizes electron and hole mobility as a function of
the total doping concentration 𝐷 of the silicon material. This model requires a doping
profile to be loaded for the detector in question, and an error will be returned if the
doping profile is missing.

While this mobility model requires the total doping concentration 𝑁𝐷 +  𝑁𝐴 as param-
eter, the doping profile used throughout Allpix Squared provides the effective doping
concentration 𝑁𝐷 − 𝑁𝐴 since this also encodes the majority charge carriers via its sign.
However, in the parts of a silicon detector relevant for this simulation, i.e. the sensing
volume, the difference between effective and total concentration is expected to be negli-
gible. Therefore the doping concentration in this model is taken as the absolute value
𝑁  =   |𝑁𝐷 − 𝑁𝐴|.

The mobility is parametrized as

𝜇𝑒(𝑁) = 𝜇0,𝑒 +
𝜇𝑚𝑎𝑥,𝑒 − 𝜇0,𝑒

1 + (𝑁/𝐶𝑟,𝑒)𝛼𝑒
−

𝜇1,𝑒

1 + (𝐶𝑠,𝑒/𝑁)𝛽𝑒

𝜇ℎ(𝑁) = 𝜇0,ℎ ⋅ 𝑒−𝑃𝑐/𝑁 +
𝜇𝑚𝑎𝑥,ℎ

1 + (𝑁/𝐶𝑟,ℎ)𝛼ℎ
−

𝜇1,ℎ

1 + (𝐶𝑠,ℎ/𝑁)𝛽ℎ

as taken from equations 1 (for electrons) and 4 (for holes) of [46].

Only the parameters 𝜇𝑚𝑎𝑥 for both electrons and holes are temperature dependent and
are scaled according to the equation from the Hamburg model with parameters 𝛾𝑒 = −2.5
for electrons and 𝛾𝑒 = −2.2 for holes.

The parameter values implemented in Allpix Squared are taken from Table I of [46] for
phosphorus and boron as

𝜇0,𝑒 = 68.5 cm2 V−1 s−1

𝜇𝑚𝑎𝑥,𝑒 = 1414 cm2 V−1 s−1 ⋅ (𝑇 / 300K)−2.5

𝐶𝑟,𝑒 = 9.20 × 1016 cm−3

𝛼𝑒 = 0.711
𝜇1,𝑒 = 56.1 cm2 V−1 s−1

𝐶𝑠,𝑒 = 3.41 × 1020 cm−3

𝛽𝑒 = 1.98

𝜇0,ℎ = 44.9 cm2 V−1 s−1

𝜇𝑚𝑎𝑥,ℎ = 470.5 cm2 V−1 s−1 ⋅ (𝑇 / 300K)−2.2

𝐶𝑟,ℎ = 2.23 × 1017 cm−3

𝛼ℎ = 0.719
𝜇1,ℎ = 29.0 cm2 V−1 s−1

𝐶𝑠,ℎ = 6.1 × 1020 cm−3

𝛽ℎ = 2.0
𝑃𝑐 = 9.23 × 1016 cm−3
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for electrons and holes, respectively.

For arsenic as n-dopant, the electron mobility values differ and are taken from the same
table as

𝜇0,𝑒 = 52.2 cm2 V−1 s−1

𝜇𝑚𝑎𝑥,𝑒 = 1417 cm2 V−1 s−1 ⋅ (𝑇 / 300K)−2.5

𝐶𝑟,𝑒 = 9.68 × 1016 cm−3

𝛼𝑒 = 0.68
𝜇1,𝑒 = 43.4 cm2 V−1 s−1

𝐶𝑠,𝑒 = 3.43 × 1020 cm−3

𝛽𝑒 = 2.0

This model can be selected in the configuration file via the parameter mobility_model
= "masetti", and the n-dopant can be selected via the parameter dopant_n. Possible
values for the n-dopant are arsenic and phosphorus, with phosphorus being the default.

6.2.7 Arora Model

The Arora mobility model [47] parametrizes electron and hole mobility as a function
of the total doping concentration of the silicon material. This model requires a doping
profile to be loaded for the detector in question, and an error will be returned if the
doping profile is missing. The same caveat to doping concentration information in Allpix
Squared applies as described in the previous section.

The mobility is parametrized as

𝜇𝑒(𝑁) = 𝜇𝑚𝑖𝑛,𝑒 + 𝜇0,𝑒/ (1 + (𝑁/𝑁𝑟𝑒𝑓,𝑒)𝛼)
𝜇ℎ(𝑁) = 𝜇𝑚𝑖𝑛,ℎ + 𝜇0,ℎ/ (1 + (𝑁/𝑁𝑟𝑒𝑓,ℎ)𝛼)

as taken from equations 8 (for electrons) and 13 (for holes) of [47].

The parameter values are provided at the reference temperature of 300 Kelvin and scaled
to different temperatures according to the equation from the Hamburg model. The values
implemented in Allpix Squared are taken from Table 1 and the formulas of [47] as

𝜇𝑚𝑖𝑛,𝑒 = 88.0 cm2 V−1 s−1 ⋅ (𝑇 / 300K)−0.57

𝜇0,𝑒 = 7.40 × 108 cm2 V−1 s−1 ⋅ 𝑇 −2.33

𝑁𝑟𝑒𝑓,𝑒 = 1.26 × 1017 cm−3 ⋅ (𝑇 / 300K)2.4

𝜇𝑚𝑖𝑛,ℎ = 54.3 cm2 V−1 s−1 ⋅ (𝑇 / 300K)−0.57

𝜇0,ℎ = 1.36 × 108 cm2 V−1 s−1 ⋅ 𝑇 −2.23

𝑁𝑟𝑒𝑓,ℎ = 2.35 × 1017 cm−3 ⋅ (𝑇 / 300K)2.4

𝛼 = 0.88 ⋅ (𝑇 / 300K)−0.146
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for electrons and holes, respectively.

This model can be selected in the configuration file via the parameter mobility_model
= "arora".

6.2.8 Extended Canali Model

This model extends the Jacoboni-Canali model described with other doping concentration
dependent, low-field models such as the Masetti model. This technique is for example
used in the Synopsys Sentaurus TCAD software.

The mobility is then parametrized using the two models as

𝜇(𝐸, 𝑁) = 𝜇𝑚(𝑁)

(1 + (𝜇𝑚(𝑁) ⋅ 𝐸/𝑣𝑚)𝛽)
1/𝛽 ,

where 𝜇𝑚(𝑁) is the mobility from the Masetti model and 𝑣𝑚, 𝛽 are the respective
parameters from the Canali model.

This model can be selected in the configuration file via the parameter mobility_model
= "masetti_canali", and the n-dopant can be selected via the parameter dopant_n.

Possible values for the n-dopant are arsenic and phosphorus, with phosphorus being the
default.

6.2.9 Ruch-Kino Model

The Ruch-Kino mobility model [48] parametrizes electron and hole mobility in GaAs
sensor material. The model parameters implemented in Allpix Squared is taken from
measurements [49].

The mobility is parametrized as

𝜇𝑒(𝐸) = 𝜇0,𝑒 for 𝐸 < 𝐸0

= 𝜇0,𝑒/√1 + (𝐸 − 𝐸0)2 /𝐸2
𝑐 for 𝐸 ≥ 𝐸0

𝜇ℎ(𝐸) = 𝜇0,ℎ.

The values implemented in Allpix Squared are:

𝐸0 = 3.1 × 103 Vcm−1

𝐸𝑐 = 1.36 × 103 Vcm−1

𝜇_0, 𝑒 = 7.6 × 103 cm2 V−1 s−1

𝜇_0, ℎ = 3.2 × 102 cm2 V−1 s−1

This model can be selected in the configuration file via the parameter mobility_model
= "ruch_kino".
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6.2.10 Quay Model

The Quay mobility model describes the mobility of electron and holes in a large range
of semiconductor materials. In the original publication [50], the saturation velocity is
modeled via the relation

𝑣𝑠𝑎𝑡 (𝑇) =
𝑣𝑠𝑎𝑡,300

(1 − 𝐴) + 𝐴 ⋅ (𝑇 /300 𝐾)
,

with the saturation velocity at 300 Kelvin and the free parameter 𝐴.

In Allpix Squared the mobility is determined according to a model published in [51], as a
function of the saturation velocity 𝑣𝑠𝑎𝑡, the electrical field 𝐸 and the critical field 𝐸𝐶:

𝜇𝑒 (𝐸) = 𝑣𝑠𝑎𝑡

𝐸𝐶 ⋅ √1 + (𝐸/𝐸𝐶)2
.

The critical field in turn is defined as the saturation velocity divided by the mobility at
zero field, where the zero-field mobility scales with temperature according to [51]:

𝐸𝐶(𝑇 ) = 𝑣𝑠𝑎𝑡
𝑀 𝑇 −𝛾 .

The model has been implemented for silicon, germanium and gallium arsenide. Parameters
for several other compound semiconductors are given in [50] and [52]. The parameters
implemented in Allpix Squared and their references are listed in the table below.

Mate-
rial Parameter Electrons Holes References

Silicon 𝑣𝑠𝑎𝑡,300 [cm s−1] 1.02×107 0.72×107 [50]
𝐴 0.74 0.37 [50]
𝑀 [cm2 K𝛾 V−1 s−1] 1.43×109 1.35×108 [43]
𝛾 2.42 2.2 [43]

Germa-
nium

𝑣𝑠𝑎𝑡,300 [cm s−1] 0.7 × 107 0.63×107 [50]

𝐴 0.45 0.39 [50]
𝑀 [cm2 K𝛾 V−1 s−1] 5.66×107 1.05×109 [51, 52]
𝛾 1.68 2.33 [51, 52]

Gal-
lium
Ar-
senide

𝑣𝑠𝑎𝑡,300 [cm s−1] 0.72×107 0.9 × 107 [50]

𝐴 0.44 0.59 [50]
𝑀 [cm2 K𝛾 V−1 s−1] 2.5 × 106 6.3 × 107 [52]
𝛾 1.0 2.1 [52]

The relevant set of parameters from the above table is selected automatically based on
the configured material of the sensor in question.

77



6 Physics Models & Materials

This model can be selected in the configuration file via the parameter mobility_model
= "quay".

6.2.11 Levinshtein Mobility

The Levinshtein mobility model describes the mobility of electron and holes in Gallium
Nitride. The publication [53] models the electron and hole mobilities as a function of
doping concentration and temperature. The temperature dependent model follows the
relation

𝜇𝑒(𝑇 , 𝑁) =
𝜇𝑚𝑎𝑥,𝑒

1
𝐵𝑒(𝑁)(𝑇 /𝑇0)𝛽𝑒 + ( 𝑇

𝑇0
)

𝛼𝑒

𝜇ℎ(𝑇 , 𝑁) =
𝜇𝑚𝑎𝑥,ℎ

1
𝐵ℎ(𝑁) + ( 𝑇

𝑇0
)

𝛼ℎ

𝐵𝑖(𝑁) = ⎡
⎢
⎣

𝜇𝑚𝑖𝑛,𝑖 + 𝜇𝑚𝑎𝑥,𝑖 (𝑁𝑟𝑒𝑓,𝑖
𝑁 )

𝛾𝑖

𝜇𝑚𝑎𝑥,𝑖 − 𝜇𝑚𝑖𝑛,𝑖

⎤
⎥
⎦

∣
𝑇 =𝑇0

as taken from equations 6 and 7. The following parameters in use are taken from tables
1 and 2 in the reference publication:

𝜇_𝑚𝑎𝑥, 𝑒 = 1000 cm2 V−1 s−1

𝜇_𝑚𝑖𝑛, 𝑒 = 55 cm2 V−1 s−1

𝑁𝑟𝑒𝑓,𝑒 = 2 × 1017
𝛼𝑒 = 2.0
𝛽𝑒 = 0.7
𝛾𝑒 = 1.0

𝜇_𝑚𝑎𝑥, ℎ = 170 cm2 V−1 s−1

𝜇_𝑚𝑖𝑛, ℎ = 3 cm2 V−1 s−1

𝑁𝑟𝑒𝑓,ℎ = 3 × 1017
𝛼ℎ = 5.0
𝛾ℎ = 2.0

This model can be selected in the configuration file via the parameter mobility_model
= "levinshtein".

6.2.12 Constant Mobility

Some simulations require constant charge carrier mobility values 𝜇 = const. This can be
simulated with this model. For more complex mobility dependencies the custom mobility
model described next should be used.

This model can be selected in the configuration file via the parameter mobility_model
= "constant.
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It requires the additional configuration keys mobility_electron and mobility_hole to
be present in the module configuration section, for example:

mobility_model = "constant"
mobility_electron = 1000cm*cm/V/s
mobility_hole = 50cm*cm/V/s

6.2.13 Custom Mobility Models

Allpix Squared provides the possibility to use fully custom mobility models. In order to
use a custom model, the parameter mobility_model = "custom" needs to be set in the
configuration file. Additionally, the following configuration keys have to be provided:

• mobility_function_electrons: The formula describing the electron mobility.

• mobility_function_holes: The formula describing the hole mobility.

The functions defined via these parameters can depend on the local electric field and the
local doping concentration. In order to use the electric field magnitude in the formula,
an x has to be placed at the respective position, for the doping concentration a y is used
as placeholder.

Parameters of the functions can either be placed directly in the formulas in framework-
internal units, or provided separately as arrays via the mobility_parameters_electrons
and mobility_parameters_electrons. Placeholders for parameters in the formula are
denoted with squared brackets and a parameter number, for example [0] for the first
parameter provided. Parameters specified separately from the formula can contain units
which will be interpreted automatically.

Warning: Parameters directly placed in the mobility formula have to be supplied
in framework-internal units since the function will be evaluated with both electric
field strength and doping concentration in internal units. It is recommended to use
the possibility of separately configuring the parameters and to make use of units to
avoid conversion mistakes.

The following set of parameters re-implements the Jacoboni-Canali mobility model using
a custom mobility model. The mobility is calculated at a fixed temperature of 293
Kelvin.

# Replicating the Jacoboni-Canali mobility model at T = 293K
mobility_model = "custom"

mobility_function_electrons = "[0]/[1]/pow(1.0+pow(x/[1],[2]),1.0/[2])"
mobility_parameters_electrons = 1.0927393e7cm/s, 6729.24V/cm, 1.0916

mobility_function_holes = "[0]/[1]/pow(1.0+pow(x/[1],[2]),1.0/[2])"
mobility_parameters_holes = 8.447804e6cm/s, 17288.57V/cm, 1.2081
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Warning: It should be noted that the temperature passed via the module configu-
ration is not evaluated for the custom mobility model, but the model parameters
need to be manually adjusted to the required temperature.

The interpretation of the custom mobility functions is based on the ROOT::TFormula class
[54] and supports all corresponding features, mathematical expressions and constants.

6.3 Charge Carrier Lifetime & Recombination

Allpix Squared provides the possibility to simulate finite lifetimes of charge carriers as
a function of the local doping concentration via non-radiative recombination processes.
While most of these models require the total doping concentration 𝑁𝐷 + 𝑁𝐴 as param-
eter, the doping profile used throughout Allpix Squared provides the effective doping
concentration 𝑁𝐷 − 𝑁𝐴 since this also encodes the majority charge carriers via its sign -
an information relevant to some of the models. However, in the parts of a silicon detector
relevant for this simulation, i.e. the sensing volume, the difference between effective and
total concentration is expected to be negligible. Therefore the two values are treated as
equivalent throughout the lifetime models and the doping concentration is taken as the
absolute value 𝑁 = |𝑁𝐷 − 𝑁𝐴|.

Whether a charge carrier has recombined with the lattice is calculated for every step of
the simulation using the relation

𝑝 < 1 − 𝑒−𝑑𝑡/𝜏(𝑁)

where 𝑝 is a recombination probability, drawn from a uniform distribution with [0, 1],
𝑑𝑡 is the last time step of the charge carrier motion and 𝜏 the lifetime for the local
doping concentration calculated by the models described in the following. If the above
equation evaluates to false, the charge carrier still exists, if it evaluates to true it has
been recombined with the lattice.

Finite charge carrier lifetime can be simulated by all propagation modules and comprise
the following models:

6.3.1 Shockley-Read-Hall Recombination

This model describes the finite lifetime based on Shockley-Read-Hall or trap-assisted
recombination of charge carriers with the lattice [55, 56]. The lifetime is calculated using
the Shockley-Read-Hall relation as given by [57]:

𝜏(𝑁) = 𝜏0
1 + 𝑁

𝑁𝑑0

where 𝜏0 and 𝑁𝑑0 are reference lifetime and doping concentration, for electrons and holes
respectively. The parameter values implemented in Allpix Squared are taken from [57]
and the Synopsys Sentaurus TCAD software manual as
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𝜏0,𝑒 = 1 × 10−5 s
𝑁𝑑0,𝑒 = 1 × 1016 cm−3

𝜏0,ℎ = 4.0 × 10−4 s
𝑁𝑑0,ℎ = 7.1 × 1015 cm−3

for electrons and holes, respectively.

The temperature dependence of the Shockley-Read-Hall lifetime is scaled following the
low-temperature approximation model presented [58] as:

𝜏(𝑁, 𝑇 ) = 𝜏(𝑁) ⋅ (300K
𝑇

)
3/2

This model can be selected in the configuration file via the parameter recombination_model
= "srh".

6.3.2 Auger Recombination

At high doping levels exceeding 5 × 1018 cm−3 [fossum-lee2], the Auger recombination
model becomes increasingly important. It assumes that the excess energy created by
electron-hole recombinations is transferred to another electron (e-e-h process) or another
hole (e-h-h process). The total recombination rate is then given by [59]:

𝑅𝐴𝑢𝑔𝑒𝑟 = 𝐶𝑛𝑛2𝑝 + 𝐶𝑝𝑛𝑝2

where 𝐶𝑛 and 𝐶𝑝 are the Auger coefficients. The first term corresponds to the e-e-h
process and the second term to the e-h-h process. In highly-doped silicon, the Auger
lifetime for minority charge carriers can be written as:

𝜏(𝑁) = 1
𝐶𝑎 ⋅ 𝑁2

where 𝐶𝑎 = 𝐶𝑛 +𝐶𝑝 is the ambipolar Auger coefficient, taken as 𝐶𝑎 = 3.8×10−31 cm6 s−1

from [60].

This recombination mode applies to minority charge carriers only, majority charge carriers
have an infinite life time under this model and the recombination equation will always
evaluate to true.

This model can be selected in the configuration file via the parameter recombination_model
= "auger".
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6.3.3 Combined SRH/Auger Recombination

This model combines the charge carrier recombination from the Shockley-Read-Hall and
the Auger model by inversely summing the individual lifetimes calculated by the models
via

𝜏−1(𝑁) = 𝜏−1
𝑠𝑟ℎ(𝑁) + 𝜏−1

𝑎 (𝑁) for minority charge carriers
= 𝜏−1

𝑠𝑟ℎ(𝑁) for majority charge carriers

where 𝜏𝑠𝑟ℎ(𝑁) is the Shockley-Read-Hall and 𝜏𝑎(𝑁) the Auger lifetime. The latter is
only taken into account for minority charge carriers.

This model can be selected in the configuration file via the parameter recombination_model
= "srh_auger".

6.3.4 Recombination with Constant Lifetimes

Some materials require constant lifetimes for charge carriers 𝜏(𝑁) = 𝜏. This model
requires the additional configuration keys lifetime_electron and lifetime_hole to
be present in the module configuration section, for example:

# Constant lifetimes for electrons and holes in GaAs with Cr
compensation:↪

recombination_model = "constant"
lifetime_electron = 30ns
lifetime_hole = 4.5ns

This model can be selected in the configuration file via the parameter recombination_model
= "constant".

6.3.5 Custom Recombination Models

Allpix Squared provides the possibility to use fully custom recombination models. In
order to use a custom model, the parameter recombination_model = "custom" needs
to be set in the configuration file. Additionally, the following configuration keys have to
be provided:

• lifetime_function_electrons: The formula describing the electron lifetime.

• lifetime_function_holes: The formula describing the hole lifetime.

The functions defined via these parameters can depend on the local doping concentration.
In order to use the doping concentration in the formula, an x has to be placed at the
respective position.

Parameters of the functions can either be placed directly in the formulas in framework-
internal units, or provided separately as arrays via the lifetime_parameters_electrons
and lifetime_parameters_electrons. Placeholders for parameters in the formula are
denoted with squared brackets and a parameter number, for example [0] for the first
parameter provided. Parameters specified separately from the formula can contain units
which will be interpreted automatically.
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Warning: Parameters directly placed in the recombination formula have to be
supplied in framework-internal units since the function will be evaluated with the
doping concentration in internal units. It is recommended to use the possibility of
separately configuring the parameters and to make use of units to avoid conversion
mistakes.

The following set of parameters re-implements the Shockley-Read-Hall recombination
model using a custom recombination model. The lifetimes are calculated at a fixed
temperature of 293 Kelvin.

# Replicating the Shockley-Read-Hall model at T = 293K
recombination_model = "custom"

lifetime_function_electrons = "[0]/(1 + x / [1])"
lifetime_parameters_electrons = 1.036e-5s, 1e16/cm/cm/cm

lifetime_function_holes = "[0]/(1 + x / [1])"
lifetime_parameters_holes = 4.144e-4s, 7.1e15/cm/cm/cm

Warning: It should be noted that the temperature passed via the module configura-
tion is not evaluated for the custom recombination model, but the model parameters
need to be manually adjusted to the required temperature.

The interpretation of the custom recombination functions is based on the ROOT::TFormula
class [54] and supports all corresponding features, mathematical expressions and con-
stants.

6.4 Trapping and Detrapping of Charge Carriers

Allpix Squared provides the possibility to simulate the trapping and detrapping of charge
carriers as a consequence of radiation induced lattice defects. Several models exist,
that quantify the effective lifetime of electrons and holes, respectively, as a function of
the fluence and, partially, the temperature. The fluence needs to be provided to the
corresponding propagation module, and is always interpreted as 1-MeV neutron equivalent
fluence [61].

The decision on whether a charge carrier has been trapped during a step during the
propagation process is calculated similarly to the recombination processes, described in
Section 6.3.

It should be noted that the trapping of charge carriers is only one of several effects
induced by radiation damage. In Allpix Squared, these effects are treated independently,
i.e. defining the fluence for a propagation module will not affect any other process than
trapping.
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have been extracted under certain annealing conditions. A dependency on annealing
conditions has not been implemented here. Please refer to the corresponding reference
publications for further details.

The trapping probability is calculated as an exponential decay as a function of the
simulation timestep as

𝑝𝑒,ℎ = (1 − exp1 𝛿𝑡
𝜏𝑒,ℎ )

where 𝛿𝑡 is the simulation timestep and 𝜏𝑒, ℎ the effective lifetime of electrons and holes,
respectively. At the same time, a total time spent in the trap is calculated if a detrapping
model is selected. Here, the time until the charge carrier is de-trapped is calculated as

𝛿𝑡 = −𝜏𝑒.ℎ ln 1 − 𝑝

where 𝑝 is a probability randomly chosen from a uniform distribution between 0 and 1.

6.4.1 Trapping Models

The following models for trapping of charge carriers can be selected:

Ljubljana

In the Ljubljana (sometimes referred to as Kramberger) model [62], the trapping time
follows the relation

𝜏−1(𝑇 ) = 𝛽(𝑇 )Φ𝑒𝑞,

where the temperature scaling of 𝛽 is given as

𝛽(𝑇 ) = 𝛽(𝑇0) ( 𝑇
𝑇0

)
𝜅

,

extracted at the reference temperature of 𝑇0 = −10 °C.

The parameters used in Allpix Squared are

𝛽𝑒(𝑇0) = 5.6 × 10−16 cm2 ns−1

𝜅𝑒 = −0.86

𝛽ℎ(𝑇0) = 7.7 × 10−16 cm2 ns−1

𝜅ℎ = −1.52

for electrons and holes, respectively.

While [62] quotes different values for 𝛽 for irradiation with neutrons, pions and protons,
the values for protons have been applied here.
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The parameters arise from measurements of the were obtained evaluating current signals
of irradiated sensors via light injection at fluences up to Φ𝑒𝑞 = 2 × 1014 𝑛𝑒𝑞 cm2.

This model can be selected in the configuration file via the parameter trapping_model
= "ljubljana".

Dortmund

The Dortmund (sometimes referred to as Krasel) model [63], describes the effective
trapping times as

𝜏−1 = 𝛾Φ𝑒𝑞,

with the parameters

𝛾𝑒 = 5.13 × 10−16 cm2 ns−1

𝛾ℎ = 5.04 × 10−16 cm2 ns−1

for electrons and holes, respectively.

The values have been extracted evaluating current signals of irradiated sensors via light
injection at fluences up to Φ𝑒𝑞 = 8.9 × 1014 𝑛𝑒𝑞 cm2, at a temperature of 𝑇 = 0 °C. No
temperature scaling is provided. Values for neutron and proton irradiation have been
evaluated in [63], Allpix Squared makes use of the values for proton irradiation.

This model can be selected in the configuration file via the parameter trapping_model
= "dortmund".

CMS Tracker

This effective trapping model has been developed by the CMS Tracker Group. It follows
the results of [64], with measurements at fluences of up to Φ𝑒𝑞 = 3 × 1015 𝑛𝑒𝑞 cm2, at a
temperature of 𝑇 = −20 °C and an irradiation with protons.

The interpolation of the results follows the relation

𝜏−1 = 𝛽Φ𝑒𝑞 + 𝜏−1
0

with the parameters

𝛽𝑒(𝑇0) = 1.71 × 10−16 cm2 ns−1

𝜏−1
0,𝑒 = −0.114 ns−1

𝛽ℎ(𝑇0) = 2.79 × 10−16 cm2 ns−1

𝜏−1
0,ℎ = −0.093 ns−1

for electrons and holes, respectively.
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No temperature scaling is provided.

This model can be selected in the configuration file via the parameter trapping_model
= "cmstracker".

Mandic

The Mandić model [65] is an empirical model developed from measurements with high
fluences ranging from Φ𝑒𝑞 = 5 × 1015 𝑛𝑒𝑞 cm2 to Φ𝑒𝑞 = 1 × 1017 𝑛𝑒𝑞 cm2 and describes
the lifetime via

𝜏 = 𝑐Φ𝜅
𝑒𝑞

with the parameters

𝑐𝑒 = 0.54 ns cm−2

𝜅𝑒 = −0.62

𝑐ℎ = 0.0427 ns cm−2

𝜅ℎ = −0.62

for electrons and holes, respectively.

The parameters for electrons are taken from [65], for measurements at a temperature of
𝑇 = −20 °C, and the results extrapolated to 𝑇 = −30 °C.

The c_e has been updated accordingly based on the erratum [MandicErratum].

A scaling from electrons to holes was performed based on the default values in Weightfield2
[66].

This model can be selected in the configuration file via the parameter trapping_model
= "mandic".

Constant Trapping Model

For some situations or materials, a constant trapping probability is necessary. This
can be achieved with the constant trapping model. Here, the lifetimes are constant
and set from the values provided in the configuration file with the parameters
trapping_time_electron and trapping_time_hole:

# Constant trapping times for electrons and holes:
trapping_model = "constant"
trapping_time_electron = 5ns
trapping_time_hole = 5ns

This model can be selected in the configuration file via the parameter trapping_model
= "constant".
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Custom Trapping Model

Similarly to the mobility models described above, Allpix Squared provides the possibility
to use fully custom trapping models. The model requires the following configuration
keys:

• trapping_function_electrons: The formula describing the effective electron
trapping time.

• trapping_function_holes: The formula describing the effective hole trapping
time.

The functions defined via these parameters can depend on the local electric field. In
order to use the electric field magnitude in the formula, an x has to be placed at the
respective position.

Parameters of the functions can either be placed directly in the formulas in framework-
internal units, or provided separately as arrays via the trapping_parameters_electrons
and trapping_parameters_holes. Placeholders for parameters in the formula are
denoted with squared brackets and a parameter number, for example [0] for the first
parameter provided. Parameters specified separately from the formula can contain units
which will be interpreted automatically.

Note: Both fluence and temperature are not inherently available in the custom
trapping model, but need to be provided as additional parameters as described
above.

The following configuration parameters replicate the Ljubljana model using a custom
trapping model.

# Replicating the Ljubljana trapping model at a temperature of 293 K and
a neutron equivalent fluence of 1e14 neq/cm^2↪

trapping_model = "custom"

trapping_function_electrons = "1/([0]*pow([1]/263,[2]))/[3]"
trapping_parameters_electrons = 5.6e-16cm*cm/ns, 293K, -0.86, 1e14/cm/cm

trapping_function_holes = "1/([0]*pow([1]/263,[2]))/[3]"
trapping_parameters_holes = 7.7e-16cm*cm/ns, 293K, -1.52, 1e14/cm/cm

Fixed, effective trapping times can be defined using this model similar to the following
configuration example.

# Defining a fixed trapping time
trapping_model = "custom"

trapping_function_electrons = "[0]"
trapping_parameters_electrons = 5ns
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trapping_function_holes = "[0]"
trapping_parameters_holes = 7ns

This model can be selected in the configuration file via the parameter trapping_model
= "custom".

6.4.2 Detrapping Models

The detrapping is configured via the detrapping_model parameter. Currently, only
detrapping_model = "none" and detrapping_model = "constant" are supported.

The following models for trapping of charge carriers can be selected:

Constant Detrapping Model

A constant detrapping probability, with the detrapping time defined separately for
electrons and holes, can be implemented via the constant detrapping model. This model
requires the parameters detrapping_time_electron and detrapping_time_hole to be
configured.

# Constant detrapping times for electrons and holes:
detrapping_model = "constant"
detrapping_time_electron = 10ns
detrapping_time_hole = 10ns

6.5 Impact Ionization

Allpix Squared implements charge multiplication via impact ionization models. These
models are only used by propagation modules which perform a step-by-step simulation
of the charge carrier motion.

The per-step gain 𝑔 is calculated for all models as exponential of the model-dependent
impact ionization coefficient 𝛼 and the length of the step 𝑙 performed in the respective
electric field. If the electric field strength stays below a configurable threshold 𝐸thr, unity
gain is assumed:

𝑔(𝐸, 𝑇 ) = { 𝑒𝑙⋅𝛼(𝐸,𝑇 ) 𝐸 > 𝐸thr
1.0 𝐸 < 𝐸thr

The impact ionization coefficient 𝛼 is calculated depending on the selected impact
ionization model. The models themselves are described below.

The number of additional charge carriers generated per step 𝑛 is determined via a
stochastic approach by applying the following equation dependent on a random number
drawn from a uniform distribution 𝑢(0, 1)

𝑛 = ln(𝑢)
ln(1 − 1/𝑔)

= 1
log𝑢(1 − 1/𝑔)
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This distribution is applied e.g. in Garfield++[67] and represents a microscopic simulation
of Yule processes.

The number of secondary charge carriers generated from impact ionization is calculated
for every individual charge carrier within a group of charge carriers and summed per
propagation step. Additional charge carriers are then added to the group (same-type
carriers) or deposited (opposite-type) at the end of the corresponding step.

This algorithm results in a mean number of secondaries generated equal to

⟨𝑛𝑡𝑜𝑡𝑎𝑙⟩ = exp (∫
𝑥𝑛

𝑥0

𝛼(𝑥)𝑑𝑥)

for sufficiently low step sizes.

The following impact ionization models are available:

6.5.1 Massey Model

The Massey model [68] describes impact ionization as a function of the electric field 𝐸.
The ionization coefficients are parametrized as

𝛼(𝐸, 𝑇 ) = 𝐴𝑒− 𝐵(𝑇)
𝐸 ,

where 𝐴 and 𝐵(𝑇 ) are phenomenological parameters, defined for electrons and holes
respectively. While 𝐴 is assumed to be temperature-independent, parameter 𝐵 exhibits
a temperature dependence and is defined as

𝐵(𝑇 ) = 𝐶 + 𝐷 ⋅ 𝑇 .

Original publication

The parameter values implemented in Allpix Squared are taken from Section 3 of [68]
as:

𝐴𝑒 = 4.43 × 105 /cm
𝐶𝑒 = 9.66 × 105 V/cm
𝐷𝑒 = 4.99 × 102 V/cm/K

𝐴ℎ = 1.13 × 106 /cm
𝐶ℎ = 1.71 × 106 V/cm
𝐷ℎ = 1.09 × 103 V/cm/K

for electrons and holes, respectively.

This model can be selected in the configuration file via the parameter multiplication_model
= "massey".
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Optimized parameters

An optimized parametrization of the Massey model based on measurements with an
infrared laser is implemented in Allpix Squared, based on Table 2 of [69] with the values:

𝐴𝑒 = 1.186 × 106 /cm
𝐶𝑒 = 1.020 × 106 V/cm
𝐷𝑒 = 1.043 × 103 V/cm/K

𝐴ℎ = 2.250 × 106 /cm
𝐶ℎ = 1.851 × 106 V/cm
𝐷ℎ = 1.828 × 103 V/cm/K

for electrons and holes, respectively.

This model can be selected in the configuration file via the parameter multiplication_model
= "massey_optimized".

6.5.2 Van Overstraeten-De Man Model

The Van Overstraeten-De Man model [70] describes impact ionization using Chynoweth’s
law, given by

𝛼(𝐸, 𝑇 ) = 𝛾(𝑇 ) ⋅ 𝑎∞ ⋅ 𝑒− 𝛾(𝑇)⋅𝑏
𝐸 ,

For holes, two sets of impact ionization parameters 𝑝 = {𝑎∞, 𝑏} are used depending on
the electric field:

𝑝 = { 𝑝low 𝐸 < 𝐸0
𝑝high 𝐸 > 𝐸0

Temperature scaling of the ionization coefficient is performed via the 𝛾(𝑇 ) parameter
following the Synposys Sentaurus TCAD user manual as:

𝛾(𝑇 ) = tanh (
ℏ𝜔𝑜𝑝

2𝑘B ⋅ 𝑇0
) ⋅ tanh (

ℏ𝜔𝑜𝑝

2𝑘B ⋅ 𝑇
)

−1

with ℏ𝜔𝑜𝑝 = 0.063 eV and the Boltzmann constant 𝑘B = 8.6173 × 10−5 eV/K. The value
of the reference temperature 𝑇0 is not entirely clear as it is never stated explicitly, a
value of 𝑇0 = 300K is assumed.
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Original publication

The other model parameter values implemented in Allpix Squared are taken from the
abstract of [70] as:

𝐸0 = 4.0 × 105 V/cm
𝑎∞,𝑒 = 7.03 × 105 /cm

𝑏𝑒 = 1.231 × 106 V/cm

𝑎∞,ℎ,low = 1.582 × 106 /cm
𝑎∞,ℎ,high = 6.71 × 105 /cm

𝑏ℎ,low = 2.036 × 106 V/cm
𝑏ℎ,high = 1.693 × 106 V/cm

This model can be selected in the configuration file via the parameter multiplication_model
= "overstraeten".

Optimized parameters

An optimized parametrization of the Van Overstraeten-De Man model based on measure-
ments with an infrared laser is implemented in Allpix Squared, based on Table 3 of [69]
with the following parameter values:

𝑎∞,𝑒 = 1.149 × 106 /cm
𝑏𝑒 = 1.325 × 106 V/cm

𝑎∞,ℎ = 2.519 × 106 /cm
𝑏ℎ = 2.428 × 106 V/cm

ℏ𝜔𝑜𝑝 = 0.0758 eV

In contrast to the original model, this publication uses a parametrization without
differentiating between low and high field regions, hence only one parameter value is
provided for each of 𝑎∞,ℎ and 𝑏ℎ.

This model can be selected in the configuration file via the parameter multiplication_model
= "overstraeten_optimized".

6.5.3 Okuto-Crowell Model

The Okuto-Crowell model [71] defines the impact ionization coefficient similarly to the
above models but in addition features a linear dependence on the electric field strength
𝐸. The coefficient is given by:
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𝛼(𝐸, 𝑇 ) = 𝑎(𝑇 ) ⋅ 𝐸 ⋅ 𝑒−( 𝑏(𝑇)
𝐸 )

2

.

The two parameters 𝑎, 𝑏 are temperature dependent and scale with respect to the reference
temperature 𝑇0 = 300K as:

𝑎(𝑇 ) = 𝑎300 [1 + 𝑐 (𝑇 − 𝑇0)]
𝑏(𝑇 ) = 𝑎300 [1 + 𝑑 (𝑇 − 𝑇0)]

Original publication

The parameter values implemented in Allpix Squared are taken from Table 1 of [71],
using the values for silicon, as:

𝑎300,𝑒 = 0.426 /V
𝑐𝑒 = 3.05 × 10−4

𝑏300,𝑒 = 4.81 × 105 V/cm
𝑑𝑒 = 6.86 × 10−4

𝑎300,ℎ = 0.243 /V
𝑐ℎ = 5.35 × 10−4

𝑏300,ℎ = 6.53 × 105 V/cm
𝑑ℎ = 5.67 × 10−4

This model can be selected in the configuration file via the parameter multiplication_model
= "okuto".

Optimized parameters

An optimized parametrization of the Okuto-Crowell model based on measurements with
an infrared laser is implemented in Allpix Squared, based on Table 4 of [69] with the
following parameter values:

𝑎300,𝑒 = 0.289 /V
𝑐𝑒 = 9.03 × 10−4

𝑏300,𝑒 = 4.01 × 105 V/cm
𝑑𝑒 = 1.11 × 10−3

𝑎300,ℎ = 0.202 /V
𝑐ℎ = −2.20 × 10−3

𝑏300,ℎ = 6.40 × 105 V/cm
𝑑ℎ = 8.25 × 10−4
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This model can be selected in the configuration file via the parameter multiplication_model
= "okuto_optimized".

6.5.4 Bologna Model

The Bologna model [72] describes impact ionization for experimental data in an electric
field range from 130 kV/cm to 230 kV/cm and temperatures up to 400 °C. The impact
ionization coefficient takes a different form than the previous models and is given by

𝛼(𝐸, 𝑇 ) = 𝐸
𝑎(𝑇 ) + 𝑏(𝑇 )𝑒𝑑(𝑇 )/(𝐸+𝑐(𝑇 )) ,

for both electrons and holes. The temperature-dependent parameters 𝑎(𝑇 ), 𝑏(𝑇 ), 𝑐(𝑇 )
and 𝑑(𝑇 ) are defined as:

𝑎(𝑇 ) = 𝑎0 + 𝑎1𝑇 𝑎2

𝑏(𝑇 ) = 𝑏0𝑒𝑏1𝑇

𝑐(𝑇 ) = 𝑐0 + 𝑐1𝑇 𝑐2 + 𝑐3𝑇 2

𝑑(𝑇 ) = 𝑑0 + 𝑑1𝑇 + 𝑑2𝑇 2

The parameter values implemented in Allpix Squared are taken from Table 1 of [72] as:
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𝑎0,𝑒 = 4.3383V
𝑎1,𝑒 = −2.42 × 10−12 V
𝑎2,𝑒 = 4.1233
𝑏0,𝑒 = 0.235V
𝑏1,𝑒 = 0
𝑐0,𝑒 = 1.6831 × 104 V/cm
𝑐1,𝑒 = 4.3796V/cm
𝑐2,𝑒 = 1
𝑐3,𝑒 = 0.13005V/cm
𝑑0,𝑒 = 1.2337 × 106 V/cm
𝑑1,𝑒 = 1.2039 × 103 V/cm
𝑑2,𝑒 = 0.56703V/cm

𝑎0,ℎ = 2.376V
𝑎1,ℎ = 1.033 × 10−2 V
𝑎2,ℎ = 1
𝑏0,ℎ = 0.17714V
𝑏1,ℎ = −2.178 × 10−3 /K
𝑐1,ℎ = 0
𝑐1,ℎ = 9.47 × 10−3 V/cm
𝑐2,ℎ = 2.4924
𝑐3,ℎ = 0
𝑑0,ℎ = 1.4043 × 106 V/cm
𝑑1,ℎ = 2.9744 × 103 V/cm
𝑑2,ℎ = 1.4829V/cm

This model can be selected in the configuration file via the parameter multiplication_model
= "bologna".

6.5.5 Custom Impact Ionization Models

Allpix Squared provides the possibility to use fully custom impact ionization models. In
order to use a custom model, the parameter multiplication_model = "custom" needs
to be set in the configuration file. Additionally, the following configuration keys have to
be provided:

• multiplication_function_electrons: The formula describing the electron im-
pact ionization gain.

• multiplication_function_holes: The formula describing the hole impact ion-
ization gain.
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The functions defined via these parameters can depend on the local electric field. In
order to use the electric field magnitude in the formula, an x has to be placed at the
respective position.

Parameters of the functions can either be placed directly in the formulas in framework-
internal units, or provided separately as arrays via the multiplication_parameters_electrons
and multiplication_parameters_electrons. Placeholders for parameters in the
formula are denoted with squared brackets and a parameter number, for example [0]
for the first parameter provided. Parameters specified separately from the formula can
contain units which will be interpreted automatically.

Warning: Parameters directly placed in the impact ionization formula have to be
supplied in framework-internal units since the function will be evaluated with both
electric field strength and doping concentration in internal units. It is recommended
to use the possibility of separately configuring the parameters and to make use of
units to avoid conversion mistakes.

Warning: It should be noted that the temperature passed via the module config-
uration is not evaluated for the custom impact ionization model, but the model
parameters need to be manually adjusted to the required temperature.

The interpretation of the custom impact ionization functions is based on the ROOT::
TFormula class [54] and supports all corresponding features, mathematical expressions
and constants.
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7 Objects

Allpix Squared provides a set of objects which can be used to transfer data between
modules and to store the simulation results to file. These objects can be read again from
file and dispatched to a secondary simulation chain using the ROOTObjectReader and
ROOTObjectWriter modules which dispatch them via the messaging system as explained
in Section 4.6.

Objects stored to a ROOT file can be analyzed using C or Python scripts, the example
scripts for both languages described in Section 14.3 are provided in the repository.

7.1 Object Types

The list of currently supported objects is given below. A typedef is added to every
object in order to provide an alternative name for the message which is directly indicating
the carried object.

For writing analysis scripts, a detailed description of the code interface for each object
can be found in the Object Group of the Doxygen reference manual [5].

7.1.1 MCTrack

The MCTrack objects reflects the state of a particle’s trajectory when it was created
and when it terminates. Moreover, it allows to retrieve the hierarchy of secondary
tracks. This can be done via the parent-child relations the MCTrack objects store,
allowing retrieval of the primary track for a given track. Combining this information with
MCParticles allows the Monte-Carlo trajectory to be fully reconstructed. In addition
to these relational information, the MCTrack stores information on the initial and final
point of the trajectory (in global coordinates), the initial and final timestamps in global
coordinates of the event, the energies (total as well as kinetic only) at those points, the
creation process type, name, and the volume it took place in. Furthermore, the particle’s
PDG id [73] is stored.

Main properties:

• Global points where track came into and went out of existence (getStartPoint(),
getEndPoint())

• Global time when the track had its first and last appearance (getGlobalStartTime
(), getGlobalEndTime())

• Initial and final kinetic and total energy (getKineticEnergyInitial(),
getTotalEnergyInitial(), getKineticEnergyFinal(), getTotalEnergyFinal
())
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For more details refer to the code reference.

7.1.2 MCParticle

The Monte-Carlo truth information about the particle passage through the sensor. A
start and end point are stored in the object: for events involving a single MCParticle
passing through the sensor, the start and end points correspond to the entry and exit
points. The exact handling of non-linear particle trajectories due to multiple scattering
is up to module. In addition, it provides a member function to retrieve the reference
point at the sensor center plane in local coordinates for convenience. The MCParticle
also stores an identifier of the particle type, using the PDG particle codes [73], as well as
the time it has first been observed in the respective sensor. The MCParticle additionally
stores a parent MCParticle object, if available. The lack of a parent doesn’t guarantee
that this MCParticle originates from a primary particle, but only means that no parent
on the given detector exists. Also, the MCParticle stores a reference to the MCTrack it
is associated with.

MCParticles provide local and global coordinates in space for both the entry and the
exit of the particle in the sensor volume, as well as local and global time information.
The global spatial coordinates are calculated with respect to the global reference frame
defined in Section 5.1, the global time is counted from the beginning of the event. Local
spatial coordinates are determined by the respective detector, the local time measurement
references the entry point of the first MCParticle of the event into the detector.

Main parameters:

• Entry and exit points of the particle in the sensor in local and global coordi-
nates (getLocalStartPoint(), getGlobalStartPoint(), getLocalEndPoint(),
getGlobalEndPoint())

• The arrival time of the particle in the sensor in local and global coordinates
(getLocalTime(), getGlobalTime())

• PDG id for this particle type (getParticleID())

• If the particle is a primary particle or has a parent particle (isPrimary()), and
the parent particle, if any (getParent())

• The track the particle is related to, if any (getTrack())

For more details refer to the code reference.

7.1.3 SensorCharge

This is a meta class for a set of charges within a sensor. The properties of this object are
inherited by DepositedCharge and PropagatedCharge objects.

Main parameters:

• The position of the set of charges in the sensor in local and global coordinates
(getLocalPosition(), getGlobalPosition())
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• The associated time of the set of charges in local and global coordinates
(getLocalTime(), getGlobalTime())

• The sign of the charge carries (getSign()) and the amount of charges in the set
(getCharge())

• The carrier type to check if the charge carriers are electrons or holes (getType())

For more details refer to the code reference.

7.1.4 DepositedCharge

The set of charge carriers deposited by an ionizing particle crossing the active material
of the sensor. The object stores the local position in the sensor together with the total
number of deposited charges in elementary charge units. In addition, the time (in ns as
the internal framework unit) of the deposition after the start of the event and the type
of carrier (electron or hole) is stored.

Main parameters:

• Everything from SensorCharge

• The MCParticle that created the deposited charge (getMCParticle())

Warning: It should be noted that in most cases, storage of DepositedCharge objects
is not required. Since individual objects are generated for every electron and hole
in the event, storing them will lead to large output files and possible performance
penalties.

For more details refer to the code reference.

7.1.5 PropagatedCharge

The set of charge carriers propagated through the sensor due to drift and/or diffusion
processes. The object should store the final local position of the propagated charges.
This is either on the pixel implant (if the set of charge carriers are ready to be collected)
or on any other position in the sensor if the set of charge carriers got trapped or was
lost in another process. Timing information giving the total time to arrive at the final
location, from the start of the event, can also be stored.

Main parameters:

• Everything from SensorCharge

• The associated DepositedCharge object (getDepositedCharge())

• The associated induced pulses, if any (getPulses())

• The carrier state of the charge carriers described below (getState())
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The following values for the carrier state are possible:

• CarrierState::UNKNOWN: The final state of the charge carrier is unknown, for
example because it might not have been provided by the used propagation algorithm

• CarrierState::MOTION: The charge carrier was still in motion when the prop-
agation routine finished, for example when the configured integration time was
reached

• CarrierState::RECOMBINED: The charge carrier has recombined with the silicon
lattice at the given position

• CarrierState::TRAPPED: The charge carrier has been trapped by a lattice defect
at the given position

• CarrierState::HALTED: The motion of the charge carrier has stopped, for example
because it has reached an implant or the sensor surface

Warning: It should be noted that in most cases, storage of PropagatedCharge
objects is not required. Since individual objects are generated for every electron
and hole in the event, storing them will lead to large output files and possible
performance penalties.

For more details refer to the code reference.

7.1.6 PixelCharge

The set of charge carriers collected at a single pixel. The pixel indices are stored in both
the x and y direction, starting from zero for the first pixel. Only the total number of
charges at the pixel is currently stored, the timing information of the individual charges
can be retrieved from the related PropagatedCharge objects.

Main parameters:

• The pixel corresponding to the charge (getPixel()) and its index (getIndex())

• The charge collected in the pixel (getCharge(), getAbsoluteCharge())

• The related propagates charges (getPropagatedCharges())

• The associated time of the charge in local and global coordinates (getLocalTime(),
getGlobalTime())

• The recorded charge pulse, if any (getPulse())

For more details refer to the code reference.

100

https://allpix-squared.docs.cern.ch/reference/classes/classallpix_1_1propagatedcharge/
https://allpix-squared.docs.cern.ch/reference/classes/classallpix_1_1pixelcharge/#function-getpixel
https://allpix-squared.docs.cern.ch/reference/classes/classallpix_1_1pixelcharge/#function-getindex
https://allpix-squared.docs.cern.ch/reference/classes/classallpix_1_1pixelcharge/#function-getcharge
https://allpix-squared.docs.cern.ch/reference/classes/classallpix_1_1pixelcharge/#function-getabsolutecharge
https://allpix-squared.docs.cern.ch/reference/classes/classallpix_1_1pixelcharge/#function-getpropagatedcharges
https://allpix-squared.docs.cern.ch/reference/classes/classallpix_1_1pixelcharge/#function-getlocaltime
https://allpix-squared.docs.cern.ch/reference/classes/classallpix_1_1pixelcharge/#function-getglobaltime
https://allpix-squared.docs.cern.ch/reference/classes/classallpix_1_1pixelcharge/#function-getpulse
https://allpix-squared.docs.cern.ch/reference/classes/classallpix_1_1pixelcharge/


7.1 Object Types

7.1.7 Pulse

The pulse object is a meta class mainly used to hold the time information of a charge
pulse arriving at the collection implant, if such information is available in the simulation.
A pulse object always has a fixed time binning chosen during the creation of the object.
It inherits from std::vector<double>.

Main parameters:

• The total charge of the pulse (getCharge())

• The time binning of the pulse (getBinning())

For more details refer to the code reference

7.1.8 PixelHit

The digitised pixel hits after processing the PixelCharge in the detector’s front-end
electronics. The object allows the storage of both the time and signal value. The time
can be stored in an arbitrary unit used to timestamp the hits. The signal can hold
different kinds of information depending on the type of the digitizer used. Examples of
the signal information is the “true” information of a binary readout chip, the number of
ADC counts or the ToT (time-over-threshold).

The exact type of the time and signal values depends on the digitizer module used, for
which the module documentation is to be consulted.

Main parameters:

• The pixel corresponding to the hit (getPixel()) and its index (getIndex())

• The related PixelCharge (getPixelCharge()) and PixelPulse, if any
(getPixelPulse())

• The signal of the hit (getSignal())

• The time information of the hit in local and global coordinates (getLocalTime(),
getGlobalTime())

For more details refer to the code reference.

7.1.9 PixelPulse

If the detector’s front-end electronics provide a digitized front-end pulse, this object can
be used to store that information. It inherits from the Pulse object.

Main parameters:

• Everything from Pulse

• The pixel corresponding to the digitized pulse (getPixel()) and its index (getIndex
())

• The corresponding pixel charge (getPixelCharge())

101

https://en.cppreference.com/w/cpp/container/vector
https://allpix-squared.docs.cern.ch/reference/classes/classallpix_1_1pulse/#function-getcharge
https://allpix-squared.docs.cern.ch/reference/classes/classallpix_1_1pulse/#function-getbinning
https://allpix-squared.docs.cern.ch/reference/classes/classallpix_1_1pulse/
https://allpix-squared.docs.cern.ch/reference/classes/classallpix_1_1pixelhit/#function-getpixel
https://allpix-squared.docs.cern.ch/reference/classes/classallpix_1_1pixelhit/#function-getindex
https://allpix-squared.docs.cern.ch/reference/classes/classallpix_1_1pixelhit/#function-getpixelcharge
https://allpix-squared.docs.cern.ch/reference/classes/classallpix_1_1pixelhit/#function-getpixelpulse
https://allpix-squared.docs.cern.ch/reference/classes/classallpix_1_1pixelhit/#function-getsignal
https://allpix-squared.docs.cern.ch/reference/classes/classallpix_1_1pixelhit/#function-getlocaltime
https://allpix-squared.docs.cern.ch/reference/classes/classallpix_1_1pixelhit/#function-getglobaltime
https://allpix-squared.docs.cern.ch/reference/classes/classallpix_1_1pixelhit/
https://allpix-squared.docs.cern.ch/reference/classes/classallpix_1_1pixelpulse/#function-getpixel
https://allpix-squared.docs.cern.ch/reference/classes/classallpix_1_1pixelpulse/#function-getindex
https://allpix-squared.docs.cern.ch/reference/classes/classallpix_1_1pixelpulse/#function-getindex
https://allpix-squared.docs.cern.ch/reference/classes/classallpix_1_1pixelpulse/#function-getpixelcharge


7 Objects

For more details refer to the code reference.

7.2 Object History

Objects may carry information about the objects which were used to create them. For
example, a PropagatedCharge could hold a link to the DepositedCharge object at which
the propagation started. All objects created during a single simulation event are accessible
until the end of the event; more information on object persistency within the framework
can be found in Section 4.6.

Object history is implemented using the ROOT TRef class [20], which acts as a special
reference. On construction, every object gets a unique identifier assigned, that can be
stored in other linked objects. This identifier can be used to retrieve the history, even
after the objects are written out to ROOT TTrees [19]. TRef objects are however not
automatically fetched and can only be retrieved if their linked objects are available in
memory, which has to be ensured explicitly. Outside the framework this means that the
relevant tree containing the linked objects should be retrieved and loaded at the same
entry as the object that request the history. Whenever the related object is not in memory
(either because it is not available or not fetched) a MissingReferenceException will be
thrown.

A MCTrack which originated from another MCTrack is linked via a reference to this
track, this way the track hierarchy can be obtained. Every MCParticle is linked to the
MCTrack it is associated with. A MCParticle can furthermore be linked to another
MCParticle on the same detector. This will be the case if there are MCParticles from a
primary (parent) and secondary (child) track on one detector. The corresponding child
MCParticles will then carry a reference to the parent MCParticle.
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8 Modules

This section describes all currently available modules in detail. This comprises a descrip-
tion of the physics implemented as well as a list of all configuration parameters along
with their default values. For inquiries about a specific module or its documentation, the
respective module maintainers should be contacted directly. The modules are listed in
alphabetical order.

8.1 CapacitiveTransfer

Status Functional
Maintainers Mateus Vicente (mvicente@cern.ch)
Inputs PropagatedCharge
Outputs PixelCharge

8.1.1 Description

Similar to the SimpleTransferModule, this module combines individual sets of propagated
charges together to a set of charges on the sensor pixels and thus prepares them for
processing by the detector front-end electronics. In addition to the SimpleTransferModule,
where the charge close to the implants is transferred only to the closest read-out pixel,
this module also copies the propagated charge to the neighboring pixels, scaled by the
respective cross-coupling (i.e. cross_capacitance / nominal_capacitance), in order
to simulate the cross-coupling between neighboring pixels in Capacitively Coupled Pixel
Detectors (CCPDs).

It is also possible to simulate assemblies with tilted chips, with non-uniform coupling
over the pixel matrix, by providing the tilting angles between the chips, the nominal and
minimum gaps between the pixel pads, the pixel coordinates where the chips are away
from each other by the minimum gap provided and a root file containing ROOT::TGraph
with coupling capacitances vs gap between pixel pads.

The coupling matrix (imported via the coupling_matrix or the coupling_file config-
uration keys) represents the pixels coupling with a nominal gap between the chips, while
the ROOT file imported with the configuration key coupling_scan_file contains the
coupling between the pixels for several gaps.

The coupling matrices can be used to easily simulate the cross-coupling in CCPDs with
the nominal, and constant, gap between chips over the pixel matrix. In such cases, the
“central pixel” (center element of the coupling matrix) always receive 100% of the charge
transferred while neighbor pixels, with lower coupling capacitance, gets a fraction of
the charged transferred to the central pixel, normalized by the nominal capacitance
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(capacitance to central pixel). The coupling matrices always represents the coupling in
fractions from 0 (no charge transferred) up to 1 (100% transfer).

If a coupling_scan_file is provided the gap between the chips will be calculated on each
pixel with a hit and the charge transferred will be normalized by the capacitance value
of the central pixel at the nominal gap. This model will reproduce the results with
the coupling matrices if chip_angle = 0rad 0rad (parallel chips) and minimum_gap =
nominal_gap.

8.1.2 Dependencies

This module requires an installation of Eigen3.

8.1.3 Parameters

• coupling_scan_file: Root file containing a TGraph, for each pixel, with the
capacitance simulated for each gap between the pixel pads. The TGraph objects in
the root file should be named Pixel_X where X goes from 1 to 9.

• chip_angle: Tilt angle between chips. The first angle is the rotation along the
columns axis, and second is along the row axis. It defaults to 0.0 radians (parallel
chips).

• tilt_center: Pixel position for the nominal coupling/distance.
• nominal_gap: Nominal gap between chips.
• minimum_gap: Closest distance between chips.
• cross_coupling: Enables cross-coupling between pixels. Defaults to true (en-

abled).
• coupling_file: Path to the file containing the cross-coupling matrix. The file

must contain the relative capacitance to the central pixel.
• coupling_matrix: Cross-coupling matrix with relative capacitances.
• max_depth_distance: Maximum distance in depth, i.e. normal to the sensor

surface at the implant side, for a propagated charge to be taken into account in case
the detector has no implants defined or collect_from_implant is set to false.
Defaults to 5um.

• collect_from_implant: Only consider charge carriers within the implant region
of the respective detector instead of the full surface of the sensor. Should only be
used with non-linear electric fields and defaults to false.

• flip_odd_rows: For use with designs in which every other row has a mirrored
coupling matrix. Enables flipping the matrix rows for every odd pixel row. Defaults
to false (disabled).

• flip_odd_cols: As above, just for the columns. Enables flipping the coupling
matrix columns for every odd pixel column. Defaults to false (disabled).

• output_plots: Saves the output plots for this module. Defaults to 1 (enabled).

The cross-coupling matrix, to be parsed via the matrix file or via the configuration file,
must be organized in Row vs Col, such as:

cross_coupling_00 cross_coupling_01 cross_coupling_02
cross_coupling_10 cross_coupling_11 cross_coupling_12
cross_coupling_20 cross_coupling_21 cross_coupling_22
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The matrix center element, cross_coupling_11 in this example, is the coupling to the
closest pixel and should be always 1. The matrix can have any size, although square 3x3
matrices are recommended as the coupling decreases significantly after the first neighbors
and the simulation will scale with NxM, where N and M are the respective sizes of the
matrix.

8.1.4 Usage

This module accepts only one coupling model (coupling_scan_file, coupling_file or
coupling_matrix) at each time. If more then one option is provided, the simulation will
not run.

[CapacitiveTransfer]
coupling_scan_file = "capacitance_vs_gap.root"
nominal_gap = 2um
minimum_gap = 8um
chip_angle = -0.000524rad 0.000350rad
tilt_center = 80 336
cross_coupling = true
max_depth_distance = 5um

or

[CapacitiveTransfer]
max_depth_distance = 5um
coupling_file = "capacitance_matrix.txt"

or

[CapacitiveTransfer]
max_depth_distance = 5um
coupling_matrix = [[0.1, 0.3, 0.1], [0.2, 1, 0.2], [0.1, 0.3, 1.1]]

8.2 CorryvreckanWriter

Status Functional
Maintainers Simon Spannagel (simon.spannagel@cern.ch)

Daniel Hynds (daniel.hynds@cern.ch)
Inputs PixelHit

8.2.1 Description

Takes all digitised pixel hits and converts them into Corryvreckan pixel format. These are
then written to an output file in the expected format to be read in by the reconstruction
software. Will optionally write out the MC Truth information, storing the MC particle
class from Corryvreckan. It is noted that the time resolution is hard-coded as 5ns for all
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detectors due to time structure of written out events: events of length 5ns, with a gap of
10ns in between events.

This module writes output compatible with Corryvreckan 1.0 and later.

8.2.2 Parameters

• file_name : Output filename (file extension .root will be appended if not present).
Defaults to corryvreckanOutput.root

• geometry_file : Name of the output geometry file in the Corryvreckan format.
Defaults to corryvreckanGeometry.conf

• reference: Name of the detector used as reference in the reconstruction.
• dut: List of detector names to be treated as device under test in the reconstruction.

Defaults to an empty list.
• output_mctruth : Flag to write out MCParticle information for each hit. Defaults

to true.
• global_timing: Flag to select global timing information to be written to the

Corryvreckan file. By default, local information is written, i.e. only the local time
information from the pixel hit or MCParticle in question. If enabled, the timestamp
is set as the event time plus the global time information of the object with respect
to the event begin. Defaults to false.

8.2.3 Usage

Typical usage is:

[CorryvreckanWriter]
file_name = corryvreckan
output_mctruth = true
reference = "telescope_plane0"

8.3 CSADigitizer

Status Functional
Maintainers Annika Vauth (annika.vauth@desy.de)

Simon Spannagel (simon.spannagel@desy.de)
Inputs PixelCharge
Outputs PixelHit

8.3.1 Description

Digitization module which translates the collected charges into a digitized signal, em-
ulating a charge sensitive amplifier with Krummenacher feedback. For this purpose, a
transfer function for a CSA with Krummenacher feedback is taken from [74]:
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𝐻(𝑠) =
𝑅𝑓

(1 + 𝜏𝑓𝑠) ⋅ (1 + 𝜏𝑟𝑠)
,

with fall time constant

𝜏𝑓 = 𝑅𝑓𝐶𝑓

and rise time constant

𝜏𝑟 = 𝐶𝑑𝑒𝑡 ⋅ 𝐶𝑜𝑢𝑡
𝑔𝑚 ⋅ 𝐶𝑓

The impulse response function of this transfer function is convoluted with the charge
pulse. In the time domain, the impulse response function can be written as

ℒ−1(𝐻) = 𝑅𝑓 ( 𝑒−𝑡/𝜏𝑓

𝜏𝑓 − 𝜏𝑟
− 𝑒−𝑡/𝜏𝑟

𝜏𝑓 − 𝜏𝑟
) .

This module can be steered by either providing all contributions to the transfer function
as parameters within the csa model, or using a simplified parametrization providing
rise time and feedback time. In the latter case, the parameters are used to derive the
contributions to the transfer function (see e.g. [75] for calculation of transconductance).

Alternatively a custom impulse response function can be provided by using the custom
model.

Noise can be applied to the individual bins of the output pulse, drawn from a normal
distribution.

The values stored in PixelHit depend on the Time-of-Arrival (ToA) and Time-over-
Threshold (ToT) settings. If a ToA clock is defined, then local_time will be stored in
ToA clock cycles, else in time units. Using the parameter sync_event_time, this local
time will be, in contrast to the framework’s definition of local time stamps, aligned with
the global time reference, optionally shifted by the value of the parameter tdc_offset.
If a ToT clock is defined, then signal will be the amount of ToT cycles the pulse is
above the threshold, else it will be the integral of the amplified pulse.

Since the input pulse may have different polarity, it is important to set the threshold
accordingly to a positive or negative value, otherwise it may not trigger at all. If this
behavior is not desired, the ignore_polarity parameter can be set to compare only the
absolute values of the input and the threshold value.
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8.3.2 Parameters

• model: Choice between different CSA models. Currently implemented are two
parametrizations of the circuit from [74], simple and csa, the custom model for
a custom impulse response, and the graph model, which takes a .csv file as input
and reads out the graph of the transfer function.

• integration_time: The length of time the amplifier output is registered. Defaults
to 500 ns.

• sigma_noise: Standard deviation of the Gaussian-distributed noise added to the
output signal. Defaults to 0.1 mV.

• threshold: Threshold for TOT/TOA logic, for considering the output signal as a
hit. Defaults to 10mV.

• ignore_polarity: Select whether polarity of the threshold is ignored, i.e. the
absolute values are compared, or if polarity is taken into account. Defaults to
false.

• clock_bin_toa: Duration of a clock cycle for the time-of-arrival (ToA) clock. If
set, the output timestamp is delivered in units of ToA clock cycles, otherwise in
nanoseconds.

• clock_bin_tot: Duration of a clock cycle for the time-over-threshold (ToT) clock.
If set, the output charge is delivered as time over threshold in units of ToT clock
cycles, otherwise the pulse integral is stored instead.

• sync_event_time: Aligns the clock cycle to start counting with the global event
time as opposed to starting at the beginning of the detected pulse time. Defaults
to false.

• tdc_offset: Adds an offset to the global time for this digitizer. Defaults to 0ns.

Parameters for the simplified model

• feedback_capacitance: The feedback capacity to the amplifier circuit. Defaults
to 5e-15 F.

• rise_time_constant: Rise time constant of CSA output. Defaults to 1 ns.
• feedback_time_constant: Feedback time constant of CSA output. Defaults to 10

ns.

Parameters for the CSA model

• feedback_capacitance: The feedback capacity to the amplifier circuit. Defaults
to 5e-15 F.

• krummenacher_current: The feedback current setting of the CSA. Defaults to 20
nA.

• input_capacitance: The input capacitance which comprises the capacitance of
the detector, the capacitance of the feedback circuit, and any additional capacitance
caused by parasitic effects. Defaults to 100 e-15 F.

• amp_output_capacitance: The capacitance at the amplifier output. Defaults to
20 e-15 F.

• transconductance: The transconductance of the input transistor of the CSA core
amplifier. Defaults to 50e-6 C/s/V.

• weak_inversion_slope: The weak inversion slope. Defaults to 1.5.
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• temperature: Defaults to 293.15K.

Parameters for the custom model

• response_function: A 1-dimensional ROOT::TFormula [54] expression for the
impulse response function.

• response_parameters: Array of the parameters in the response function. The
number of parameters given need to match up with the number of parameters in
the formula.

Parameters for the graph model

• graph_file: The path to the .csv file containing the graph of the response function.
• The file should be written in the following format: x,y (comma separated values),
where x is the time and y the amplitude of the response function at that time point.
Each pair of values should be written in a new line.

• graph_time_unit: Time unit in which the time on the response function graph is
expressed. Should be a double. Defaults to seconds (s).

• graph_amplitude_unit: The unit in which data on the y-axis of the response
function graph is expressed. Should be a double. Defaults to volts per electron
(V/e).

Plotting parameters

• output_plots: Enables simple output histograms to be generated from the data
in every step (slows down simulation considerably). Disabled by default.

• output_plots_scale: Set the x-axis scale of the output histograms, defaults to
30ke.

• output_plots_bins: Set the number of bins for the output histograms, defaults
to 100.

• output_pulsegraphs: Determines if pulse graphs should be generated for every
event. This creates several graphs per event, depending on how many pixels see a
signal, and can slow down the simulation. It is not recommended to enable this
option for runs with more than a couple of events. Disabled by default.

8.3.3 Usage

Example how to use the csa model in this module:

[CSADigitizer]
model = "csa"
feedback_capacitance = 10e-15C/V
input_capacitance = 100e-15C/V
krummenacher_current = 25e-9C/s
amp_output_capacitance = 15e-15C/V
transconductance = 50e-6C/s/V
weak_inversion_slope = 1.15
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temperature = 298
integration_time = 0.5e-6s
threshold = 10e-3V
sigma_noise = 0.1e-3V

Example for the simple model:

[CSADigitizer]
model = "simple"
feedback_capacitance = 5e-15C/V
rise_time_constant = 1e-9s
feedback_time_constant = 10e-9 s
integration_time = 0.5e-6s
threshold = 10e-3V
clock_bin_toa = 1.5625ns
clock_bin_tot = 25.0ns

Example for the custom model:

[CSADigitizer]
model = "custom"
response_function = "TMath::Max([0]*(1.-TMath::Exp(-x/[1]))-[2]*x,0.)"
response_parameters = [2.6e14V/C, 9.1e1ns, 4.2e19V/C/s]
integration_time = 10us
threshold = 60mV
clock_bin_toa = 8ns
clock_bin_tot = 8ns

Example for the graph model:

[CSADigitizer]
model = "graph"
graph_file = /path/to/response_function.csv
integration_time = 10ns
graph_time_unit = 1s
graph_amplitude_unit = 1.0V/e

8.4 DatabaseWriter

Status Functional
Maintainers Enrico Junior Schioppa (enrico.junior.schioppa@cern.ch)

Simon Spannagel (simon.spannagel@cern.ch)
Inputs all objects in simulation
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8.4.1 Description

This module enables writing the simulation output into a postgreSQL database. This
is useful when fast I/O between applications is needed (e.g. real time visualization
and/or analysis). By default, all object types (MCTrack, MCParticle, DepositedCharge,
PropagatedCharge, PixelCharge, PixelHit) are written. However, it should be kept in
mind that PropagatedCharge and DepositedCharge data will slow down the simulation
significantly and will lead to a large database. Unless really required for the analysis of
the simulation, it is recommended to exclude these objects. This can be accomplished
by using the include and exclude parameters in the configuration file. In order to use
this module, one is required to install PostgreSQL and generate a database using the
create-db.sql script in /etc/scripts. On Linux, this can be done as

sudo -u postgres psql
postgres: CREATE DATABASE mydb;
postgres: \q
sudo -u postgres psql mydb
postgres: \i etc/scripts/create-db.sql

This generates a database with the following structure:

Schema | Name | Type | Owner
--------+------------------------------------------+----------+----------
public | depositedcharge | table | postgres
public | depositedcharge_depositedcharge_nr_seq | sequence | postgres
public | event | table | postgres
public | event_event_nr_seq | sequence | postgres
public | mcparticle | table | postgres
public | mcparticle_mcparticle_nr_seq | sequence | postgres
public | mctrack | table | postgres
public | mctrack_mctrack_nr_seq | sequence | postgres
public | pixelcharge | table | postgres
public | pixelcharge_pixelcharge_nr_seq | sequence | postgres
public | pixelhit | table | postgres
public | pixelhit_pixelhit_nr_seq | sequence | postgres
public | propagatedcharge | table | postgres
public | propagatedcharge_propagatedcharge_nr_seq | sequence | postgres
public | run | table | postgres
public | run_run_nr_seq | sequence | postgres
(16 rows)

Host, username and password are required to write into the database. A new user/pass-
word pair can be created and relevant privileges to edit the database can be created
via

sudo -u postgres createuser myuser
sudo -u postgres psql mydb
postgres: CREATE USER myuser WITH ENCRYPTED PASSWORD 'mypass';
postgres: GRANT ALL PRIVILEGES ON DATABASE mydb TO myuser;
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postgres: GRANT SELECT, INSERT, UPDATE, DELETE ON ALL TABLES IN SCHEMA
public TO myuser;↪

postgres: GRANT SELECT, USAGE ON ALL SEQUENCES IN SCHEMA public TO
myuser;↪

In case of an authentication failure error being issues, the password of the user can be
changed using

sudo -u postgres psql -c "ALTER USER myuser PASSWORD 'mypass';"

The database is structured so that the data are referenced according to the sequence

MCTrack -> MCParticle -> DepositedCharge -> PropagatedCharge ->
PixelCharge -> PixelHit↪

This allows for the full reconstruction of the MC truth when retrieving information out
of the database. When one of the objects is excluded, the corresponding reference is
obviously lost and the chain is broken. The only exception to this chain rule is the direct
reference MCParticle -> PixelHit. By default, each module always refers to the run and
event numbers. As an example, the following is the table corresponding to the PixelHit
objects for a single run of four events:

mydb: SELECT * FROM pixelhit;
pixelhit_nr | run_nr | event_nr | mcparticle_nr | pixelcharge_nr |

detector | x | y | signal | hittime↪

-------------+--------+----------+---------------+----------------+-----------+---+---+---------+---------
1 | 1 | 1 | 2 | 2 |

detector1 | 2 | 2 | 46447.9 | 0↪

2 | 1 | 1 | 2 | 2 |
detector2 | 2 | 2 | 34847.5 | 0↪

3 | 1 | 2 | 4 | 4 |
detector1 | 2 | 2 | 27788.1 | 0↪

4 | 1 | 2 | 4 | 4 |
detector2 | 2 | 2 | 38011.6 | 0↪

8.4.2 Parameters

• host: Host address on which the database server runs, can be an IP address or
host name. Mandatory parameter.

• port: Port the database server listens on. Mandatory parameter.
• database_name: Name of the database to store data in. The database needs to

exist and has to be created before starting the simulation. Mandatory parameter.
• user: User name of the SQL user with access rights to the relevant database.

mandatory parameter.
• password: Password of the user account with database write access. Mandatory

parameter.
• run_id: Arbitrary run identifier assigned to this simulation in the database. This

parameter is a string and defaults to none.
• include: Array of object names (without allpix:: prefix) to write to the ROOT
trees, all other object names are ignored (cannot be used together simultaneously
with the exclude parameter).
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• exclude: Array of object names (without allpix:: prefix) that are not written
to the ROOT trees (cannot be used together simultaneously with the include
parameter).

• global_timing: Flag to select global timing information to be written to the
database. By default, local information is written, i.e. only the local time informa-
tion from the pixel hit in question. If enabled, the timestamp is set as the global
time information of the object with respect to the event begin. Defaults to false.

• require_sequence: Boolean flag to select whether events have to be written in
sequential order or can be stored in the order of processing. Defaults to false,
writing events immediately. If strict adherence to the order of events is required,
finished events are buffered until they can be written to the database. Since in this
case database access happens single-threaded, this might impact the performance
of the simulation.

8.4.3 Usage

To write objects excluding PropagatedCharge and DepositedCharge to a PostgreSQL
database running on localhost with user myuser, the following configuration can be
placed at the end of the main configuration:

[DatabaseWriter]
exclude = PropagatedCharge, DepositedCharge
host = "localhost"
port = 5432
database_name = "mydb"
user = "myuser"
password = "mypass"
run_id = "myRun"

Optionally the password can also be provided via the command line only, using allpix
-c config.conf -o DatabaseWriter.password="mypass".

8.5 DefaultDigitizer

Status Functional
Maintainers Simon Spannagel (simon.spannagel@desy.de)
Inputs PixelCharge
Outputs PixelHit

8.5.1 Description

Simple digitization module which translates the collected charges into a digitized signal
proportional to the input charge. It simulates noise contributions from the readout
electronics as Gaussian noise and allows for a configurable threshold. Furthermore, the
linear response of an QDC as well as a TDC with configurable resolution can be simulated.
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For maximum simplicity only the absolute of the charge is used and compared to a
positive threshold.

By default, this module operates only on channels which have received a pixel charge.
This means, noise and threshold are only applied where there was a signal, but not
in channels where no signal was present, and also not in events where no interaction
with the sensor material has occurred. In many situations, this is the desired behavior
since the threshold is configured such that it is unlikely to be crossed just from a pure
noise contribution. Front-ends are often configured with a threshold equal or higher
than five sigma of the noise. There are situations, however, where a sampling of all
channels is desired, and where also the noise contribution is relevant. In this case, the
parameter sample_all_channels can be set to true. The module then calculates the
noise contribution for all channels of the detector, applies the threshold and passes on
all hits crossing the threshold. This is also performed in events without any particle
interaction in order to obtain a reasonable signal-to-noise ratio. It should be noted
that this procedure can significantly slow down the simulation for detectors with high
granularity or millions of channels.

According to the above setting, the following steps are performed either for every pixel
charge or for every pixel of the detector:

• A Gaussian noise is added to the input charge value in order to simulate input
noise to the preamplifier circuit.

• The preamplifier is simulated by applying a gain function to the input charge, or
by multiplying the input charge with a defined gain factor.

• An optional simplistic front-end saturation can be simulated which replaces the
measured pixel charge with a value drawn from a Gaussian distribution with the
configured saturation mean and width if the charge measured is larger than the
calculated saturation value. This follows the approach taken in [76]. The pixel
charge is compared to the smeared saturation value in order to generate a smooth
transition rather than an edge in the spectrum.

• A charge threshold is applied. Only if the threshold is surpassed, the pixel is
accounted for - for all values below the threshold, the pixel charge is discarded.
The actually applied threshold is smeared with a Gaussian distribution on an
event-by-event basis allowing for simulating fluctuations of the threshold level. It
should be noted that only positive threshold values are possible, and that this
threshold will be compared to the absolute of the charge. This therefore both works
for positive and negative inputs.

• A charge-to-digital converter (QDC) with configurable resolution, given in bit,
can be simulated. For this, first an inaccuracy of the QDC is simulated using an
additional Gaussian smearing which allows to take QDC noise into account. Then,
the charge is converted into QDC units using the qdc_slope and qdc_offset
parameters provided. Finally, the calculated value is clamped to be contained
within the QDC resolution, over- and underflows are treated as saturation. The
QDC implementation also allows to simulate ToT (time-over-threshold) devices
by setting the qdc_offset parameter to the negative threshold. Then, the QDC
only converts charge above threshold.

• A time-to-digital converter (TDC) with configurable resolution, given in bit, can
be simulated if pulse information is available from the input data. If the necessary
pulse information is available from the input data, e.g. by using the PulseTransfer
module to generate PixelCharge objects, this module calculates the time-of-arrival
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(ToA) as the time when the integrated input charge crosses the threshold. Also
here, the absolute of the integrated charge is compared to a positive threshold
value to be independent of the signal polarity. First, the time from the start of
the event until the first crossing of the charge threshold is calculated. It should be
noted that this calculation does not take into account charge noise simulated in the
QDC. The resulting ToA is smeared with a Gaussian distribution which allows to
take TDC fluctuations into account. Then, the ToA is converted into TDC units
using the tdc_slope and tdc_offset parameters provided. Finally, the calculated
value is clamped to be contained within the TDC resolution, over- and underflows
are treated as saturation. If no time information is available from the input data,
a local time stamp of 0 is stored. It should be noted that when using the TDC
simulation, the local time stamp of the produced PixelHit object is provided in
TDC bins rather than in nanoseconds of the framework-internal units. The global
timestamp, however, is always provided in nanoseconds and independent of the
TDC settings.

Gain Function

Apart from a linear gain configured via the gain parameter, this module also supports
arbitrary gain/response functions, defined via the gain_function parameter, which
depends on the input charge. In order to use the input charge in the formula, an x has
to be placed at the respective position.

Parameters of the function can either be placed directly in the formula in framework-
internal units, or provided separately as arrays via the gain_parameters parameter.
Placeholders for parameters in the formula are denoted with squared brackets and a
parameter number, for example [0] for the first parameter provided. Parameters specified
separately from the formula can contain units which will be interpreted automatically -
parameters directly placed in the mobility formula have to be supplied in framework-
internal units since the function will be evaluated in internal units. It is recommended to
use the possibility of separately configuring the parameters and to make use of units to
avoid conversion mistakes.

As an example, the following configuration implements a surrogate response function,
i.e.

𝑓(𝑞) = 𝑎 ⋅ 𝑞 + 𝑏 − 𝑐
𝑞 − 𝑡

gain_function = "[0]*x + [1] - [2] / (x - [3])"
gain_parameters = 1.09, 5.8e, 130.5e*e, 20.2e

Output Plots

With the output_plots parameter activated, the module produces histograms of the
charge distribution at the different stages of the simulation, i.e. before processing, with
electronics noise, after threshold selection, and with ADC smearing applied. A 2D-
histogram of the actual pixel charge in electrons and the converted charge in QDC units
is provided if QDC simulation is enabled by setting qdc_resolution to a value different
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from zero. In addition, the distribution of the actually applied threshold is provided as
histogram.

8.5.2 Parameters

• sample_all_channels : Boolean to decide whether to loop over all detector
channels to sample the noise distribution and apply a threshold, or only over those
that have seen a signal. If set to true, all detector channels are sampled, which
might take significant time for detectors with high granularity. Furthermore, events
without detector interaction are not skipped anymore but also sampled to provide
a more realistic noise distribution. Defaults to false.

• threshold : Threshold for considering the collected charge as a hit (No default
value; required parameter).

• threshold_smearing : Standard deviation of the Gaussian uncertainty in the
threshold charge value. Defaults to 30 electrons.

• electronics_noise : Standard deviation of the Gaussian noise in the electronics
(before amplification and application of the threshold). Defaults to 110 electrons.

• gain : Gain factor the input charge is multiplied with, defaults to 1.0 (no gain) if
no gain function is supplied. gain and gain_function are mutually exclusive.

• gain_function : Formula describing the gain as a function of the input charge.
gain and gain_function are mutually exclusive.

• gain_parameters : Parameters of the gain formula. This parameter needs to
be provided as array of values, physical units are supported for each parameter
individually.

• saturation: Enable front-end saturation simulation. Defaults to false.
• saturation_mean: Mean of the simulated front-end saturation charge, defaults to
190ke. Only used if saturation is true.

• saturation_width: Width of the Gaussian distribution used to calculate the new
charge value of the simulated front-end saturation, defaults to 20ke. Only used if
saturation is true.

• qdc_resolution : Resolution of the QDC in units of bits. Thus, a value of 8
would translate to a QDC range of 0 – 255. A value of 0bit switches off the QDC
simulation and returns the actual charge in electrons. Defaults to 0.

• qdc_smearing : Standard deviation of the Gaussian noise in the ADC conversion
(after applying the threshold). Defaults to 0 electrons.

• qdc_slope : Slope of the QDC calibration in electrons per ADC unit (unit: “e”).
Defaults to 10e.

• qdc_offset : Offset of the QDC calibration in electrons. In order to simulate a
ToT (time-over-threshold) device, this offset should be configured to the negative
value of the threshold. Defaults to 0.

• allow_zero_qdc: Allows the QDC to return a value of zero if enabled, otherwise
the minimum value returned is one. Defaults to false. When enabled special
care should be taken when analyzing data since charge-weighted cluster position
interpolation might return unexpected results.

• tdc_resolution : Resolution of the TDC in units of bits. Thus, a value of 8
would translate to a TDC range of 0 – 255. A value of 0bit switches off the TDC
simulation and returns the actual time of arrival in nanoseconds. Defaults to 0.

• tdc_smearing : Standard deviation of the Gaussian noise in the TDC conversion.
Defaults to 50 ps.
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• tdc_slope : Slope of the TDC calibration in nanoseconds per TDC unit (unit:
“ns”). Defaults to 10ns.

• tdc_offset : Offset of the TDC calibration in nanoseconds. Defaults to 0.
• allow_zero_tdc: Allows the TDC to return a value of zero if enabled, otherwise

the minimum value returned is one. Defaults to false.
• output_plots : Enables output histograms to be generated from the data in every

step (slows down simulation considerably). Disabled by default.
• output_plots_scale : Set the x-axis scale of charge-related output plot, defaults

to 30ke.
• output_plots_timescale : Set the x-axis scale of time-related output plot, defaults

to 300ns.
• output_plots_bins : Set the number of bins for the output plot histograms,

defaults to 100.

8.5.3 Usage

The default configuration is equal to the following:

[DefaultDigitizer]
electronics_noise = 110e
threshold = 600e
threshold_smearing = 30e
qdc_smearing = 300e

8.6 DepositionCosmics

Status Functional
Maintainers Simon Spannagel (simon.spannagel@cern.ch)
Outputs DepositedCharge

MCParticle
MCTrack

8.6.1 Description

This module simulates cosmic ray particle shower distributions and their energy deposition
in all sensors of the setup. The cosmic ray particle showers are simulated using the
Cosmic-ray shower generator (CRY) [77], the generated particles are transported through
the setup by Geant4. More detailed information about CRY can be found in its physics
description [78] and user manual [79].

This module inherits functionality from the DepositionGeant4 module and several of
its parameters have their origin there. A detailed description of these configuration
parameters can be found in the respective module documentation. The parameter
number_of_particles here refers to full shower developments instead of individual
particles, there can be multiple particles per shower. The number of electron/hole
pairs created by a given energy deposition is calculated using the mean pair creation
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energy [31], fluctuations are modeled using a Fano factor assuming Gaussian statistics
[32]. Default values of both parameters for different sensor materials are included and
automatically selected for each of the detectors. A full list of supported materials can be
found elsewhere in the manual. These can be overwritten by specifying the parameters
charge_creation_energy and fano_factor in the configuration.

The coordinate system for this module defines the z axis orthogonal to the earth surface,
pointing upwards. This means shower particles travel along the negative z axis and
all detectors should be placed below the incidence plane at z = 0. The area on which
incident particles will be simulated is automatically inferred from the total setup size,
and the next larger set of tabulated data available is selected. Data are tabulated for
areas of 1m, 3m, 10m, 30m, 100m, and 300m. Particles outside the selected window are
dropped.

The first shower particle arriving in the event has a timestamp of 0ns, all subsequent
particles of the same shower have the appropriate spacing in time. It should be noted
that the time difference between the arrival of different particles of the same shower
can amount up to hundreds of microseconds. If this behavior is not desired, all particle
timestamps can be forced to 0ns by enabling the reset_particle_time switch.

The total time elapsed in the CRY simulation for the given number of showers is stored
in the module configuration under the key total_time_simulated. If the ROOTOb-
jectWriter is used to store the simulation result, this value is available from the output
file. In other cases, the value can be obtained from the log output of the run.

8.6.2 Dependencies

This module inherits from and therefore requires the DepositionGeant4 module as well as
an installation Geant4.

8.6.3 Parameters

• data_path: Directory to read the tabulated input data for the CRY framework
from. By default, this is the standard installation path of the data files shipped
with the framework.

• reset_particle_time: Boolean to force resetting all particle timestamps to 0ns,
even from different particles from the same shower. Defaults to false, i.e. the first
particle of a shower bears a timestamp of 0ns and all subsequent particles retain
their time difference to the first one.

Relevant parameters inherited from DepositionGeant4

• physics_list: Geant4-internal list of physical processes to simulate, defaults to
FTFP_BERT_LIV. More information about possible physics list and recommen-
dations for defaults are available on the Geant4 website [80].

• enable_pai: Determines if the Photoabsorption Ionization model is enabled in the
sensors of all detectors. Defaults to false.
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• pai_model: Model can be pai for the normal Photoabsorption Ionization model or
paiphoton for the photon model. Default is pai. Only used if enable_pai is set to
true.

• charge_creation_energy : Energy needed to create a charge deposit. Defaults to
the energy needed to create an electron-hole pair in the respective sensor material
(e.g. 3.64 eV for silicon sensors, [31]). A full list of supported materials can be
found elsewhere in the manual.

• fano_factor: Fano factor to calculate fluctuations in the number of electron/hole
pairs produced by a given energy deposition. Defaults are provided for different
sensor materials, e.g. a value of 0.115 for silicon [32]. A full list of supported
materials can be found elsewhere in the manual.

• max_step_length : Maximum length of a simulation step in every sensitive device.
Defaults to 1um.

• range_cut : Geant4 range cut-off threshold for the production of gammas, electrons
and positrons to avoid infrared divergence. Defaults to a fifth of the shortest pixel
feature, i.e. either pitch or thickness.

• cutoff_time : Maximum lifetime of particles to be propagated in the simulation.
This setting is passed to Geant4 as user limit and assigned to all sensitive volumes.
Particles and decay products are only propagated and decayed up the this time
limit and all remaining kinetic energy is deposited in the sensor it reached the time
limit in. Defaults to 221s (to ensure proper gamma creation for the Cs137 decay).
Note: Neutrons have a lifetime of 882 seconds and will not be propagated in the
simulation with the default cutoff_time.

• number_of_particles : Number of cosmic ray showers to generate in a single
event. Defaults to one.

• output_plots : Enables output histograms to be generated from the data in every
step (slows down simulation considerably). Disabled by default.

• output_plots_scale : Set the x-axis scale of the output plot, defaults to 100ke.

CRY Framework Parameters

• latitude: Latitude for which the incident particles from cosmic ray showers
should be simulated. Should be between 90.0 (north pole) and -90.0 (south pole).
Defaults to 53.0 (DESY).

• date: Date for the simulation to account for the 11-year cycle of solar activity
and related change in cosmic ray flux. Should be given as string in the form
month-day-year and defaults to the last day of 2020, i.e. 12-31-2020.

• return_neutrons: Boolean to select whether neutrons should be returned to
Geant4. Defaults to true.

• return_protons: Boolean to select whether protons should be returned to Geant4.
Defaults to true.

• return_gammas: Boolean to select whether gammas should be returned to Geant4.
Defaults to true.

• return_electrons: Boolean to select whether electrons should be returned to
Geant4. Defaults to true.

• return_muons: Boolean to select whether muons should be returned to Geant4.
Defaults to true.

• return_pions: Boolean to select whether pions should be returned to Geant4.
Defaults to true.
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• return_kaons: Boolean to select whether kaons should be returned to Geant4.
Defaults to true.

• altitude: Altitude for which the shower particles should be simulated. Possible
values are 0m, 2100m and 11300m, defaults to sea level, i.e. 0m. It should be noted
that the particle incidence plane is always located at z = 0 independent of the
simulated altitude.

• min_particles: Minimum number of particles required for a shower to be consid-
ered. Defaults to 1.

• max_particles: Maximum number of particles in a shower before additional
particles are cut off. Defaults to 100000

• area: Side length of the squared area for which incident particles are simulated.
This can maximally be 300m. By default, the maximum size is automatically derived
from the dimensions of the detector setup of the current simulation.

8.6.4 Usage

[DepositionCosmics]
physics_list = FTFP_BERT_LIV
number_of_particles = 2
max_step_length = 10.0um
return_kaons = false
altitude = 0m

8.6.5 Licenses

CRY is published under a 3-Clause BSD-like license, which is available in the file cry
/COPYRIGHT.TXT. The original software can be obtained from https://nuclear.llnl.
gov/simulation/.

8.7 DepositionGeant4

Status Functional
Maintainers Tobias Bisanz (tobias.bisanz@phys.uni-goettingen.de)

Thomas Billoud (thomas.billoud@cern.ch)
Outputs DepositedCharge

MCParticle
MCTrack

8.7.1 Description

Module which deposits charge carriers in the active volume of all detectors. It acts as
wrapper around the Geant4 logic and depends on the global geometry constructed by
the GeometryBuilderGeant4 module. It initializes the physical processes to simulate a
particle source that will deposit charge carriers for every event simulated. The number of
electron/hole pairs created by a given energy deposition is calculated using the mean pair
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creation energy [31], fluctuations are modeled using a Fano factor assuming Gaussian
statistics [32]. Default values of both parameters for different sensor materials are included
and automatically selected for each of the detectors. A full list of supported materials can
be found elsewhere in the manual. These can be overwritten by specifying the parameters
charge_creation_energy and fano_factor in the configuration.

Source Shapes

The source can be defined in two different ways using the source_type parameter: with
pre-defined shapes or with a Geant4 macro file. Pre-defined shapes are point, beam,
square or sphere. For the square and sphere, the particle starting points are distributed
homogeneously over the surfaces. By default, the particle directions for the square are
random, as would be for a squared radioactive source. For the sphere, unless a focus
point is set, the particle directions follow the cosine-law defined by Geant4 [81] and the
field inside the sphere is hence isotropic.

To define more complex sources or angular distributions, the user can create a macro
file with Geant4 commands. These commands are those defined for the GPS source
and are explained in the Geant4 website [81]. In order to avoid collisions with internal
configurations, the command /gps/number should be replaced by the configuration
parameter number_of_particles in this module in order to correctly execute the Geant4
event loop.

All source positions defined in the macro via the commands /gps/position and /gps/
pos/centre are used to automatically extend the Geant4 world volume to always include
the sources.

Particles, Ions and Radioactive Decays

The particle type can be set via a string (particle_type) or by the respective PDG code
(particle_code). Refer to the Geant4 webpage [82] for information about the available
types of particles and the PDG particle code definition [73] for a list of the available
particles and PDG codes.

Radioactive sources can be simulated simply by setting their isotope name in the
particle_type parameter, and optionally by setting the source energy to zero for
a decay in rest. The G4RadioactiveDecay package [83] is used to simulate the decay
of the radioactive nuclei. Secondary ions from the decay are not further treated and
the decay chain is interrupted, e.g. Am241 only undergoes its alpha decay without the
decay of its daughter nucleus of Np237 being simulated. The full decay chain can be
simulated if the cutoff_time is set to the appropriate value for this chain. Radioactive
isotopes are forced to decay immediately in order to allow sensible measurements of
arrival and deposition times. Currently, the following radioactive isotopes are supported:
Fe55, Am241, Sr90, Co60, Cs137. Note that for Cs137 the cutoff_time has to be set to
221 seconds for the decay to work properly.

Ions can be used as particles by setting their atomic properties, i.e. the atomic number
Z, the atomic mass A, their charge Q, the excitation energy E and whether or not they
should decay instantly via the following syntax:
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particle_type = "ion/Z/A/Q/E/D"

where Z and A are unsigned integers, Q is a signed integer, E a floating point value with
units, e.g. 13eV, and D is true for instant decay or false else.

Energy Deposition and Charge Carrier creation

For all particles passing the sensitive device of the detectors, the energy loss is converted
into deposited charge carriers in every step of the Geant4 simulation. Optionally, the
Photoabsorption Ionization model (PAI) can be activated to improve the modeling of
thin sensors [84]. The information about the truth particle passage is also fully available,
with every deposit linked to a MCParticle. Each trajectory which passes through at least
one detector is also registered and stored as a global MCTrack. MCParticles are linked
to their respective tracks and each track is linked to its parent track, if available.

A range cut-off threshold for the production of gammas, electrons and positrons is
necessary to avoid infrared divergence. By default, Geant4 sets this value to 700um or
even 1mm, which is most likely too coarse for precise detector simulation. In this module,
the range cut-off is automatically calculated as a fifth of the minimal feature size of a
single pixel, i.e. either to a fifth of the smallest pitch of a fifth of the sensor thickness,
if smaller. This behavior can be overwritten by explicitly specifying the range cut via
the range_cut parameter. The propagation of any particle is stopped at the value of
the parameter cutoff_time. In case the particle is stopped in a sensitive volume, the
remaining kinetic energy is deposited in this sensor.

The module supports the propagation of charged particles in a magnetic field if defined
via the MagneticFieldReader module.

With the output_plots parameter activated, the module produces histograms of the
total deposited charge per event for every sensor in units of kilo-electrons. The scale of
the plot axis can be adjusted using the output_plots_scale parameter and defaults to
a maximum of 100ke.

8.7.2 Dependencies

This module requires an installation Geant4.

8.7.3 Parameters

• physics_list: Geant4-internal list of physical processes to simulate, defaults to
FTFP_BERT_LIV. More information about possible physics list and recommen-
dations for defaults are available on the Geant4 website [80]. The MicroElec track
structure physics list [microelec] can also be implemented for ions and electrons,
currently in only silicon by specifying microelec-sionly.

• enable_pai: Determines if the Photoabsorption Ionization model is enabled in the
sensors of all detectors. Defaults to false.

• pai_model: Model can be pai for the normal Photoabsorption Ionization model or
paiphoton for the photon model. Default is pai. Only used if enable_pai is set to
true.
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• charge_creation_energy : Energy needed to create a charge deposit. Defaults to
the energy needed to create an electron-hole pair in the respective sensor material
(e.g. 3.64 eV for silicon sensors, [31]). A full list of supported materials can be
found elsewhere in the manual.

• fano_factor: Fano factor to calculate fluctuations in the number of electron/hole
pairs produced by a given energy deposition. Defaults are provided for different
sensor materials, e.g. a value of 0.115 for silicon [32]. A full list of supported
materials can be found elsewhere in the manual.

• max_step_length : Maximum length of a simulation step in every sensitive device.
Defaults to 1um.

• range_cut : Geant4 range cut-off threshold for the production of gammas, electrons
and positrons to avoid infrared divergence. Defaults to a fifth of the shortest pixel
feature, i.e. either pitch or thickness.

• particle_type : Type of the Geant4 particle to use in the source (string). Refer
to the Geant4 documentation [82] for information about the available types of
particles.

• particle_code : PDG code of the Geant4 particle to use in the source.
• source_energy : Mean kinetic energy of the generated particles.
• source_energy_spread : Energy spread of the source.
• source_position : Position of the particle source in the world geometry.
• source_time : Offset from 0 to start the Geant4 particles. Default 0ns.
• source_time_window : Range of particle start times starting from the offset
(source_time). Individual particle start times are randomly drawn from a uniform
distribution within [source_time, source_time+source_time_window]. Default
0ns (off).

• source_type : Shape of the source: beam (default), point, square, sphere,
macro.

• cutoff_time : Maximum lifetime of particles to be propagated in the simulation.
This setting is passed to Geant4 as user limit and assigned to all sensitive volumes.
Particles and decay products are only propagated and decayed up the this time
limit and all remaining kinetic energy is deposited in the sensor it reached the time
limit in. Defaults to 221s (to ensure proper gamma creation for the Cs137 decay).
Note: Neutrons have a lifetime of 882 seconds and will not be propagated in the
simulation with the default cutoff_time.

• record_all_tracks : Switch to enable the recording of all Geant4 tracks in the
event. By default, this parameter is set to false and MCTrack objects are only
generated for particles interacting with sensor material, not those that never interact
with any detector.

• geant4_tracking_verbosity : Verbosity level for Geant4 tracking, defaults to 0.
Higher levels mean more output. It should be noted that the respective log output
is redirected to the logging level set via the log_level_g4cout parameter in the
GeometryBuilderGeant4 module.

• number_of_particles : Number of particles to generate in a single event. Defaults
to one particle.

• deposit_in_frontside_implants : Boolean to select whether charge carriers
should be generated in frontside implants. Defaults to true.

• deposit_in_backside_implants : Boolean to select whether charge carriers
should be generated in backside implants. Defaults to false.

• output_plots : Enables output histograms to be generated from the data in every
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step (slows down simulation considerably). Disabled by default.
• output_plots_scale : Set the x-axis scale of the output plot, defaults to 100ke.

Parameters for source beam

• beam_shape : Shape of the beam, can be either circle, ellipse or rectangle.
Defaults to circle

• beam_size : Width of the Gaussian beam profile. With beam_shape = ellipse
or beam_shape = rectangle, this requires two values for the width in x and y.

• beam_divergence : Standard deviation of the particle angles in x and y from the
particle beam

• focus_point : Focus point of the beam. This parameter is mutually exclusive with
beam_divergence.

• beam_direction : Direction of the beam as a unit vector.
• flat_beam : Boolean to change your Gaussian beam profile to a flat beam profile.

If true, the beam_size gives the radius of the beam profile. Defaults to false.

Parameters for source square

• square_side : Length of the square side.
• square_angle : Cone opening angle defining the maximum submission angle.

Defaults to 180deg, i.e. emission into one full hemisphere.

Parameters for source sphere

• sphere_radius : Radius of the sphere source (particles start only from the surface).
• sphere_focus_point : Focus point of the sphere source. If not specified, the

radiation field is isotropic inside the sphere.

Parameters for source macro

• file_name : Path to the Geant4 source macro file.

Note for Developers

This module is used as base for other deposition modules using Geant4 for particle tracking,
e.g. DepositionCosmics or DepositionGenerator. Since some of these modules might have
a sequence requirement for event processing, this module is a SequentialModule but
waives the sequence requirement in its constructor. Any derived module that requires a
strict sequence has to call waive_sequence_requirement(false) in its constructor to
overwrite this setting.
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8.7.4 Usage

A possible default configuration to use, simulating a beam of 120 GeV pions with a
divergence in x, is the following:

[DepositionGeant4]
physics_list = FTFP_BERT_LIV
particle_type = "pi+"
source_energy = 120GeV
source_position = 0 0 -1mm
source_type = "beam"
beam_direction = 0 0 1
beam_divergence = 3mrad 0mrad
number_of_particles = 1

A radioactive point source of Iron-55 could be simulated by the following configuration:

[DepositionGeant4]
physics_list = FTFP_BERT_LIV
particle_type = "Fe55"
source_energy = 0eV
source_position = 0 0 -1mm
source_type = "point"
number_of_particles = 1

A Xenon-132 ion beam could be simulated using the following configuration:

[DepositionGeant4]
physics_list = FTFP_BERT_LIV
particle_type = "ion/54/132/0/0eV/false"
source_energy = 10MeV
source_position = 0 0 -1mm
source_type = "beam"
beam_direction = 0 0 1
number_of_particles = 1

8.8 DepositionGenerator

Status Functional
Maintainers Simon Spannagel (simon.spannagel@cern.ch)
Outputs DepositedCharge

MCParticle
MCTrack
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8.8.1 Description

This module allows to read primary particles produced by Monte Carlo event generators
from files in different data formats, and to emit them to a Geant4 ParticleGun. The
particles are then tracked through the setup using Geant4, and the resulting energy
deposits are converted to DepositedCharge objects and dispatched to the subsequent
simulation chain. The different file formats can be selected via the model parameter, the
path to the data file has to be provided via the file_name configuration parameter.

Events are read consecutively from the generator event data and event number are
matched. This means that the event with number 5 in Allpix Squared will contain
the data from event number 5 of the generator data file. If events are missing in the
generator data, no primary particles are generated in Allpix Squared and the event
remains empty.

This module inherits functionality from the DepositionGeant4 module and several of
its parameters have their origin there. A detailed description of these configuration
parameters can be found in the respective module documentation. The number of
electron/hole pairs created by a given energy deposition is calculated using the mean
pair creation energy 31, fluctuations are modeled using a Fano factor assuming Gaussian
statistics 32. Default values of both parameters for different sensor materials are included
and automatically selected for each of the detectors. A full list of supported materials can
be found elsewhere in the manual. These can be overwritten by specifying the parameters
charge_creation_energy and fano_factor in the configuration.

8.8.2 Dependencies

This module inherits from and therefore requires the DepositionGeant4 module as well
as an installation of Geant4. In addition, an installation of the HepMC3 library is
required for the module to support the formats HepMC3, HepMC2, HepMC ROOTIO as well
as HepMC ROOTIO TTree.

8.8.3 Parameters

• model: Input data model. Currently supported is the data format of the 85 Monte
Carl generator (GENIE) as well as the HepMC3, HepMC2, HepMCROOT, HepMCTTree
data formats written by the HepMC3 library 86.

• file_name: Path to the input data file to be read.

Relevant parameters inherited from DepositionGeant4

• physics_list: Geant4-internal list of physical processes to simulate, defaults to
FTFP_BERT_LIV. More information about possible physics list and recommen-
dations for defaults are available on the Geant4 website 80.

• enable_pai: Determines if the Photoabsorption Ionization model is enabled in the
sensors of all detectors. Defaults to false.
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• pai_model: Model can be pai for the normal Photoabsorption Ionization model or
paiphoton for the photon model. Default is pai. Only used if enable_pai is set to
true.

• charge_creation_energy : Energy needed to create a charge deposit. Defaults to
the energy needed to create an electron-hole pair in the respective sensor material
(e.g. 3.64 eV for silicon sensors, 31). A full list of supported materials can be found
elsewhere in the manual.

• fano_factor: Fano factor to calculate fluctuations in the number of electron/hole
pairs produced by a given energy deposition. Defaults are provided for different
sensor materials, e.g. a value of 0.115 for silicon 32. A full list of supported materials
can be found elsewhere in the manual.

• max_step_length : Maximum length of a simulation step in every sensitive device.
Defaults to 1um.

• range_cut : Geant4 range cut-off threshold for the production of gammas, electrons
and positrons to avoid infrared divergence. Defaults to a fifth of the shortest pixel
feature, i.e. either pitch or thickness.

• cutoff_time : Maximum lifetime of particles to be propagated in the simulation.
This setting is passed to Geant4 as user limit and assigned to all sensitive volumes.
Particles and decay products are only propagated and decayed up the this time
limit and all remaining kinetic energy is deposited in the sensor it reached the time
limit in. Defaults to 221s (to ensure proper gamma creation for the Cs137 decay).
Note: Neutrons have a lifetime of 882 seconds and will not be propagated in the
simulation with the default cutoff_time.

• output_plots : Enables output histograms to be generated from the data in every
step (slows down simulation considerably). Disabled by default.

• output_plots_scale : Set the x-axis scale of the output plot, defaults to 100ke.

8.8.4 Usage

[DepositionGenerator]
physics_list = FTFP_BERT_LIV
max_step_length = 10.0um
model = "GENIE"
file_name = "genie_input_data.root"

8.9 DepositionLaser

Status Functional
Maintainers Daniil Rastorguev (daniil.rastorguev@desy.de)
Outputs DepositedCharge

MCParticle

8.9.1 Description

This deposition generator is mostly intended for simulations of laser-TCT experiments. It
generates charge, deposited by absorption of a laser pulse in detector bulk. This module
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is not dependent on Geant4. Instead, it implements tracking algorithms and simulations
of corresponding physical phenomena by its own, using internal Allpix geometry.

Current implementation assumes that the laser pulse is a bunch of point-like photons,
each traveling in a straight line. A lookup table [87] is used to determine absorption
and refraction coefficients in silicon for a given wavelength. The only supported sensor
material is silicon, unless optical properties are explicitly set (see Parameters).

Multiple photons are produced in one event, thus a single event models a single laser
pulse.

Tracking features:

• photons are absorbed in detector bulk on physically correct depth
• each photon is assumed to create exactly one e-h pair
• photons refract on silicon-air interface
• tracks are terminated when a photon leaves first encountered sensitive volume
• tracks are terminated if a passive object is hit (the only supported passive object
type is box) Verbose information on tracking for each photon is printed if this
module is run with DEBUG logging level.

Initial direction and starting timestamp for every photon in the bunch are generated to
mimic spatial and temporal distributions of delivered intensity of a real laser pulse.

Two options for beam geometry are currently available: cylindrical and converging.
For both options, transversal beam profiles will have a gaussian shape. For a cylindrical
beam, all tracks are parallel to the set beam direction. For a converging beam, track
directions would have isotropic distribution (but with a limit on a max angle between
the track and the set beam direction).

The transversal width of the Gaussian beam is defined by the beam waist 𝑤0, which
describes the minimal beam width. The beam width in turn is defined as the distance
between the point of maximum intensity and the point where the intensity drops to
1
𝑒2 . For a Gaussian-distributed intensity, the intensity drops to 1

𝑒2 , if 𝑥 = 2𝜎, see the
probability distribution function of the normal distribution. The beam waist therefore
equals 2𝜎.

NB: convention on global time zero for this module contradicts the general convention of
the Allpix Squared. For this module, global t=0 is chosen in such a way that the mean
value of temporal distribution is always positioned at 4 standard deviations w.r.t. the
global t=0. Thus, there is not necessarily a particle that is created exactly when the
global time starts. Although, the following Allpix Squared conventions still apply:

• No particles have a negative timestamp.
• Local time zero for each detector is a moment when the first particle that creates a

hit in this detectors enters its bulk.

As a result, this module yields DepositedCharge instances for each detector, with them
having physically correct spatial and temporal distribution.
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8.9.2 Parameters

• number_of_photons: number of incident photons, generated in one event. Defaults
to 10000. The total deposited charge will also depend on wavelength and geometry.

• group_photons: if specified, incident photons will be grouped in buckets of given
size, decreasing amount of DepositedCharge instances (but keeping total amount
of deposited charge the same), thus reducing load on the propagation module.

• wavelength of the laser. If specified, it is used to retrieve sensor optical properties
from the lookup table (data is available for the range of 250 – 1450 nm). The only
supported material is silicon.

• data_path: Directory to read the tabulated input data for the absorption on silicon.
By default, this is the standard installation path of the data files shipped with the
framework.

• absorption_length and refractive_index: if both are specified, given values
are used instead of the lookup table. This also allows use of sensor materials other
than silicon.

• pulse_duration: gaussian width of pulse temporal profile. Defaults to 0.5 ns.
• source_position: a 3D position vector.
• beam_direction: a 3D direction vector.
• beam_geometry: either cylindrical or converging
• beam_waist: parametrises the transversal width of the beam by the beam waist

𝑤0 = 2𝜎 described above. Defaults to 20 um.
• focal_distance: needs to be specified for converging beam. This distance is as

it would be in air. In silicon, beam shape will effectively stretch along its direction
due to refraction and the actual focus will be further away from the source.

• beam_convergence_angle: max angle between tracks and beam_direction. Needs
to be specified for a converging beam.

• output_plots: if set true, this module will produce histograms to monitor beam
shape and also 3D distributions of charges, deposited in each detector. Histograms
would look sensible even for one-event runs. Defaults to false.

8.9.3 Usage

A simulation pipeline to build an analog detector response would include
DepositionLaser, TransientPropagation and PulseTransfer. Usually it is
enough to run just a single event (or a few). While multithreading is supported by
this module, one should note that the pipeline for each event is quite computationally
intensive and runs with only one event do not gain any additional performance from
multi-threaded execution.

Such pipeline is expected to produce pulse shapes, comparable with experimentally
obtained ones. An example of DepositionLaser configuration is shown below.

[Allpix]
detectors_file = "geometry.conf"
# A single event is often enough
number_of_events = 1
multithreading = false
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[DepositionLaser]
log_level = "INFO"

# Standard wavelength for IR TCT lasers
wavelength = 1064nm

number_of_photons = 50000
pulse_duration = 1ns

# Geometry parameters of the beam
source_position = 0 0 -5mm
beam_direction = 0 0 1
beam_geometry = "converging"
beam_waist = 10um
focal_distance = 5mm
beam_convergence_angle = 20deg

output_plots = true

8.10 DepositionPointCharge

Status Functional
Maintainers Simon Spannagel (simon.spannagel@cern.ch)
Outputs DepositedCharge

MCParticle

8.10.1 Description

Module which deposits a defined number of charge carriers at a specific point within
the active volume the detector. The number of charge carriers to be deposited can be
specified in the configuration.

Two different source types are available:

• The point source deposits charge carriers at a specific point in the sensor, which can
be configured via the position parameter with three dimensions. The number of
charge carriers deposited can be adjusted using the number_of_charges parameter.

• The mip model allows to deposit charge carriers along a straight line through the
sensor, perpendicular to its surface. Charge carriers are deposited linearly along this
line with a configurable number of electron-hole pairs per length. The number of
steps through the sensor can be configured using the number_of_steps parameter,
the position can be given in two dimensions via the position parameter and
the number of charge carriers per length are taken from the number_of_charges
parameter.

This module supports three different deposition models:
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• In the fixed model, charge carriers are always deposited at exactly the same
position, specified via the position parameter, in every event of the simulation.
This model is mostly interesting for development of new charge transport algorithms,
where the initial position of charge carriers should be known exactly.

• In the scan model, the position where charge carriers are deposited changes with
every event. The scanning positions are distributed such that the volume of one
pixel cell is homogeneously scanned. The total number of positions is taken from
the total number of events configured for the simulation. If this number doesn’t
allow for a full illumination, a warning is printed, suggesting a different number of
events. The pixel volume to be scanned always has its bottom left corner placed
at the center of the active sensor area. The scan model can be used to generate
sensor response templates for fast simulations by generating a lookup table from
the final simulation results.

• In the spot model, charge carriers are deposited in a Gaussian spot around the
configured position. The sigma of the Gaussian distribution in all coordinates can
be configured via the spot_size parameter. Charge carriers are only deposited
inside the active sensor volume.

Monte Carlo particles are generated at the respective positions, bearing a particle ID of
-1. All charge carriers are deposited at time zero, i.e. at the beginning of the event.

8.10.2 Parameters

• model: Model according to which charge carriers are deposited. For fixed, charge
carriers are deposited at a specific point for every event. For scan, the point where
charge carriers are deposited changes for every event. For spot, depositions are
smeared around the configured position.

• number_of_charges: Number of charges deposited. This refers to the total number
of charge carriers for the source type point and defaults to 1. For the mip source
type, this value is interpreted as charge carriers per length deposited in the sensor
and defaults to 80/um. It should be noted that without units specified, this value
will be interpreted in the framework base units, in this case /mm.

• number_of_steps: Number of steps over the full sensor thickness at which charge
carriers are deposited. Only used for mip source type. Defaults to 100.

• source_type: Modeled source type for the deposition of charge carriers. For point,
charge carriers are deposited at the position given by the position parameter. For
mip, charge carriers are deposited along a line through the full sensor thickness.
Defaults to point.

• position: Position in local coordinates of the sensor, where charge carriers should
be deposited. Expects three values for local-x, local-y and local-z position in the
sensor volume and defaults to 0um 0um 0um, i.e. the center of first (lower left) pixel.
When using source type mip, providing a 2D position is sufficient since it only uses
the x and y coordinates. If used in scan mode, it allows you to shift the origin of
each deposited charge by adding this value. If the scan is only performed in one or
two dimensions, the remaining coordinate will constantly have the value given by
position.

• spot_size: Width of the Gaussian distribution used to smear the position in the
spot model. Only one value is taken and used for all three dimensions.
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• scan_coordinates: Coordinates to scan over, a combination of x, y, z. Only used
for the scan model. Defaults to x y z, i.e. all three spatial coordinates. The
position parameter is used to determine the value of the coordinates that are not
scanned over if a partial scan is requested, and the start offset of the scan for the
other coordinates.

• events_per_cell: Number of events simulated in each voxel cell of the scan, Only
used with model = scan, defaults to 1. It should be noted that this setting does
not change the total number_of_events to be simulated, this needs to be increased
by the same proportion.

• mip_direction: Vector giving the direction of the line along which deposits are
made when the mip source type is used. Defaults to 0 0 1, i.e. along the z-axis.
The position keyword gives a point that the line of depositions will cross through
with this direction.

Plotting parameters

• output_plots : Determines if output plots should be generated. Disabled by
default.

• output_plots_bins_per_um : Number of bins per micrometer in all directions in
the 2D histograms used to plot deposition position. Only used if output_plots is
enabled.

8.10.3 Usage

Example configuration for a point source at a defined position around which 100 charge
carriers are deposited with a Gaussian distribution:

[DepositionPointCharge]
source_type = "point"
model = "spot"
position = -10um 10um 0um
spot_size = 3um
number_of_charges = 100

Example configuration for a point source scanned over the x and y cooridantes, with a
fixed z coordinate of 10 micrometers (with the sensor center at 0):

[DepositionPointCharge]
source_type = "point"
model = "scan"
scan_coordinates = x y
position = 0um 0um 10um
number_of_charges = 100

Example configuration for a MIP-like energy deposition along a line at a fixed position,
with 63 electron-hole pairs deposited per micrometer of sensor material:
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[DepositionPointCharge]
source_type = "mip"
model = "fixed"
position = -10um 10um
number_of_steps = 100
number_of_charges = 63/um

8.11 DepositionReader

Status Functional
Maintainers Simon Spannagel (simon.spannagel@cern.ch)
Outputs DepositedCharge

MCParticle

8.11.1 Description

This module allows to read in energy depositions in a sensor volume produced with a
different program, e.g. with Geant4 in a standalone simulation of the respective experiment.
The detector geometry for Allpix Squared should resemble the global positions of the
detectors of interest in the original simulation.

The assignment of energy deposits to a specific detector in the Allpix Squared simulation
is performed using the volume name of the detector element in the original simulation.
Hence, the naming of the detector in the geometry file has to match its name in the
input data file. In order to simplify the aggregation of individual detector element
volumes from the original simulation into a single detector, this modules provides
the detector_name_chars parameter. It allows matching of the detector name to be
performed on a sub-string of the original volume name.

Only energy deposits within a valid volume are considered, i.e. where a matching detector
with the same name can be found in the geometry setup. The global coordinates are
then translated to local coordinates of the given detector. If these are outside the sensor,
the energy deposit is discarded and a warning is printed. The number of electron/hole
pairs created by a given energy deposition is calculated using the mean pair creation
energy [31], fluctuations are modeled using a Fano factor assuming Gaussian statistics
[32]. Default values of both parameters for different sensor materials are included and
automatically selected for each of the detectors. A full list of supported materials can be
found elsewhere in the manual. These can be overwritten by specifying the parameters
charge_creation_energy and fano_factor in the configuration.

Track and parent ids of the individual particles which created the energy depositions allow
to carry on some of the Monte Carlo particle information from the original simulation.
Monte Carlo particle objects are created for each unique track id, the start and end
positions are set to the first and last appearance of the particle, respectively. A parent id
of zero should be used for the primary particle of the simulation, and all track ids have
to be recorded before they can be used as parent id.
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With the output_plots parameter activated, the module produces histograms of the
total deposited charge per event for every sensor in units of kilo-electrons. The scale of
the plot axis can be adjusted using the output_plots_scale parameter and defaults to
a maximum of 100ke.

Currently two data sources are supported, ROOT trees and CSV text files. Their expected
formats are explained in detail in the following.

ROOT Trees

Data in ROOT trees are interpreted as follows. The tree with name tree_name is
opened from the provided ROOT file, and information of energy deposits is read from its
individual branches. By default the expected branch names and types are:

• event (integer): Branch for the event number.
• energy (double): Branch for the energy deposition information.
• time (double): Branch for the time information when the energy deposition took

place, calculated from the start of the event.
• position.x (double): Leaf of the branch for the x position of the energy deposit

in global coordinates of the setup.
• position.y (double): Leaf of the branch for the y position of the energy deposit

in global coordinates of the setup.
• position.z (double): Leaf of the branch for the z position of the energy deposit

in global coordinates of the setup.
• detector (char array): Branch for the detector or volume name in which the energy
was deposited.

• pdg_code (integer): Branch for the PDG code particle id if the Monte Carlo particle
producing this energy deposition.

• track_id (integer): Branch for the track id of the current Monte Carlo particle.
• parent_id (integer): Branch for the id of the parent Monte Carlo particle which

created the current one.

Entries are read from all branches synchronously and accumulated in the same event
until the event id read from the event branch changes.

By default, the event numbers need to be sorted with ascending order. This can be
disabled by setting require_sequential_events to false. This is useful when running
simulations in mutli-threading mode and merging datasets in the end. Currently only
supported in ROOT files.

If the parameters assign_timestamps or create_mcparticles are set to false, no
attempt is made in reading the respective branches, independently whether they are
present or not.

Different branch names can be configured using the branch_names parameter. It should
be noted that new names have to be provided for all branches, i.e. ten names, and that
the order of the names has to reflect the order of the branches as listed above to allow for
correct assignment. If assign_timestamps or create_mcparticles are set to false,
their branch names (time and track_id, parent_id, respectively) should be omitted
from the branch name list. Individual leafs of branches can be assigned using the dot
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notation, e.g. energy.Edep to access a leaf of the branch energy to retrieve the energy
deposit information.

CSV Files

Data in CSV-formatted text files are interpreted as follows. Empty lines as well as lines
starting with a hash (#) are ignored, all other lines are interpreted either as event header
if they start with E, or as energy deposition:

Event: <N>
<PID>,<T>,<E>,<X>,<Y>,<Z>,<V>,<TRK>,<PRT>
<PID>,<T>,<E>,<X>,<Y>,<Z>,<V>,<TRK>,<PRT>
# ...
# For example:
211, 3.234674e+01, 1.091620e-02, -2.515335e+00, 4.427924e+00,

-2.497500e-01, MyDetector, 1, 0↪

211, 3.234843e+01, 1.184756e-02, -2.528475e+00, 4.453544e+00,
-2.445500e-01, MyDetector, 2, 1↪

Event: <N+1>
<PID>,<T>,<E>,<X>,<Y>,<Z>,<V>,<TRK>,<PRT>
# ...

where <N> is the current event number, <PID> is the PDG particle ID [73], <T> the time
of deposition, calculated from the beginning of the event, <E> is the deposited energy,
<[X-Z]> is the position of the energy deposit in global coordinates of the setup, and <V>
the detector name (volume) the energy deposit should be assigned to. The values are
interpreted in the default framework units unless specified otherwise via the configuration
parameters of this module. <TRK> represents the track id of the particle track which has
caused this energy deposition, and <PRT> the id of the parent particle which created this
particle.

If the parameters assign_timestamps or create_mcparticles are set to false, the
parsing assumes that the respective columns <T> and <TRK>, <PRT> are not present in
the CSV file.

The file should have its end-of-file marker (EOF) in a new line, otherwise the last entry
will be ignored.

8.11.2 Parameters

• model: Format of the data file to be read, can either be csv or root.
• file_name: Location of the input data file. The appropriate file extension will be

appended if not present, depending on the model chosen either .csv or .root.
• tree_name: Name of the input tree to be read from the ROOT file. Only used for

the root model.
• branch_names: List of names of the ten branches to be read from the input ROOT

file. Only used for the root model. The default names and their content are listed
above in the ROOT Trees section.
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• detector_name_chars: Parameter which allows selecting only a sub-string of the
stored volume name as detector name. Could be set to the number of characters
from the beginning of the volume name string which should be taken as detector
name. E.g. detector_name_chars = 7 would select sensor0 from the full volume
name sensor0_px3_14 read from the input file. This is especially useful if the initial
simulation in Geant4 has been performed using parameterized volume placements
e.g. for individual pixels of a detector. Defaults to 0 which takes the full volume
name.

• charge_creation_energy : Energy needed to create a charge deposit. Defaults to
the energy needed to create an electron-hole pair in the respective sensor material
(e.g. 3.64 eV for silicon sensors, [31]). A full list of supported materials can be
found elsewhere in the manual.

• fano_factor: Fano factor to calculate fluctuations in the number of electron/hole
pairs produced by a given energy deposition. Defaults are provided for different
sensor materials, e.g. a value of 0.115 for silicon [32]. A full list of supported
materials can be found elsewhere in the manual.

• unit_length: The units length measurements read from the input data source
should be interpreted in. Defaults to the framework standard unit mm.

• unit_time: The units time measurements read from the input data source should
be interpreted in. Defaults to the framework standard unit ns.

• unit_energy: The units energy depositions read from the input data source should
be interpreted in. Defaults to the framework standard unit MeV.

• assign_timestamps: Boolean to select whether or not time information should be
read and assigned to energy deposits. If false, all timestamps of deposits are set
to 0. Defaults to true.

• create_mcparticles: Boolean to select whether or not Monte Carlo particle IDs
should be read and MCParticle objects created, defaults to true.

• output_plots : Enables output histograms to be generated from the data in every
step (slows down simulation considerably). Disabled by default.

• output_plots_scale : Set the x-axis scale of the output plot, defaults to 100ke.

8.11.3 Usage

An example for reading energy depositions from a ROOT file tree named hitTree, using
only the first five characters of the volume name as detector identifier and meter as unit
length, is the following:

[DepositionReader]
model = "root"
file_name = "g4_energy_deposits.root"
tree_name = "hitTree"
detector_name_chars = 5
unit_length = "m"
branch_names = ["event", "energy.Edep", "time", "position.x",

"position.y", "position.z", "detector", "PDG_code", "track_id",
"parent_id"]

↪

↪
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8.12 DetectorHistogrammer

Status Functional
Maintainers Paul Schuetze (paul.schuetze@desy.de)

Simon Spannagel (simon.spannagel@cern.ch)
Outputs PixelHit

MCParticle

8.12.1 Description

This module provides an overview of the produced simulation data for a quick inspection
and simple checks. For more sophisticated analyses, the output from one of the output
writers should be used to make the necessary information available.

Within the module, clustering of the input hits is performed. Looping over the PixelHits,
hits being adjacent to an existing cluster are added to this cluster. Clusters are merged
if there are multiple adjacent clusters. If the PixelHit is free-standing, a new cluster is
created.

This module serves as a quick “mini-analysis” and creates the histograms listed below. The
Monte Carlo truth position provided by the MCParticle objects is used as track reference
position. An additional uncertainty can be added by configuring a track resolution, with
which every cluster residual is convolved. This makes it possible to perform a quick test
beam-like analysis. For technical reasons, this offset is drawn randomly from a Gaussian
distribution independently for the resolution and the efficiency measurement. Note: If a
non-zero track resolution is used, pixel matrix edge effects may appear as particles hit
the sensor excess.

• A hitmap of all pixels in the pixel grid, displaying the number of times a pixel has
been hit during the simulation run.

• A cluster map indicating the cluster positions for the whole simulation run.
• Distribution of the total number of pixel hits (event size) per event.
• Distribution of the total number of clusters found per event.
• Distributions of the cluster size in x, y and the total cluster size.
• Mean cluster size and cluster sizes in x and y as function of the in-pixel impact

position of the primary particle.
• Residual distribution in x and y between the center-of-gravity position of the cluster

and the primary particle.
• Residual map for residuals in x, y, and combined between the center-of-gravity
position of the cluster and the primary particle. These maps allow to see if the
residuals are smaller or larger on some part of the detector compared to others.

• Mean absolute deviations of the residual as function of the in-pixel impact position
of the primary particle. Histograms both for a 2D representation of the pixel cell as
well as the projections (residual X vs position X, residual Y vs position Y, residual
X vs position Y, residual Y vs position X) are produced.

• Efficiency map of the detector
• Efficiency as function of the in-pixel impact position of the primary particle.

Histograms both for a 2D representation of the pixel cell as well as the projections
(efficiency vs position X, efficiency vs position Y) are produced.
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• Total cluster, pixel and event charge distributions.
• Mean total cluster charge as function of the in-pixel impact position of the primary

particle.
• Mean seed pixel charge as a function of the in-pixel impact position of the primary

particle.

8.12.2 Parameters

• granularity: 2D integer vector defining the number of bins along the x and y axis
for in-pixel maps. Defaults to the pixel pitch in micro meters, e.g. a detector with
100um x 100um pixels would be represented in a histogram with 100 * 100 =
10000 bins.

• granularity_local: 2D integer vector defining the number of bins for each pixel
along the x and y axis for maps in local coordinates where particle positions are
used as reference. Defaults to 1 1 corresponding to a single bin per pixel.

• max_cluster_charge: Upper limit for the cluster charge histogram, defaults to
50ke.

• track_resolution: Assumed track resolution the Monte Carlo truth is smeared
with. Expects two values for the resolution in local-x and local-y directions and
defaults to 0um 0um, i.e. no smearing.

• matching_cut: Required maximum matching distance between cluster position
and particle position for the efficiency measurement. Expected two values and
defaults to three times the pixel pitch in each dimension.

8.12.3 Usage

This module is normally bound to a specific detector to plot, for example to the ‘dut’:

[DetectorHistogrammer]
name = "dut"
granularity = 100, 100

8.13 DopingProfileReader

Status Functional
Maintainers Simon Spannagel (simon.spannagel@cern.ch)

8.13.1 Description

Adds a doping profile to the detector from one of the supported sources. By default,
detectors do not have a doping profile applied. A doping profile is required for simulating
the lifetime of charge carriers. It is not used for the calculation of the electric field inside
the sensor. The profile is extrapolated along z such that if a position outside the sensor
is queried, the last value available at the sensor surface is returned. This precludes edge
effects from charge carriers moving at the sensor surfaces.
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The designation of the dopants follows the common practice of assigning negative values
to p-doped silicon and positive values to n-doped silicon.

The following models for the doping profile can be used:

• For constant, a constant doping profile is set in the sensor
• For regions, the sensor is segmented into slices along the local z-direction. In each

slice, a constant doping concentration is used. The user provides the depth of each
slice and the corresponding concentration.

• For mesh, a file containing a doping profile map in APF or INIT format is parsed.

8.13.2 Parameters

• model : Type of the doping profile, either constant, regions or mesh.
• file_name : Location of file containing the doping profile in one of the supported

field file formats. Only used if the model parameter has the value mesh.
• field_mapping: Description of the mapping of the field onto the sensor or pixel cell.
Possible values are SENSOR for sensor-wide mapping, PIXEL_FULL, indicating that
the map spans the full 2D plane and the field is centered around the pixel center,
PIXEL_HALF_TOP or PIXEL_HALF_BOTTOM indicating that the field only contains
only one half-axis along y, HALF_LEFT or HALF_RIGHT indicating that the field only
contains only one half-axis along x, or PIXEL_QUADRANT_I, PIXEL_QUADRANT_II,
PIXEL_QUADRANT_III, PIXEL_QUADRANT_IV stating that the field only covers the
respective quadrant of the 2D pixel plane. In addition, the PIXEL_FULL_INVERSE
mode allows loading full-plane field maps which are not centered around a pixel
cell but the corner between pixels. Only used if the model parameter has the value
mesh.

• field_scale: Scaling factor of the electric field in x- and y-direction. By default,
the scaling factors are set to {1, 1} and the field is used with its physical extent
stated in the field data file.

• field_offset: Offset of the field in x- and y-direction. With this parameter and
the mapping mode SENSOR, the field can be shifted e.g. by half a pixel pitch to
accommodate for fields which have been simulated starting from the pixel center.
The shift is applied in positive direction of the respective coordinate. Only used if
the model parameter has the value mesh.

• doping_concentration : Value for the doping concentration. If the model param-
eter has the value constant a single number should be provided. If the model
parameter has the value regions a matrix is expected, which provides the sensor
depth and doping concentration in each row.

• doping_depth : Thickness of the doping profile region. The doping profile is
extrapolated in the region below the doping_depth. Only used if the model
parameter has the value mesh.

8.13.3 Plotting parameters

• output_plots : Determines if output plots should be generated. Disabled by
default.
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• output_plots_steps : Number of bins in both x- and y-direction in the 2D
histogram used to plot the doping concentration in the detectors. Only used if
output_plots is enabled.

• output_plots_project : Axis to project the doping concentration on to create
the 2D histogram. Either x, y or z. Only used if output_plots is enabled. Default
is x (i.e. producing a slice of the yz plane).

• output_plots_projection_percentage : Percentage on the projection axis to
plot the doping concentration profile. For example if output_plots_project is x and
this parameter is set to 0.5, the profile is plotted in the yz plane at the x-coordinate
in the middle of the sensor. Default is 0.5.

• output_plots_single_pixel: Determines if the whole sensor has to be plotted
or only a single pixel. Defaults to true (plotting a single pixel).

8.13.4 Usage

In the following example a doping profile map in APF format is loaded:

[DopingProfileReader]
model = "mesh"
file_name = "example_doping_profile.apf"
field_mapping = PIXEL_FULL

In the next example two regions with constant doping are used. Down to a depth of
25um the doping concentration is 6 × 1011 cm−3, while below it the doping is set to
5 × 1018 cm−3:

[DopingProfileReader]
model = "regions"
doping_concentration = [[25um,6e11/cm/cm/cm],[50um,5e18/cm/cm/cm]]

Finally, a constant doping of −2.13 × 1015 cm−3 is set for the entire sensor:

[DopingProfileReader]
model = "constant"
doping_concentration = -2.13e+15/cm/cm/cm

8.14 Dummy

Status Functional
Maintainers John Doe (john.doe@example.com)

8.14.1 Description

Place a description of this module here
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8.14.2 Parameters

• param: explanation with optional default

8.14.3 Usage

Include an example how to use this module

8.15 ElectricFieldReader

Status Functional
Maintainers Simon Spannagel (simon.spannagel@cern.ch)

8.15.1 Description

Adds an electric field to the detector from one of the supported sources. By default,
detectors do not have an electric field applied.

The reader provides the following models for electric fields:

• For constant electric fields it add a constant electric field in the z-direction towards
the pixel implants. This is not physical but might aid in developing and testing
new charge propagation algorithms.

• For linear electric fields, the field has a constant slope determined by the bias
voltage and the depletion voltage. The sensor is depleted either from the implant
or the back side, the direction of the electric field depends on the sign of the bias
voltage (with negative bias voltage the electric field vector points towards the
backplane and vice versa). The sign of depletion voltage is always ignored. If the
sensor is depleted from the implant side, the absolute value of the electric field is
calculated using the formula

𝐸(𝑧) =
|𝑈𝑏𝑖𝑎𝑠| − |𝑈𝑑𝑒𝑝𝑙|

𝑑
+ 2

|𝑈𝑑𝑒𝑝𝑙|
𝑑

(1 − 𝑧
𝑑

) ,

where d is the thickness of the sensor, and 𝑈𝑑𝑒𝑝𝑙, 𝑈𝑏𝑖𝑎𝑠 are the depletion and bias
voltages, respectively. In case of a depletion from the back side, the absolute value
of the electric field is calculated as

𝐸(𝑧) =
|𝑈𝑏𝑖𝑎𝑠| − |𝑈𝑑𝑒𝑝𝑙|

𝑑
+ 2

|𝑈𝑑𝑒𝑝𝑙|
𝑑

(𝑧
𝑑

) .
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• For parabolic electric fields, a parabola is defined in order to emulate a double-
peaked field such as the electric fields observed in sensors after irradiation. The
parabola is calculated from the position 𝑧𝑚𝑖𝑛 and value 𝐸𝑚𝑖𝑛 of the minimum field
in the sensor and the field value at the readout electrode, 𝐸𝑚𝑎𝑥. The parameters
of parabolic equation 𝐸(𝑧) = 𝑎𝑧2 + 𝑏𝑧 + 𝑐 then resolve to:

𝑎 = 𝐸𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛
𝑧2

𝑚𝑖𝑛 + (𝑑/2)2 − 𝑑𝑧𝑚𝑖𝑛
𝑏 = −2𝑎𝑧𝑚𝑖𝑛 𝑐 = 𝐸𝑚𝑎𝑥 − 𝑎((𝑑/2)2 − 𝑑𝑧𝑚𝑖𝑛),

where 𝑑 is the sensor thickness and 𝑧 the position along the z-axis in local coordinates,
from −𝑑/2 to +𝑑/2. The direction of the electric field is determined by the sign of
the field parameters.

• For electric fields from mesh files in the INIT or APF formats it parses a file
containing an electric field map in the APF format or the legacy INIT format also
used by the PixelAV software [88]. An example of a electric field in this format
can be found in etc/example_electric_field.init in the repository. An explanation
of the format is available in the source code of this module, a converter tool
for electric fields from adaptive TCAD meshes is provided with the framework.
Fields of different sizes can be used and mapped onto the pixel matrix using the
field_scale parameter. By default, the module reads the size of the field from
the file. If the field size and pixel pitch do not match, a warning is printed. The
units in which the field itself is interpreted can be configured via the file_units
parameter, by default the field values are interpreted as representing V/cm. This is
also the unit used in the output files from the mesh converter tool.

• The custom field model allows to specify arbitrary analytic field functions
for a single or all three vector components of the electric field. For this, the
field_functions parameter configured with either one formula which is then used
for the z component of the field vector, or with three functions representing the
three components of the field vector. Using the field_parameters configuration,
values for the free parameters defined in the formulae can be set. For the
parameters units are supported and parsed. Each of the field vector components
has access to its own free parameters as well as all three coordinates x, y and z
which are defined as the position within the respective pixel.

The depletion_depth parameter can be used to control the thickness of the depleted
region inside the sensor. This can be useful for devices such as HV-CMOS sensors, where
the typical depletion depth but not necessarily the full depletion voltage are know. It
should be noted that depletion_voltage and depletion_depth are mutually exclusive
parameters and only one at a time can be specified. The alias field_depth can be
used instead, as this parameter is the depth that the field will be created over. If the
parameter is smaller than the field from an imported mesh, the field will be compressed
in the z-direction.

Furthermore the module can plot the electric field profile on an projection axis normal
to the x,y or z-axis at a particular plane in the sensor. Additional plots comprise the
individual field vector components as well as the field magnitude and can be enabled and
controlled with the plotting parameters listed below.
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8.15.2 Parameters

• model : Type of the electric field model, either linear, constant, parabolic,
custom or mesh.

• depletion_depth : Thickness of the depleted region. Used for all electric fields.
When using the depletion depth for the linear model, no depletion voltage can be
specified. Defaults to the full sensor thickness. The alias field_depth can be used
for improved readability when using the model mesh (as the depletion depth in an
externally generated field may be smaller than the field depth).

Parameters for models linear and constant

• bias_voltage : Voltage over the whole sensor thickness. Used to calculate the
electric field for the models constant and linear.

• depletion_voltage : Indicates the voltage at which the sensor is fully depleted.
Used to calculate the electric field if the model parameter is equal to linear.

• deplete_from_implants : Indicates whether the sensor is depleted from the
implants or the back side for the linear model. Defaults to true (depletion from
the implant side).

Parameters for model parabolic

• minimum_field : Value of the electric field in the minimum.
• minimum_position : Position of the electric field minimum along z, in local

coordinates. Required to be located within the sensor volume.
• maximum_field : Value of the electric field at the electrode.

Parameters for model mesh

• file_name : Location of file containing the meshed electric field data.
• file_units : Field units in which the file content is to be interpreted in, this

defaults to V/cm.
• field_mapping: Description of the mapping of the field onto the sensor or pixel cell.
Possible values are SENSOR for sensor-wide mapping, PIXEL_FULL, indicating that
the map spans the full 2D plane and the field is centered around the pixel center,
PIXEL_HALF_TOP or PIXEL_HALF_BOTTOM indicating that the field only contains
only one half-axis along y, HALF_LEFT or HALF_RIGHT indicating that the field only
contains only one half-axis along x, or PIXEL_QUADRANT_I, PIXEL_QUADRANT_II,
PIXEL_QUADRANT_III, PIXEL_QUADRANT_IV stating that the field only covers the
respective quadrant of the 2D pixel plane. In addition, the PIXEL_FULL_INVERSE
mode allows loading full-plane field maps which are not centered around a pixel
cell but the corner between pixels.

• field_scale: Scaling factor of the electric field in x- and y-direction. By default,
the scaling factors are set to {1, 1} and the field is used with its physical extent
stated in the field data file. To scale the field in the z-direction, the parameter
field_depth can be used.
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• field_offset: Offset of the field in x- and y-direction. With this parameter and
the mapping mode SENSOR, the field can be shifted e.g. by half a pixel pitch to
accommodate for fields which have been simulated starting from the pixel center.
The shift is applied in positive direction of the respective coordinate.

Parameters for model custom

• field_functions : Single equation (for a field vector along the z axis only) or
array of three equations (for the three components of a vector field). All three
coordinates x, y, and z can be used, parameters need to be specified in consecutively
numbered square brackets ([0], [1]), starting with [0] for each of the equations.

• field_parameters : Array of values for the parameters of any equation defined
in field_equations. Units can be used. The number of parameters given must
match the sum of the number of free parameters from all defined equations.

8.15.3 Plotting parameters

• output_plots : Determines if output plots should be generated. Disabled by
default.

• output_plots_steps : Number of bins in both x- and y-direction in the 2D
histogram used to plot the electric field in the detectors. Only used if output_plots
is enabled.

• output_plots_project : Axis to project the 3D electric field on to create the 2D
histogram. Either x, y or z. Only used if output_plots is enabled.

• output_plots_projection_percentage : Percentage on the projection axis to
plot the electric field profile. For example if output_plots_project is x and this
parameter is set to 0.5, the profile is plotted in the Y,Z-plane at the X-coordinate
in the middle of the sensor. Default is 0.5.

• output_plots_single_pixel: Determines if the whole sensor has to be plotted
or only a single pixel. Defaults to true (plotting a single pixel).

8.15.4 Usage

An example to add a linear field with a bias voltage of -150 V and a full depletion voltage
of -50 V to all the detectors, apart from the detector named ‘dut’ where a specific meshed
field from an INIT file is added, is given below

[ElectricFieldReader]
model = "linear"
bias_voltage = -150V
depletion_voltage = -50V

[ElectricFieldReader]
name = "dut"
model = "mesh"
# Should point to the example electric field in the repositories etc

directory↪

file_name = "example_electric_field.init"
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This example uses the parabolic field shape and defines a minimum field and position as
well as the field at the electrode:

[ElectricFieldReader]
model = "parabolic"
# In local coordinates of the sensor, i.e. 100um below the center of the

sensor along z:↪

minimum_position = -100um
minimum_field = 5200V/cm
maximum_field = 10000V/cm

An example for a custom field definition is given below. Here, a one-dimensional field is
defined, which will be automatically applied to the z-axis of the detector. Care should
be take to use the proper variables in the formula, in this case z for the respective
coordinate.

[ElectricFieldReader]
model = "custom"
field_function = "[0]*z*z + [1]"
field_parameters = 12500V/mm/mm/mm, 5000V/cm

And finally, a three-dimensional custom field is defined with varying number of parameters
per equation and using different coordinates for the three dimensions of the field vector:

[ElectricFieldReader]
model = "custom"
# Parabolic in x and y, linear in z:
field_function = "[0]*x*y","[0]*x*y","[0]*z + [1]"
field_parameters = 12500V/mm/mm/mm, 12500V/mm/mm/mm, 6000V/cm/cm,

5000V/cm↪

8.16 GDMLOutputWriter

Status Functional
Maintainers Koen van den Brandt (kbrandt@nikhef.nl)

8.16.1 Description

Constructs a GDML output file of the geometry if this module is added. This feature is
to be considered experimental as the GDML implementation of Geant4 is incomplete.

8.16.2 Dependencies

This module requires an installation Geant4_GDML. This option can be enabled by
configuring and compiling Geant4 with the option -DGEANT4_USE_GDML=ON
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8.16.3 Parameters

• file_name : Name of the data file to create, relative to the output directory of the
framework. The file extension .gdml will be appended if not present. Defaults to
Output.gdml

8.16.4 Usage

Creating a GDML output file with the name myOutputfile.gdml:

[GDMLOutputWriter]
file_name = myOutputfile

8.17 GenericPropagation

Status Functional
Maintainers Simon Spannagel (simon.spannagel@cern.ch)
Inputs DepositedCharge
Outputs PropagatedCharge

8.17.1 Description

Simulates the propagation of electrons and/or holes through the sensitive sensor volume
of the detector. It allows to propagate sets of charge carriers together in order to speed
up the simulation while maintaining the required accuracy. The propagation process for
these sets is fully independent and no interaction is simulated. The maximum size of the
set of propagated charges and thus the accuracy of the propagation can be controlled
via the charge_per_step parameter. The maximum number of charge groups to be
propagated for a single deposit position can be controlled via the max_charge_groups
parameter.

The propagation consists of a combination of drift and diffusion simulation. The drift
is calculated using the charge carrier velocity derived from the charge carrier mobility
and the magnetic field via a calculation of the Lorentz drift. The correct mobility for
either electrons or holes is automatically chosen, based on the type of the charge carrier
under consideration. Thus, also input with both electrons and holes is treated properly.
The mobility model can be chosen using the mobility_model parameter, and a list of
available models can be found in the user manual.

This module implements charge multiplication by impact ionization. The multiplication
model can be chosen using the multiplication_model parameter, the list of available
models can be found in the user manual. By default, the model defaults to none and
impact ionization is switched off, generating unity gain. To simulate impact ionization,
the number of newly generated electron-hole pairs is calculated for every propagation
step and every charge carrier in the group, based on drawing a random number from a
geometric distribution. This represents a stepwise approach to the avalanche generation
process. The charge of a charge group is increased by the number of impact ionization
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processes per step and opposite-type charge carriers are generated at the end of the step,
if the opposite-type charge carrier is selected to be propagated (see below).

The two parameters propagate_electrons and propagate_holes allow to control which
type of charge carrier is propagated to their respective electrodes. Either one of the
carrier types can be selected, or both can be propagated. It should be noted that this will
slow down the simulation considerably since twice as many carriers have to be handled
and it should only be used where sensible. The direction of the propagation depends on
the electric and magnetic fields field configured, and it should be ensured that the carrier
types selected are actually transported to the implant side. For linear electric fields, a
warning is issued if a possible misconfiguration is detected.

A fourth-order Runge-Kutta-Fehlberg method [22, 89] with fifth-order error estimation,
RKF4(5), is used to integrate the particle propagation in the electric and magnetic fields.
After every Runge-Kutta step, the diffusion is accounted for by applying an offset drawn
from a Gaussian distribution calculated from the Einstein relation

𝜎 = √2𝑘𝑏𝑇
𝑒 𝜇𝑡

using the carrier mobility 𝜇, the temperature 𝑇 and the time step 𝑡. The propagation
stops when the set of charges reaches any surface of the sensor.

The charge carrier lifetime can be simulated using the doping concentration of the
sensor. The recombination model is selected via the recombination_model parameter,
the default value none is equivalent to not simulating finite lifetimes. This feature can
only be enabled if a doping profile has been loaded for the respective detector using the
DopingProfileReader module. In each step, the doping-dependent charge carrier lifetime
is determined, from which a survival probability is calculated. The survival probability is
calculated at each step of the propagation by drawing a random number from an uniform
distribution with 0 ≤ 𝑟 ≤ 1 and comparing it to the expression 𝑑𝑡/𝜏, where 𝑑𝑡 is the time
step of the last charge carrier movement.

Trapping of charge carriers can be enabled by setting a trapping model via the parameter
trapping_model. The default value is none, corresponding to no charge carrier trapping
being simulated. All models require the 1MeV-neutron equivalent fluence to be set
via the parameter fluence. Some models include temperature-dependent scaling of
trapping probabilities, and the corresponding temperature is taken from the temperature
parameter. The trapping probability is calculated at each step of the propagation by
drawing a random number from an uniform distribution with 0 ≤ 𝑟 ≤ 1 and comparing
it to the expression 1 − 𝑒−𝑑𝑡/𝜏𝑒𝑓𝑓 , where 𝑑𝑡 is the time step of the last charge carrier
movement and 𝜏𝑒𝑓𝑓 the effective trapping time constant. A list of available models can
be found in the user manual.

Detrapping of charge carriers can be enabled by setting a detrapping model via the
parameter detrapping_model. The default value is none, corresponding to no charge
carrier detrapping being simulated. A list of available models can be found in the user
manual.

The propagation module also produces a variety of output plots. These include a 3D
line plot of the path of all separately propagated charge carrier sets from their point of
deposition to the end of their drift, with nearby paths having different colors. In this
coloring scheme, electrons are marked in blue colors, while holes are presented in different
shades of orange. In addition, a 3D GIF animation for the drift of all individual sets
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of charges (with the size of the point proportional to the number of charges in the set)
can be produced. Finally, the module produces 2D contour animations in all the planes
normal to the X, Y and Z axis, showing the concentration flow in the sensor. It should
be noted that generating the animations is time-consuming and should be switched off
even when investigating drift behavior.

8.17.2 Dependencies

This module requires an installation of Eigen3.

8.17.3 Parameters

• temperature : Temperature of the sensitive device, used to estimate the diffusion
constant and therefore the strength of the diffusion. Defaults to room temperature
(293.15K).

• mobility_model: Charge carrier mobility model to be used for the propagation.
Defaults to jacoboni, a list of available models can be found in the documentation.
If the masetti or masetti_canali is used, the dopant_n parameter can be used
to set the n-dopant to either phosphorus (default) or arsenic.

• recombination_model: Charge carrier lifetime model to be used for the propaga-
tion. Defaults to none, a list of available models can be found in the documentation.
This feature requires a doping concentration to be present for the detector.

• trapping_model: Model for simulating charge carrier trapping from radiation-
induced damage. Defaults to none, a list of available models can be found in the
documentation. All models require explicitly setting a fluence parameter.

• fluence: 1MeV-neutron equivalent fluence the sensor has been exposed to.
• detrapping_model: Model for simulating charge carrier detrapping from radiation-
induced damage. Defaults to none, a list of available models can be found in the
documentation.

• charge_per_step : Maximum number of charge carriers to propagate together.
Divides the total number of deposited charge carriers at a specific point into sets
of this number of charge carriers and a set with the remaining charge carriers. A
value of 10 charges per step is used by default if this value is not specified.

• max_charge_groups: Maximum number of charge groups to propagate from a
single deposit point. Temporarily increases the value of charge_per_step to
reduce the number of propagated groups if the deposit is larger than the value
max_charge_groups*charge_per_step, thus reducing the negative performance
impact of unexpectedly large deposits. The default value is 1000 charge groups. If
it is set to 0, there is no upper limit on the number of charge groups propagated.

• spatial_precision : Spatial precision to aim for. The timestep of the Runge-
Kutta propagation is adjusted to reach this spatial precision after calculating the
uncertainty from the fifth-order error method. Defaults to 0.25nm.

• timestep_start : Timestep to initialize the Runge-Kutta integration with. Ap-
propriate initialization of this parameter reduces the time to optimize the timestep
to the spatial_precision parameter. Default value is 0.01ns.

• timestep_min : Minimum step in time to use for the Runge-Kutta integration
regardless of the spatial precision. Defaults to 1ps.
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• timestep_max : Maximum step in time to use for the Runge-Kutta integration
regardless of the spatial precision. Defaults to 0.5ns.

• integration_time : Time within which charge carriers are propagated. After
exceeding this time, no further propagation is performed for the respective carriers.
Defaults to the LHC bunch crossing time of 25ns.

• propagate_electrons : Select whether electron-type charge carriers should be
propagated to the electrodes. Defaults to true.

• propagate_holes : Select whether hole-type charge carriers should be propagated
to the electrodes. Defaults to false.

• ignore_magnetic_field: The magnetic field, if present, is ignored for this module.
Defaults to false.

• multiplication_model: Model used to calculate impact ionization parameters
and charge multiplication. Defaults to none which corresponds to unity gain, a list
of available models can be found in the documentation.

• multiplication_threshold: Threshold field above which charge multiplication is
calculated. Defaults to 100kV/cm.

• max_multiplication_level: Maximum level depth of the generated impact ioniza-
tion charge multiplication shower after which the generation of further multiplication
charge carrier levels is prohibited. This number represents the maximum number
of daughter charge carrier groups that can be produced by one initial charge carrier
group. This does not concern the size of the charge group itself but solely the level of
generation. If a group generates a secondary group through impact ionization, the
depth is 1. If this secondary group again creates charge carriers when propagating,
the level is 2 and so on. The default value is 5.

8.17.4 Plotting parameters

• output_plots : Determines if simple output plots should be generated for a
monitoring of the simulation flow. Disabled by default.

• output_linegraphs : Determines if line graphs should be generated for every
event. This causes a significant slow down of the simulation, it is not recommended
to enable this option for runs with more than a couple of events. Disabled by
default.

• output_linegraphs_collected : Determine whether to also generate line graphs
only for charge carriers that have reached the implant side within the allotted
integration time. Defaults to false. This requires output_linegraphs to be
active.

• output_linegraphs_recombined : Boolean flag to select whether line graphs
should also be generated only from charge carriers that have recombined with
the lattice during the integration time. Defaults to false. This requires
output_linegraphs to be active.

• output_linegraphs_trapped : Boolean flag to select whether line graphs should
also be generated only from charge carriers that have been trapped during their
motion through the sensor. Defaults to false. This requires output_linegraphs
to be active.

• output_plots_step : Timestep to use between two points plotted. Indirectly
determines the amount of points plotted. Defaults to timestep_max if not explicitly
specified.
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• output_plots_theta : Viewpoint angle of the 3D animation and the 3D line graph
around the world X-axis. Defaults to zero.

• output_plots_phi : Viewpoint angle of the 3D animation and the 3D line graph
around the world Z-axis. Defaults to zero.

• output_plots_use_pixel_units : Determines if the plots should use pixels as
unit instead of metric length scales. Defaults to false (thus using the metric system).

• output_plots_use_equal_scaling : Determines if the plots should be produced
with equal distance scales on every axis (also if this implies that some points will
fall out of the graph). Defaults to true.

• output_plots_align_pixels : Determines if the plot should be aligned on pixels,
defaults to false. If enabled the start and the end of the axis will be at the split
point between pixels.

• output_animations : In addition to the other output plots, also write a GIF
animation of the charges drifting towards the electrodes. This is extremely slow
and writing the animation takes a considerable amount of time, therefore defaults
to false. This option also requires output_linegraphs to be enabled.

• output_animations_time_scaling : Scaling for the animation used to convert
the actual simulation time to the time step in the animation. Defaults to 1.0e9,
meaning that every nanosecond of the simulation is equal to an animation step of
a single second.

• output_animations_marker_size : Scaling for the markers on the animation,
defaults to one. The markers are already internally scaled to the charge of their
step, normalized to the maximum charge.

• output_animations_contour_max_scaling : Scaling to use for the contour color
axis from the theoretical maximum charge at every single plot step. Default is 10,
meaning that the maximum of the color scale axis is equal to the total amount
of charges divided by ten (values above this are displayed in the same maximum
color). Parameter can be used to improve the color scale of the contour plots.

• output_animations_color_markers: Determines if colors should be for the mark-
ers in the animations, defaults to false.

8.17.5 Usage

A example of generic propagation for all sensors of type Timepix at room temperature
using packets of 25 charges is the following:

[GenericPropagation]
type = "timepix"
temperature = 293K
charge_per_step = 25

8.18 GeometryBuilderGeant4

Status Functional
Maintainers Paul Schuetze (paul.schuetze@desy.de)
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8.18.1 Description

Constructs the Geant4 geometry from the internal geometry description. First, the
world frame with a configurable margin and material is constructed. Then all passive
materials and detectors using their internal detector models and passive material models
are created and placed within the world frame or a specified mother volume (only for
passive materials), which corresponds to another passive volume. The descriptions of all
detectors and passive volumes have to be specified within the geometry configuration.

All available detector models are fully supported.

Passive Volumes

For passive materials, the implemented models are “box”, “cylinder”, “sphere” as well as
“gdml”. The dimensions of the individual volumes are defined by the following parameters
for the specific models and to be set within the corresponding section of the geometry
configuration:

For each model, a set of specific size parameters need to be given, of which some are
optional.

Box A rectangular box which can be massive or have an hole in the middle along the
z-axis.

• The size of the box is an XYZ vector which defines the total size of the box.
• (Optional) The inner_size of the box is an XYZ vector which defines the size of

the volume that will be removed at the center of the original box volume. Defaults
to 0mm 0mm 0mm (no volume removed).

• (Optional) The thickness of the box is a value which defines the thickness of the
walls of a box. This has a similar effect as the parameter inner_size, and such
they can’t be used together. Defaults to 0mm.

Cylinder A cylindrical tube which can be massive or have an hole in the middle along
the z-axis.

• The outer_radius of the cylinder is the total radius of the cylinder (in the XY-
plane).

• The length of the cylinder is the total length of the cylinder (in the Z-direction).
• (Optional) The inner_radius of the cylinder is the radius of the inner cylinder.

Defaults to 0mm.
• (Optional) The starting_angle of the cylinder is the angle at which circumference

of the cylinder will start. 0 degrees refers to the point along the positive x-axis and
the angle moves counter clockwise. Defaults to 0deg.

• (Optional) The arc_length of the cylinder is the arc-length of the circumference
that will be drawn, starting from the given starting_angle. Defaults to 360deg
which is the full circumference.

Note that the if the arc_length is set to 360 degrees, the Allpix Squared framework will
always draw the full circumference, regardless of the value of starting_angle.
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Sphere A full or partly made sphere with an inner- and outer radius.

• The outer_radius of the sphere is the total radius of the sphere in all directions.
• (Optional) The inner_radius of the sphere is the radius of the inner sphere.

Defaults to 0mm.
• (Optional) The starting_angle_phi of the sphere is the azimuthal angle at which

circumference of the sphere will start in the XY-plane. 0 degrees refers to the point
along the positive x-axis and the angle moves counter clockwise. Defaults to 0deg.

• (Optional) The arc_length_phi of the sphere is the arc-length of the circumference
that will be drawn, starting from the given starting_angle_phi in the XY-plane.
Defaults to 360deg which is the full circumference.

• (Optional) The starting_angle_theta of the sphere is the polar angle at which
the arc_length_theta will start. 0 degrees refers to the point along the positive
z-axis. Defaults to 0deg.

• (Optional) The arc_length_theta of the sphere is the arc-length of the polar angle
which will be rotated around the z-axis to build the sphere, starting from the given
starting_angle_theta. Defaults to 100deg which creates the full circle.

Note that arc_length_phi works the same as the arc_length from the cylinder, but
the arc_length_theta works different. The Allpix Squared framework will only draw
the full circle if starting_angle_theta = 0deg, and arc_length_theta = 180deg. In
all other situations, the sphere will start at starting_angle_theta and continue the
arc_length_theta until arc_length_theta + starting_angle_theta = 180deg. After
this it will stop. The necessary module errors and warnings have been included to make
sure the user will know will and won’t be build.

Note: If the VisualizationGeant4 module is used in conjunction with and
arc_length_theta different from 180deg, the Visualization GUI will show an
error “Inconsistency in bounding boxes for solid”. The origin of this error is unknown
but the error can be ignored.

Cone A cone or partly made cone with an inner and an outer radius defined at the
begin (negative z) and end (positive z) each.

• The outer_radius_begin of the cone is the outer radius at the begin (negative z)
of the cone

• (Optional) The inner_radius_begin of the cone is the inner radius at the begin
(negative z) of the cone. Defaults to 0mm.

• The outer_radius_end of the cone is the outer radius at the end (positive z) of
the cone

• (Optional) The inner_radius_end of the cone is the inner radius at the end
(positive z) of the cone. Defaults to 0mm.

• The length of the cone is the total length of the cone
• (Optional) The starting_angle of the cone is the azimuthal angle at which

circumference of the cone will start in the XY-plane. 0 degrees refers to the point
along the positive x-axis and the angle moves counter clockwise. Defaults to 0deg.

• (Optional) The arc_length of the cone is the arc-length of the cone that will be
created

Note that arc_length works the same as the arc_length from the cylinder
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GDML This model allows to load arbitrary GDML files [90] as passive materials. All
volumes from the GDML file which are contained within the world volume are processed
and added to the geometry of the simulation. The only parameter specific to this model
is file_name which should provide the path to the GDML file to be read.

This functionality requires Geant4 to be built with GDML support enabled. This can be
enabled via CMake when compiling Geant4 using

cmake -DDGEANT4_USE_GDML=ON ..

Visualization Options

For each of the above mentioned models, a color and opacity can be added to the passive
material.

• The color of the passive material is given in an R G B vector, where each color
value is between 0 and 1. Defaults to color = 0 0 1 (blue).

• The opacity of the passive material is given as a number between 0 and 1, where
0 is completely transparent, and 1 is completely opaque.

Materials

The following materials are pre-defined and can directly be used for the world volume,
detector support layers as well as passive volumes: This module can create support layers
and passive volumes of the following materials:

• Materials listed by Geant4:

• air
• aluminum
• beryllium
• copper
• kapton
• lead
• lithium
• plexiglass
• silicon
• germanium
• tungsten
• gallium arsenide
• cadmium telluride
• nickel
• gold
• titanium

• Composite or custom materials:

• carbon fiber
• epoxy
• fused silica
• PCB G-10
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• paper (cellulose)
• solder
• polystyrene
• ppo foam
• cadmium zinc telluride
• diamond
• silicon carbide
• titanium grade 5
• vacuum

Furthermore, this module can automatically load any material defined in the Geant4
material database [91]. This comprises both simple materials and pre-defined NIST
compounds. It should be noted that when loading a material from the Geant4 material
database, the name comparison is case sensitive. Names can be provided with or without
G4_ prefix.

8.18.2 Dependencies

This module requires an installation of Geant4.

8.18.3 Parameters

• world_material : Material of the world, should either be air or vacuum. Defaults
to air if not specified.

• world_margin_percentage : Percentage of the world size to add to every dimension
compared to the internally calculated minimum world size. Defaults to 0.1, thus
10%.

• world_minimum_margin : Minimum absolute margin to add to all sides of the
internally calculated minimum world size. Defaults to zero for all axis, thus not
requiring any minimum margin.

• log_level_g4cerr: Target logging level for Geant4 messages from the G4cerr
(error) stream. Defaults to WARNING.

• log_level_g4cout: Target logging level for Geant4 messages from the G4cout
stream. Defaults to TRACE.

8.18.4 Usage

To create a Geant4 geometry using vacuum as world material and with always exactly one
meter added to the minimum world size in every dimension, the following configuration
could be used:

[GeometryBuilderGeant4]
world_material = "vacuum"
world_margin_percentage = 0
world_minimum_margin = 1m 1m 1m
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8.19 InducedTransfer

Status Functional
Maintainers Simon Spannagel (simon.spannagel@cern.ch)
Inputs PropagatedCharge
Outputs PixelCharge

8.19.1 Description

Combines individual sets of propagated charges together to a set of charges on the sensor
pixels by calculating the total induced charge during their drift on neighboring pixels
by calculating the difference in weighting potential. This module requires a propagation
of both electrons and holes in order to produce sensible results and only works in the
presence of a weighting potential.

The induced charge on neighboring pixel implants is defined the Shockley-Ramo theorem
[25, 26] as the difference in weighting potential between the end position 𝑥𝑓𝑖𝑛𝑎𝑙 retrieved
from the PropagatedCharge and the initial position 𝑥𝑖𝑛𝑖𝑡𝑖𝑎𝑙 of the charge carrier obtained
from the DepositedCharge object in the history. The total induced charge is calculated
by multiplying the potential difference with the charge of the carrier, viz.

𝑄𝑖𝑛𝑑
𝑛 = ∫

𝑡𝑓𝑖𝑛𝑎𝑙

𝑡𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝐼 𝑖𝑛𝑑
𝑛 = 𝑞 (𝜙(𝑥𝑓𝑖𝑛𝑎𝑙) − 𝜙(𝑥𝑖𝑛𝑖𝑡𝑖𝑎𝑙))

The resulting induced charge is summed for all propagated charge carriers and returned
as a PixelCharge object. The number of neighboring pixels taken into account can be
configured using the distance parameter.

8.19.2 Parameters

• distance: Maximum distance of pixels to be considered for current induction,
calculated from the pixel the charge carrier under investigation is below. A distance
of 1 for example means that the induced current for the closest pixel plus all
neighbors is calculated. It should be noted that the time required for simulating a
single event depends almost linearly on the number of pixels the induced charge is
calculated for. Usually, for Cartesian sensors a 3x3 grid (9 pixels, distance 1) should
suffice since the weighting potential at a distance of more than one pixel pitch
often is small enough to be neglected while the simulation time is almost tripled for
distance = 2 (5x5 grid, 25 pixels). To just calculate the induced current in the
one pixel the charge carrier is below, distance = 0 can be used. Defaults to 1.

8.19.3 Usage

[InducedTransfer]
distance = 1
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8.20 LCIOWriter

Status Functional
Maintainers Andreas Nurnberg (andreas.nurnberg@cern.ch)

Simon Spannagel (simon.spannagel@cern.ch)
Tobias Bisanz (tobias.bisanz@phys.uni-goettingen.de)

Inputs PixelHit

8.20.1 Description

Writes pixel hit data to LCIO file, compatible with the EUTelescope analysis framework
[92].

If the geometry_file parameter is set to a non-empty string, a matching GEAR XML
file is created from the simulated detector geometry and written to the simulation output
directory. This GEAR file can be used with EUTelescope directly to reconstruct particle
trajectories.

Optionally, if dump_mc_truth is set to true, this module will create Monte Carlo truth
collections in the output LCIO file.

8.20.2 Parameters

• file_name: name of the LCIO file to write, relative to the output directory of the
framework. The extension .slcio should be added. Defaults to output.slcio.

• geometry_file : name of the output GEAR file to write the EUTelescope geometry
description to. Defaults to allpix_squared_gear.xml

• pixel_type: EUtelescope pixel type to create. Options: EUTelSimpleSparsePix-
elDefault = 1, EUTelGenericSparsePixel = 2, EUTelTimepix3SparsePixel = 5
(Default: EUTelGenericSparsePixel)

• detector_name: Detector name written to the run header. Default: “EUTelescope”
• dump_mc_truth: Export the Monte Carlo truth data. Default: “false”

Only one of the following options must be used, if none is specified output_collection_name
will be used with its default value.

• output_collection_name: Name of the LCIO collection containing the pixel
data. Detectors will be assigned ascending sensor ids starting with 0. Default:
“zsdata_m26”

• detector_assignment: A matrix with three entries each row: ["detector_name
", "output_collection", "sensor_id"], one row for each detector. This al-
lows to assign different output collections and sensor ids within the same set-
up. detector_name is the detector’s name as specified in the geometry file,
output_collection the desired LCIO collection name and sensor_id the id used
in the exported LCIO data. Sensor ids must be unique.

If only one detector is present in the detector_assignment, the value has to be encap-
sulated in extra quotes, i.e. [["mydetector", "zsdata_test", "123"]].
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8.20.3 Usage

[LCIOWriter]
file_name = "run000123-converter.slcio"

Using the detector_assignment to write into two collections and assigning sensor id 20
to the device under test. Further, exporting the Monte Carlo truth data and writing the
GEAR file:

[LCIOWriter]
file_name = "run000123-converter.slcio"
geometry_file = "run000123-gear.xml"
dump_mc_truth = true
detector_assignment = ["telescope0", "zsdata_m26", "0"], ["mydut",

"zsdata_dut", "20"], ["telescope1", "zsdata_m26", "1"]↪

8.21 MagneticFieldReader

Status Functional
Maintainers Paul Schuetze (paul.schuetze@desy.de)

8.21.1 Description

Unique module, adds a magnetic field to the full volume of the simulation, including the
active sensors. By default, the magnetic field is turned off.

The magnetic field reader provides the possibility of using a simple constant magnetic
field permeating the entire simulated setup, or a meshed field which is centered around
the origin of the global coordinate system. The magnetic field is forwarded to the
GeometryManager, enabling the magnetic field for the particle propagation via Geant4,
as well as to all detectors for enabling a Lorentz drift during the charge propagation.

For the constant model, the field is set as a three-dimensional vector.

For the mesh model, the field needs to be provided in form of an APF or INIT file which
provides total size of the field, the bin size of the mesh as well as the actual field data.
In addition, an offset of this field from the origin of the global coordinate system can be
provided via the offset parameter. Here, the value set via magnetic_field is sued as
a fallback field value used outside the volume provided by the field file.

8.21.2 Parameters

• model : Type of the magnetic field model, possible values are constant and mesh.
• magnetic_field : Vector describing the magnetic field. In the model mesh this is

used as the fallback field outside the meshed region.
• file_name : Path to the APF or INIT file containing the magnetic field to be used.

Only used in the mesh model.
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• offset : Offset of the meshed magnetic field center from the global center of origin
of the simulation. Defaults to 0, 0, 0 and is only used in the mesh model.

8.21.3 Usage

An example for a constant magnetic field is

[MagneticFieldReader]
model = "constant"
magnetic_field = 500mT 3.8T 0T

The configuration for a meshed field may look like the following:

[MagneticFieldReader]
model = "mesh"
magnetic_field = 500mT 0T 0T
file_name = "path/to/magnetic_field.apf"
offset = 5cm, 6cm, 4mm

8.22 NetlistWriter

Status Immature
Maintainers Elio Sacchetti (elio.sacchetti@iphc.cnrs.fr)

Simon Spannagel (simon.spannagel@cern.ch)
Inputs PixelCharge

8.22.1 Description

Integrates micro-electronics simulation elements in the Allpix Squared simulation flow.
Allows the user to generate netlists (input file used by an electrical simulator to simulate
the behavior of the circuit) from a given netlist template. SPECTRE (Cadence environ-
ment) and SPICE syntax are allowed and can be selected using the target parameter.
This module is mostly intended for analog front-end electrical simulation using the
PixelCharge object data.

The netlist template needs to be formatted as described and illustrated (SPECTRE syntax)
below:

• The netlist header.
• A sub-circuit describing the circuit of interest (analog front-end for example).
• If necessary, other instances (for example other voltage or current sources of the

front-end).
• A current source, which will be used to replicate the electrical behavior of the
collection electrode. A particular attention should be given to the polarity of the
source.

• The sub-circuit written as an instance, connected to the source.
• The netlist footer and the simulator options.
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--- netlist header ---

subckt front_end Pix_in Comp_vout Comp_vref SUB VDDA VSSA Vfbk

description of the circuit 'front_end'

ends front_end

V1 (Comp_vref 0) vsource dc=Comp_vref type=dc
V2 (SUB 0) vsource dc=0 type=dc
V3 (Vfbk 0) vsource dc=Vfbk type=dc
V4 (VDDA 0) vsource dc=1.8 type=dc

Instance_source (0 Pix_in) isource type=pulse
Instance_front_end (Pix_in Comp_vout Comp_vref SUB VDDA VSSA Vfbk)

front_end↪

--- netlist footer and simulator options ---

One way to get a netlist already formatted could be to extract it from the Cadence
Virtuoso environment (“schematic” view).

A new netlist is written for each event, reusing the header, footer, and circuit description
from the netlist template specified with the netlist_template parameter. For each
fired pixel, a source / circuit instance pair is added to the template.

The new source written can be parameterized with the parameter source_type. Two
different types of sources can be used: ISOURCE_PWL and ISOURCE_PULSE:

• ISOURCE_PWL allows writing all the temporal current waveform using a PWL
(Piecewise Linear). This requires the use of the [PulseTransfer] module to get
the current waveform. A delay can also be added using t_delay

• In order to lightweight the generated netlists, the ISOURCE_PULSE can be selected: it
uses the total collected charge Q (instead of the current pulse). Charge and current
are linked by $ Q = \int I(t)dt $. The current pulse is set with the parameters
t_delay, t_rise, t_width and t_fall. The following equation is then used to
determine the current: $ I=\frac{Q}{\frac{t_{rise}+t_{fall}}{2}+t_{width}} $

The generated netlist file name can be configured with a prefix taken from the file_name
parameter, and contains the number of the event the netlist was generated for. The file
extension is taken from the input netlist template file.

The pixel address is used to identify the fired pixels in the netlist, a linearization
following

𝑖 = 𝑥 ∗ 𝑁𝑦 + 𝑦

is used. Here, x and y are the respective pixel coordinates and 𝑁𝑦 is the number of pixels
along y. This means that e.g. considering pixel (6,3) fired (7th column and 4th row) in a
10x10 matrix, the index 63 will be written in the netlist for this pixel..
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The parameter waveform_to_save is used to write at the end of the generated netlist
the waveform(s) to be saved (always using the index notation to identify the fired pixels).
The electrical circuit simulation can be performed within the Allpix Squared event using
the parameter simulator_command which is used to specify the command line to execute.
Not setting it switches the feature off, setting a value will enable it. The generated
netlist name to execute is appended at the end of the command, as illustrated below for
SPECTRE syntax:

spectre -f nutascii <file_name_event1.scs>

If performed, the electrical simulation puts in stand-by the execution of the event. This
electrical simulation is performed in the same terminal as the Allpix event, thus requiring
the electrical simulator environment to be correctly set.

8.22.2 Parameters

• target: Syntax for the additional data to be written in the netlist, either SPECTRE
or SPICE.

• netlist_template: Location of file containing the netlist template of the circuit
in one of the supported formats.

• file_name : Generated netlist prefix name to which the event number is added as
suffix. Defaults to output_netlist_event_.

• source_type: Type of current source to be used, ISOURCE_PWL and ISOURCE_PULSE
.

• source_name: Name of the current source instance in the netlist.
• subckt_name: Name of the circuit the source is connected to.
• common_nets: Nets shared between the pixels.
• t_delay: delay from 0 before the current pulse starts, defaults to 0 ns
• t_rise: rise time of the current pulse, defaults to 1 ns, only works for the
ISOURCE_PULSE

• t_width: width of the current pulse, defaults to 3 ns, only works for the
ISOURCE_PULSE

• t_fall: fall time of the current pulse, defaults to 1 ns, only works for the
ISOURCE_PULSE

• waveform_to_save: Name of the waveforms to save
• simulator_command: If specified, launches the electrical simulation. Command to

be executed in the terminal, the generated netlist name is appended at the end of
the command.

8.22.3 Usage

A possible configuration is using a ISOURCE_PWL and the SPICE syntax, requiring the
collecting electrode capacitance:

[NetlistWriter]
target = SPICE
netlist_template = "front_end.asc"
source_type = ISOURCE_PWL
source_name = Instance_source
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subckt_name = Instance_front_end
common_nets = Comp_vref, SUB, VDDA, VSSA, Vfbk
waveform_to_save = Pix_in, CSA_out, Comp_vout
simulator_command = "wine 'your\path\LTSpiceXVII\XVIIx64.exe' -run"

A current pulse ISOURCE_PULSE and the SPECTRE syntax is used is this example:

[NetlistWriter]
target = SPECTRE
netlist_template = "front_end.scs"
source_type = ISOURCE_PULSE
t_delay = 200ns
t_rise = 5ns
t_width = 20ns
t_fall = 5ns
source_name = Instance_source
subckt_name = Instance_front_end
common_nets = Comp_vref, SUB, VDDA, VSSA, Vfbk
waveform_to_save = Comp_vout
simulator_command = "spectre +aps -warn -info -log -debug -f nutascii"

8.23 ProjectionPropagation

Status Functional
Maintainers Simon Spannagel (simon.spannagel@cern.ch)

Paul Schuetze (paul.schuetze@desy.de)
Inputs DepositedCharge
Outputs PropagatedCharge

8.23.1 Description

The module projects the deposited electrons (or holes) to the sensor surface and applies
a randomized, simplified diffusion. It can be used to save computing time at the cost of
precision.

The diffusion of the charge carriers is realized by placing sets of a configurable number
of electrons in positions drawn as a random number from a two-dimensional Gaussian
distribution around the projected position at the sensor surface. The diffusion width
is based on an approximation of the drift time, using an analytical approximation for
the integral of the mobility in a linear electric field. Here, the charge carrier mobility
parametrization of Jacoboni [43] is used. The integral is calculated as follows, with
𝜇0 = 𝑉𝑚/𝐸𝑐:
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Here, 𝛽 is set to 1, inducing systematic errors less than 10%, depending on the sensor
temperature configured. With the linear approximation to the electric field as 𝐸(𝑠) =
𝑘𝑠 + 𝐸0 it is
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Since the approximation of the drift time assumes a linear electric field, this module
cannot be used with any other electric field configuration.

Depending on the parameter diffuse_deposit, deposited charge carriers in a sensor
region without electric field are either not propagated, or a single, three-dimensional
diffusion step prior to the propagation of these charge carriers, corresponding to the
integration_time is enabled. Charge carriers diffusing into the electric field will
be placed at the border between the undepleted and the depleted regions with the
corresponding offset in time and then be propagated to the sensor surface.

The charge carrier lifetime can be simulated using the doping concentration of the
sensor. The recombination model is selected via the recombination_model parameter,
the default value none is equivalent to not simulating finite lifetimes. This feature
can only be enabled if a doping profile has been loaded for the respective detector
using the DopingProfileReader module. This module only supports doping profiles of
type constant. The doping-dependent charge carrier lifetime is determined once and
the survival probability is calculated by drawing a random number from an uniform
distribution with 0 ≤ 𝑟 ≤ 1 and comparing it to the expression 𝑡/𝜏, where 𝑡 is the total
propagation time of the charge carrier to the sensor surface. Charge carriers which would
recombine before reaching the surface are removed from the simulation.

Lorentz drift in a magnetic field is not supported. Hence, in order to use this module
with a magnetic field present, the parameter ignore_magnetic_field can be set.
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8.23.2 Parameters

• temperature: Temperature in the sensitive device, used to estimate the diffusion
constant and therefore the width of the diffusion distribution.

• recombination_model: Charge carrier lifetime model to be used for the propaga-
tion. Defaults to none, a list of available models can be found in the documentation.
This feature requires a doping concentration to be present for the detector.

• charge_per_step: Maximum number of electrons placed for which the randomized
diffusion is calculated together, i.e. they are placed at the same position. Defaults
to 10.

• max_charge_groups: Maximum number of charge groups to propagate from a
single deposit point. Temporarily increases the value of charge_per_step to
reduce the number of propagated groups if the deposit is larger than the value
max_charge_groups*charge_per_step, thus reducing the negative performance
impact of unexpectedly large deposits. The default value is 1000 charge groups. If
it is set to 0, there is no upper limit on the number of charge groups propagated.

• propagate_holes: If set to true, holes are propagated instead of electrons. De-
faults to false. Only one carrier type can be selected since all charges are propa-
gated towards the implants.

• ignore_magnetic_field: Enables the usage of this module with a magnetic field
present, resulting in an unphysical propagation w/o Lorentz drift. Defaults to false.

• integration_time : Time within which charge carriers are propagated. If the
total drift time exceeds, the respective carriers are ignored and do not contribute
to the signal. Defaults to the LHC bunch crossing time of 25ns.

• diffuse_deposit: Enables a diffusion prior to the propagation for charge carriers
deposited in a region without electric field. Defaults to false.

8.23.3 Plotting parameters

• output_plots : Determines if simple output plots should be generated for a
monitoring of the simulation flow. Disabled by default.

• output_linegraphs : Determines if line graphs should be generated for every
event. This causes a significant slow down of the simulation, it is not recommended
to enable this option for runs with more than a couple of events. Disabled by
default.

• output_plots_theta : Viewpoint angle of the 3D animation and the 3D line graph
around the world X-axis. Defaults to zero.

• output_plots_phi : Viewpoint angle of the 3D animation and the 3D line graph
around the world Z-axis. Defaults to zero.

• output_plots_use_pixel_units : Determines if the plots should use pixels as
unit instead of metric length scales. Defaults to false (thus using the metric system).

• output_plots_use_equal_scaling : Determines if the plots should be produced
with equal distance scales on every axis (also if this implies that some points will
fall out of the graph). Defaults to true.

• output_plots_align_pixels : Determines if the plot should be aligned on pixels,
defaults to false. If enabled the start and the end of the axis will be at the split
point between pixels.
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8.23.4 Usage

[ProjectionPropagation]
temperature = 293K
charge_per_step = 10
output_plots = 1

8.24 PulseTransfer

Status Functional
Maintainers Simon Spannagel (simon.spannagel@cern.ch)
Inputs PropagatedCharge
Outputs PixelCharge

8.24.1 Description

This module combines propagated charges into pulses at individual pixel implants. It
works in two different modes.

If the propagated charges provide pulse information themselves, e.g. generated by the
TransientPropagation module, these pulses are summed for each pixel implant.

If the propagated charges do not contain pulse information, pulses are formed using the
charge carrier arrival times at the pixel implants. This necessitates the configuration
of the time granularity via the timestep parameter as well as the region from which
charge carriers are accepted via max_depth_distance. It should be noted that this
does not represent a time-resolved simulation of the signal formation but can only serve
as approximation. Furthermore, by the restriction to the implant regions by enabling
collect_from_implant, only the charge carrier type collected at the implants is taken
into account. In case no implants are defined, charge carriers are collected from the pixel
surface and the parameter max_depth_distance can be used to control the depth from
which charge carriers are taken into account.

Combines individual induced charge pulses generated by propagated charges to one total
pulse per pixel. This prepares the pulse for processing in the front-end electronics.

Pulse graph for every pixel seeing a signal is generated if output_pulsegraphs is enabled.
One graph depicts the induced charge per time step of the simulation, i.e. the current,
while the second graph shows the accumulated charge since the beginning of the event.
A third graph provides the absolute induced charge per time, disregarding the polarity
of the respective signal. It should be noted that generating per-pixel pulses will generate
several pulse graphs per event and might result in a slow-down of the simulation process
as well as a large module root file.
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8.24.2 Parameters

• output_plots : Determines if simple output plots such as the total and per-pixel
induced charge should be generated for a monitoring of the simulation flow. Disabled
by default.

• output_plots_scale : Set the x-axis scale of the output histograms, defaults to
30ke.

• output_plots_bins : Set the number of bins for the output histograms, defaults
to 100.

• output_pulsegraphs: Determines if pulse graphs should be generated for every
event. This creates several graphs per event, depending on how many pixels see a
signal, and can slow down the simulation. It is not recommended to enable this
option for runs with more than a couple of events. Disabled by default.

• timestep: Time step for the pulse to be generated from charge carrier arrival times.
Only used if no pulse information is available for the propagated charge object.
Default value is 0.01ns.

• max_depth_distance : Maximum distance in depth, i.e. normal to the sensor
surface at the implant side, for a propagated charge to be taken into account in
case the detector has no implants defined. Only used if no pulse information is
available for the propagated charge object. Defaults to 5um.

• collect_from_implant: Only consider charge carriers within the implant region
of the respective detector instead of the full surface of the sensor. Only used if no
pulse information is available for the propagated charge object. Should only be
used with non-linear electric fields and defaults to false.

• skip_charge_carriers : Possibility to exclude a charge carrier type from the
resulting pulses. This can be helpful to get an impression of the relative contributions
of electrons or holes to the final current pulse. Set to either ELECTRON or HOLE. By
default, no carrier is skipped.

8.24.3 Usage

The default configuration is equal to the following:

[PulseTransfer]

8.25 RCEWriter

Status Functional
Maintainers Salman Maqbool (salman.maqbool@cern.ch)

Moritz Kiehn (msmk@cern.ch)
Inputs Pixel Hit

8.25.1 Description

Reads in the PixelHit messages and saves them in the RCE format, appropriate for
the Proteus telescope reconstruction software [93]. An event tree and a sensor tree and
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their branches are initialized in the module’s initialize() method. The event tree is
initialized with the appropriate branches, while a sensor tree is created for each detector
and the branches initialized from a struct storing the tree and branch information for
every sensor. Initially, the program loops over all PixelHit messages and then over all
the hits within the message, and writes data to the tree branches in the RCE format. If
there are no hits, the event is saved with nHits = 0, with the other fields empty.

8.25.2 Parameters

• file_name : Name of the data file to create, relative to the output directory of the
framework. The file extension .root will be appended if not present. Defaults to
rce-data.root.

• device_file : Name of the output device file in the Proteus toml format. The file
extension .toml will be appended if not present. Defaults to device.toml.

• geometry_file : Name of the output geometry file in the Proteus toml format. The
file extension .toml will be appended if not present. Defaults to geometry.toml.

8.25.3 Usage

To create the default file an instantiation without arguments can be placed at the end of
the main configuration:

[RCEWriter]

8.26 ROOTObjectReader

Status Functional
Maintainers Koen Wolters (koen.wolters@cern.ch)
Outputs all objects in input file

8.26.1 Description

Converts all object data stored in the ROOT data file produced by the ROOTOb-
jectWriter module back in to messages (see the description of ROOTObjectWriter for
more information about the format). Reads all trees defined in the data file that contain
Allpix objects. Creates a message from the objects in the tree for every event.

If the requested number of events for the run is less than the number of events the data
file contains, all additional events in the file are skipped. If more events than available
are requested, a warning is displayed and the other events of the run are skipped.

Currently it is not yet possible to exclude objects from being read. In case not all objects
should be converted to messages, these objects need to be removed from the file before
the simulation is started.
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8.26.2 Parameters

• file_name : Location of the ROOT file containing the trees with the object data.
The file extension .root will be appended if not present.

• include : Array of object names (without allpix:: prefix) to be read from the
ROOT trees, all other object names are ignored (cannot be used simultaneously
with the exclude parameter).

• exclude: Array of object names (without allpix:: prefix) not to be read from
the ROOT trees (cannot be used simultaneously with the include parameter).

• ignore_seed_mismatch: If set to true, a mismatch between the core random seed
in the configuration file and the input data is ignored, otherwise an exception is
thrown. This also covers the case when the core random seed in the configuration
file is missing. Default is set to false.

8.26.3 Usage

This module should be placed at the beginning of the main configuration. An example
to read only PixelCharge and PixelHit objects from the file data.root is:

[ROOTObjectReader]
file_name = "data.root"
include = "PixelCharge", "PixelHit"

8.27 ROOTObjectWriter

Status Functional
Maintainers Koen Wolters (koen.wolters@cern.ch)
Inputs all objects in simulation

8.27.1 Description

Reads all messages dispatched by the framework that contain Allpix objects. Every
message contains a vector of objects, which is converted to a vector to pointers of the
object base class. The first time a new type of object is received, a new tree is created
bearing the class name of this object. For every combination of detector and message
name, a new branch is created within this tree. A leaf is automatically created for every
member of the object. The vector of objects is then written to the file for every event it
is dispatched, saving an empty vector if an event does not include the specific object.

If the same type of messages is dispatched multiple times, it is combined and written
to the same tree. Thus, the information that they were separate messages is lost. It is
also currently not possible to limit the data that is written to file. If only a subset of the
objects is needed, the rest of the data should be discarded afterwards.

The event number and the event seed for the random number generator are written to a
tree named Event.
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In addition to the objects, both the configuration and the geometry setup are written
to the ROOT file. The main configuration file is copied directly and all key/value pairs
are written to a directory config in a subdirectory with the name of the corresponding
module. All the detectors are written to a subdirectory with the name of the detector
in the top directory detectors. Every detector contains the position, rotation matrix
and the detector model (with all key/value pairs stored in a similar way as the main
configuration).

8.27.2 Parameters

• file_name : Name of the data file to create, relative to the output directory of the
framework. The file extension .root will be appended if not present.

• include : Array of object names (without allpix:: prefix) to write to the ROOT
trees, all other object names are ignored (cannot be used together simultaneously
with the exclude parameter).

• exclude: Array of object names (without allpix:: prefix) that are not written
to the ROOT trees (cannot be used together simultaneously with the include
parameter).

• require_sequence: Boolean flag to select whether events have to be written in
sequential order or can be stored in the order of processing. Defaults to true,
writing events in the order they have been seeded. If strict adherence to the order
of events is required, finished events are buffered until they can be written to file.

8.27.3 Usage

To create the default file (with the name data.root) containing trees for all objects except
for PropagatedCharges, the following configuration can be placed at the end of the main
configuration:

[ROOTObjectWriter]
exclude = "PropagatedCharge"

To read back a value of the configuration (here the Allpix Squared version used in the
simulation), the following command can be executed on the output file, here named
data.root:

root -l data.root -e '(*(string*)_file0->GetDirectory("config/Allpix")-
>GetKey("version")->ReadObj())'↪

8.28 SimpleTransfer

Status Functional
Maintainers Simon Spannagel (simon.spannagel@cern.ch)
Inputs PropagatedCharge
Outputs PixelCharge
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8.28.1 Description

Combines individual sets of propagated charges together to a set of charges on the sensor
pixels and thus prepares them for processing by the detector front-end electronics. The
module does a simple direct mapping to the nearest pixel, ignoring propagated charges
that are too far away from the implants or outside the pixel grid. Timing information
for the pixel charges is currently not yet produced, but can be fetched from the linked
propagated charges.

If one or more implants are defined for the respective detector model, the
collect_from_implant option can be turned on in order to only pick charge
carriers from the implant volume and ignore everything outside this region. Only charge
carriers from front-side implants are collected, charge carriers on back-side implants are
dropped. Since this will lead to unexpected and undesired behavior when using linear
electric fields, this option can only be used when using fields with an x/y dependence
(i.e. field maps imported from TCAD). In case no implants are defined, charge carriers
are collected from the pixel surface and the parameter max_depth_distance can be used
to control the depth from which charge carriers are taken into account.

A histogram of charge carrier arrival times is generated if output_plots is enabled. The
range and granularity of this plot can be configured.

8.28.2 Parameters

• max_depth_distance : Maximum distance in depth, i.e. normal to the sensor
surface at the implant side, for a propagated charge to be taken into account in
case the detector has no implants defined. Defaults to 5um.

• collect_from_implant: Only consider charge carriers within the implant region
of the respective detector instead of the full surface of the sensor. Should only be
used with non-linear electric fields and defaults to false.

• output_plots: Determines if output plots should be generated. Disabled by
default.

• output_plots_step: Bin size of the arrival time histogram in units of time. De-
faults to 0.1ns.

• output_plots_range: Total range of the arrival time histogram. Defaults to
100ns.

8.28.3 Usage

For a typical simulation, a max_depth_distance a few micro meters should be sufficient,
leading to the following configuration:

[SimpleTransfer]
max_depth_distance = 5um

8.29 TextWriter
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Status Functional
Maintainers Simon Spannagel (simon.spannagel@cern.ch)
Inputs all objects in simulation

8.29.1 Description

This module allows to write any object from the simulation to a plain ASCII text file.
It reads all messages dispatched by the framework containing Allpix objects. The data
content of each message is printed into the text file, while events are separated by an
event header:

=== <event number> ===

and individual detectors by the detector marker:

--- <detector name> ---

The include and exclude parameters can be used to restrict the objects written to file
to a certain type.

8.29.2 Parameters

• file_name : Name of the data file to create, relative to the output directory of the
framework. The file extension .txt will be appended if not present.

• include : Array of object names (without allpix:: prefix) to write to the ASCII
text file, all other object names are ignored (cannot be used together simultaneously
with the exclude parameter).

• exclude: Array of object names (without allpix:: prefix) that are not written
to the ASCII text file (cannot be used together simultaneously with the include
parameter).

8.29.3 Usage

To create the default file (with the name data.txt) containing entries only for PixelHit
objects, the following configuration can be placed at the end of the main configuration:

[TextWriter]
include = "PixelHit"

8.30 TransientPropagation

Status Functional
Maintainers Simon Spannagel (simon.spannagel@cern.ch)
Inputs DepositedCharge
Outputs PropagatedCharge
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8.30 TransientPropagation

8.30.1 Description

Simulates the transport of electrons and holes through the sensitive sensor volume of the
detector. It allows to propagate sets of charge carriers together in order to speed up the
simulation while maintaining the required accuracy. The propagation process for these
sets is fully independent and no interaction is simulated. The maximum size of the set of
propagated charges and thus the accuracy of the propagation can be controlled via the
charge_per_step parameter. The maximum number of charge groups to be propagated
for a single deposit position can be controlled via the max_charge_groups parameter.

The propagation consists of a combination of drift and diffusion simulation. The drift
is calculated using the charge carrier velocity derived from the charge carrier mobility
and the magnetic field via a calculation of the Lorentz drift. The mobility model can be
chosen using the mobility_model parameter, and a list of available models can be found
in the user manual. If the masetti or masetti_canali is used, the dopant_n parameter
can be used to set the n-dopant to either phosphorus (default) or arsenic. This module
implements charge multiplication by impact ionization. The multiplication model can be
chosen using the multiplication_model parameter, the list of available models can be
found in the user manual. By default, the model defaults to none and impact ionization
is switched off, generating unity gain. To simulate impact ionization, the number of newly
generated electron-hole pairs is calculated for every propagation step and every charge
carrier in the group, based on drawing a random number from a geometric distribution.
This represents a stepwise approach to the avalanche generation process. The charge of
a charge group is increased by the number of impact ionization processes per step and
opposite-type charge carriers are generated at the end of the step.

A classic fourth-order Runge-Kutta method is used to integrate the particle motion
through the electric and magnetic fields. After every Runge-Kutta step, the diffusion is
accounted for by applying an offset drawn from a Gaussian distribution calculated from
the Einstein relation

𝜎 = √2𝑘𝑏𝑇
𝑒 𝜇𝑡

using the carrier mobility 𝜇, the temperature 𝑇 and the time step 𝑡. The propagation
stops when the set of charges reaches any surface of the sensor.

The charge transport is parameterized in time and the time step each simulation step
takes can be configured. For each step, the induced charge on the neighboring pixel
implants is calculated via the Shockley-Ramo theorem [25, 26] by taking the difference
in weighting potential between the current position 𝑥1 and the previous position 𝑥0 of
the charge carrier

𝑄𝑖𝑛𝑑
𝑛 = ∫𝑡1

𝑡0
𝐼 𝑖𝑛𝑑

𝑛 = 𝑞 (𝜙(𝑥1) − 𝜙(𝑥0))

and multiplying it with the charge. The resulting pulses are stored for every set of charge
carriers individually and need to be combined for each pixel using a transfer module.

The charge carrier lifetime can be simulated using the doping concentration of the
sensor. The recombination model is selected via the recombination_model parameter,
the default value none is equivalent to not simulating finite lifetimes. This feature can
only be enabled if a doping profile has been loaded for the respective detector using the
DopingProfileReader module. In each step, the doping-dependent charge carrier lifetime
is determined, from which a survival probability is calculated. The survival probability is
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calculated at each step of the propagation by drawing a random number from an uniform
distribution with 0 ≤ 𝑟 ≤ 1 and comparing it to the expression 𝑑𝑡/𝜏, where 𝑑𝑡 is the time
step of the last charge carrier movement.

Trapping of charge carriers can be enabled by setting a trapping model via the parameter
trapping_model. The default value is none, corresponding to no charge carrier trapping
being simulated. All models require the 1MeV-neutron equivalent fluence to be set
via the parameter fluence. Some models include temperature-dependent scaling of
trapping probabilities, and the corresponding temperature is taken from the temperature
parameter. The trapping probability is calculated at each step of the propagation by
drawing a random number from an uniform distribution with 0 ≤ 𝑟 ≤ 1 and comparing
it to the expression 1 − 𝑒−𝑑𝑡/𝜏𝑒𝑓𝑓 , where 𝑑𝑡 is the time step of the last charge carrier
movement and 𝜏𝑒𝑓𝑓 the effective trapping time constant. A list of available models can
be found in the user manual.

Detrapping of charge carriers can be enabled by setting a detrapping model via the
parameter detrapping_model. The default value is none, corresponding to no charge
carrier detrapping being simulated. A list of available models can be found in the user
manual.

The module can produces a variety of plots such as total integrated charge plots as well
as histograms on the step length and observed potential differences. Furthermore, the
module can generate a 3D line plot of the path of all separately propagated charge carrier
sets from their point of deposition to the end of their drift, with nearby paths having
different colors. In this coloring scheme, electrons are marked in blue colors, while holes
are presented in different shades of orange. In addition, a 3D GIF animation for the drift
of all individual sets of charges (with the size of the point proportional to the number of
charges in the set) can be produced. Finally, the module produces 2D contour animations
in all the planes normal to the X, Y and Z axis, showing the concentration flow in the
sensor. It should be noted that generating the animations is time-consuming and should
be switched off even when investigating drift behavior.

8.30.2 Parameters

• temperature: Temperature of the sensitive device, used to estimate the diffusion
constant and therefore the strength of the diffusion. Defaults to room temperature
(293.15K).

• mobility_model: Charge carrier mobility model to be used for the propagation.
Defaults to jacoboni, a list of available models can be found in the documentation.

• recombination_model: Charge carrier lifetime model to be used for the propaga-
tion. Defaults to none, a list of available models can be found in the documentation.
This feature requires a doping concentration to be present for the detector.

• trapping_model: Model for simulating charge carrier trapping from radiation-
induced damage. Defaults to none, a list of available models can be found in the
documentation. All models require explicitly setting a fluence parameter.

• detrapping_model: Model for simulating charge carrier detrapping from radiation-
induced damage. Defaults to none, a list of available models can be found in the
documentation.

• fluence: 1MeV-neutron equivalent fluence the sensor has been exposed to.
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• charge_per_step: Maximum number of charge carriers to propagate together.
Divides the total number of deposited charge carriers at a specific point into sets
of this number of charge carriers and a set with the remaining charge carriers. A
value of 10 charges per step is used by default if this value is not specified.

• max_charge_groups: Maximum number of charge groups to propagate from a
single deposit point. Temporarily increases the value of charge_per_step to
reduce the number of propagated groups if the deposit is larger than the value
max_charge_groups * charge_per_step, thus reducing the negative performance
impact of unexpectedly large deposits. The default value is 1000 charge groups. If
it is set to 0, there is no upper limit on the number of charge groups propagated.

• timestep: Time step for the Runge-Kutta integration, representing the granularity
with which the induced charge is calculated. Default value is 0.01ns.

• integration_time: Time within which charge carriers are propagated. After
exceeding this time, no further propagation is performed for the respective carriers.
Defaults to the LHC bunch crossing time of 25ns.

• distance: Maximum distance of pixels to be considered for current induction,
calculated from the pixel the charge carrier under investigation is below. A distance
of 1 for example means that the induced current for the closest pixel plus all
neighbors is calculated. It should be noted that the time required for simulating a
single event depends almost linearly on the number of pixels the induced charge is
calculated for. Usually, for Cartesian sensors a 3x3 grid (9 pixels, distance 1) should
suffice since the weighting potential at a distance of more than one pixel pitch
often is small enough to be neglected while the simulation time is almost tripled for
distance = 2 (5x5 grid, 25 pixels). To just calculate the induced current in the
one pixel the charge carrier is below, distance = 0 can be used. Defaults to 1.

• ignore_magnetic_field: The magnetic field, if present, is ignored for this module.
Defaults to false.

• multiplication_model: Model used to calculate impact ionization parameters
and charge multiplication. Defaults to none which corresponds to unity gain, a list
of available models can be found in the documentation.

• multiplication_threshold: Threshold field above which charge multiplication is
calculated. Defaults to 100kV/cm.

• max_multiplication_level: Maximum level depth of the generated impact ioniza-
tion charge multiplication shower after which the generation of further multiplication
charge carrier levels is prohibited. This number represents the maximum number
of daughter charge carrier groups that can be produced by one initial charge carrier
group. This does not concern the size of the charge group itself but solely the level of
generation. If a group generates a secondary group through impact ionization, the
depth is 1. If this secondary group again creates charge carriers when propagating,
the level is 2 and so on. The default value is 5.

• surface_reflectivity: Reflectivity of the sensor surface for charge carriers. Used
to calculate a probability that charge carriers are not absorbed at the interface but
reflected back into the sensor volume. Defaults to 0.0, i.e. no reflectivity, and a
value of 1.0 corresponds to total reflection.

8.30.3 Plotting parameters

• output_plots : Determines if simple output plots should be generated for a
monitoring of the simulation flow. Disabled by default.

173



8 Modules

• output_linegraphs : Determines if line graphs should be generated for every
event. This causes a significant slow down of the simulation, it is not recommended
to enable this option for runs with more than a couple of events. Disabled by
default.

• output_linegraphs_collected : Determine whether to also generate line graphs
only for charge carriers that have reached the implant side within the allotted
integration time. Defaults to false. This requires output_linegraphs to be
active.

• output_linegraphs_recombined : Boolean flag to select whether line graphs
should also be generated only from charge carriers that have recombined with
the lattice during the integration time. Defaults to false. This requires
output_linegraphs to be active.

• output_linegraphs_trapped : Boolean flag to select whether line graphs should
also be generated only from charge carriers that have been trapped during their
motion through the sensor. Defaults to false. This requires output_linegraphs
to be active.

• output_plots_step : Timestep to use between two points plotted. Indirectly
determines the amount of points plotted. Defaults to timestep_max if not explicitly
specified.

• output_plots_theta : Viewpoint angle of the 3D animation and the 3D line graph
around the world X-axis. Defaults to zero.

• output_plots_phi : Viewpoint angle of the 3D animation and the 3D line graph
around the world Z-axis. Defaults to zero.

• output_plots_use_pixel_units : Determines if the plots should use pixels as
unit instead of metric length scales. Defaults to false (thus using the metric system).

• output_plots_use_equal_scaling : Determines if the plots should be produced
with equal distance scales on every axis (also if this implies that some points will
fall out of the graph). Defaults to true.

• output_plots_align_pixels : Determines if the plot should be aligned on pixels,
defaults to false. If enabled the start and the end of the axis will be at the split
point between pixels.

• output_animations : In addition to the other output plots, also write a GIF
animation of the charges drifting towards the electrodes. This is extremely slow
and writing the animation takes a considerable amount of time, therefore defaults
to false. This option also requires output_linegraphs to be enabled.

• output_animations_time_scaling : Scaling for the animation used to convert
the actual simulation time to the time step in the animation. Defaults to 1.0e9,
meaning that every nanosecond of the simulation is equal to an animation step of
a single second.

• output_animations_marker_size : Scaling for the markers on the animation,
defaults to one. The markers are already internally scaled to the charge of their
step, normalized to the maximum charge.

• output_animations_contour_max_scaling : Scaling to use for the contour color
axis from the theoretical maximum charge at every single plot step. Default is 10,
meaning that the maximum of the color scale axis is equal to the total amount
of charges divided by ten (values above this are displayed in the same maximum
color). Parameter can be used to improve the color scale of the contour plots.

• output_animations_color_markers: Determines if colors should be for the mark-
ers in the animations, defaults to false.
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8.30.4 Usage

[TransientPropagation]
temperature = 293K
charge_per_step = 10
output_plots = true
timestep = 0.02ns

8.31 VisualizationGeant4

Status Functional
Maintainers Simon Spannagel (simon.spannagel@cern.ch)

8.31.1 Description

Constructs a viewer to display the constructed Geant4 geometry. The module supports
all type of viewers included in Geant4, but the default Qt visualization with the OpenGL
viewer is recommended as long as the installed Geant4 version supports it. It offers the
best visualization experience.

The module allows for changing a variety of parameters to control the output visualization
both for the different detector components and the particle beam.

Both detectors and passive materials will be displayed. If the material of a passive
material is the same as the material of its mother_volume, the passive material will not
be shown in the visualization. In the case that the material is the same as the material
of the world frame, the material will have a white color instead of the default blue in the
visualization.

This module does not support multithreading and will force the simulation chain to be
executed on a single thread when activated.

8.31.2 Dependencies

This module requires an installation of Geant4.

8.31.3 Parameters

• mode : Determines the mode of visualization. Options are gui which starts a Qt
visualization window containing the driver (as long as the chosen driver supports it),
terminal starts both the visualization viewer and a Geant4 terminal or none which
only starts the driver itself (and directly closes it if the driver is asynchronous).
Defaults to gui.
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• driver : Geant4 driver used to visualize the geometry. All the supported options
can be found online [94] and depend on the build options of the Geant4 version used.
The default OGL should normally be used with the gui option if the visualization
should be accumulated, otherwise terminal is the better option. Other than this,
only the VRML2FILE driver has been tested. This driver should be used with
mode equal to none. Defaults to the OpenGL driver OGL.

• accumulate : Determines if all events should be accumulated and displayed at the
end, or if only the last event should be kept and directly visualized (if the driver
supports it). Defaults to true, thus accumulating events and only displaying the
final result.

• accumulate_time_step : Time step to sleep between events to allow for time to
display if events are not accumulated. Only used if accumulate is disabled. Default
value is 100ms.

• simple_view : Determines if the visualization should be simplified, not displaying
the pixel matrix and other parts which are replicated multiple times. Default
value is true. This parameter should normally not be changed as it will cause a
considerable slowdown of the visualization for a sensor with a typical number of
channels.

• background_color : Color of the background of the viewer. Defaults to white.
• view_style : Style to use to display the elements in the geometry. Options are

wireframe and surface. By default, all elements are displayed as solid surface.
• opacity : Default opacity percentage of all detector elements, only used if the

view_style is set to display solid surfaces. The default value is 0.4, giving a moderate
amount of opacity.

• display_trajectories : Determines if the trajectories of the primary and sec-
ondary particles should be displayed. Defaults to true.

• hidden_trajectories : Determines if the trajectories should be hidden inside the
detectors. Only used if the display_trajectories is enabled. Default value of the
parameter is true.

• trajectories_color_mode : Configures the way, trajectories are colored. Options
are either generic which colors all trajectories in the same way, charge which
bases the color on the particle’s charge, or particle which colors the trajectory
based on the type of the particle. The default setting is charge.

• trajectories_color : Color of the trajectories if trajectories_color_mode is set
to generic. Default value is blue.

• trajectories_color_positive : Visualization color for positively charged parti-
cles. Only used if trajectories_color_mode is equal to charge. Default is blue.

• trajectories_color_neutral : Visualization color for neutral particles. Only
used if trajectories_color_mode is equal to charge. Default is green.

• trajectories_color_negative : Visualization color for negatively charged parti-
cles. Only used if trajectories_color_mode is equal to charge. Default is red.

• trajectories_particle_colors : Array of combinations of particle ID and color
used to determine the particle colors if trajectories_color_mode is equal to particle.
Refer to the Geant4 documentation [82] for details about the IDs of particles.

• trajectories_draw_step : Determines if the steps of the trajectories should be
plotted. Enabled by default. Only used if display_trajectories is enabled.

• trajectories_draw_step_size : Size of the markers used to display a trajectory
step. Defaults to 2 points. Only used if trajectories_draw_step is enabled.

• trajectories_draw_step_color : Color of the markers used to display a trajec-
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tory step. Default value red. Only used if trajectories_draw_step is enabled.
• draw_hits : Determines if hits in the detector should be displayed. Defaults to

false. Option is only useful if Geant4 hits are generated in a module.
• macro_init : Optional Geant4 macro to execute during initialization. Whenever

possible, the configuration parameters above should be used instead of this option.
• display_limit : Sets the displayListLimit of the visualization GUI, in case the

geometry which has to be loaded is too complex for the GUI to be displayed with
the current size Display List. Defaults to 1000000.

• line_segments : Sets the number of line segments to approximate a circle with.
This parameter can be used when simulating radial detectors to visualize their
curved edges with more precision. Defaults to 250.

• viewpoint_thetaphi : Sets the theta and phi angles for the viewpoint. Defaults
to -70deg 20deg.

8.31.4 Usage

An example configuration providing a wireframe viewing style with the same color for
every particle and displaying the result after every event for 2s is provided below:

[VisualizationGeant4]
mode = "none"
view_style = "wireframe"
trajectories_color_mode = "generic"
accumulate = 0
accumulate_time_step = 2s

To view event number N of a simulation, use a fixed random seed and number_of_events
= 1 and skip_events = N-1 under the [Allpix] header. Note that executing /run/
beamOn 1 in the Qt visualization window or Geant4 terminal does not show the next
event of the Allpix Squared simulation, but rather a random event.

8.32 WeightingPotentialReader

Status Functional
Maintainers Simon Spannagel (simon.spannagel@cern.ch)

8.32.1 Description

Adds a weighting potential (Ramo potential) to the detector from one of the supported
sources. By default, detectors do not have a weighting potential applied. This module
support two types of weighting potentials.
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Weighting potential map

Using the mesh model of this module allows reading in from a file, e.g. from an
electrostatic TCAD simulation. A converter tool for fields from adaptive TCAD meshes is
provided with the framework. The map is expected to be symmetric around the reference
pixel the weighting potential is calculated for, the size of the field is taken from the file
header.

The potential field map needs to be three-dimensional. Otherwise the induced current
on neighboring pixels along the missing component will always be exactly the same as
the actual pixel under which the charge is present because the same weighting potential
is samples - with a two-dimensional field, distances in the third dimension are always
zero. This will lead to unphysical results and a multiplication of the total charge. If this
behavior is desirable, or e.g. only a single row of pixels is simulated, the check can be
omitted by setting ignore_field_dimensions = true.

A warning is printed if the size does not correspond to a multiple of the pixel size. While
this is not a problem in general, it might hint at a wrong potential map being used.

Generating a weighting potential using TCAD and Allpix Squared The weighting
potential is calculated by taking the difference of the electrostatic potentials arising from
applying two slightly different bias voltages to one electrode. The steps below outline
how to create a weighting potential from TCAD simulations.

1. Produce two TCAD fields that differ slightly in one collection electrode bias voltage,
for instance for 0.1 V or 0.01 V, with all the other electrodes grounded. Export the
two resulting electrostatic potentials into separate files.

2. Use the mesh_converter tool to extract the electrostatic potential from both
configurations. Working with the converted files in INIT format is advisable as is
human readable and this makes the process of writing a macro for the calculation
simpler.

3. Calculate the difference between entries from both files, and divide them by the
difference in collection electrode bias voltage in order to normalize them to the
range [0, 1].

4. Verify that the values are within a range from 0 to 1, which is the physical range of
a weighting potential.

5. Save the resulting file with the same format and import it into Allpix Squared
using the [WeightingPotentialReader] module and the mesh model.

Weighting potential of a pad

When setting the pad model, the weighting potential of a pixel in a plane condenser is
calculated numerically from first principles, following the procedure described in detail
in [27]. It should be noted that this calculation is comparatively slow and takes about
a factor 100 longer than a lookup from a pre-calculated field map. A tool to generate
the field map using the method described herein is provided in the software repository.

The weighting potential is calculated via Green’s reciprocity theorem, the integral part
of the expression are ignored. In [27] it has been shown that the uncertainty on the
weighting potential is smaller than
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where N limits the expansion of the series. In this implementation, a value of 𝑁 = 100 is
used. Following these calculations, the weighting potential is given by
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2 . The parameters 𝑤𝑥,𝑦 indicate the size of the
collection electrode (i.e. the implant), 𝑉𝑤 is the potential of the electrode and d is the
thickness of the sensor.

8.32.2 Parameters

• model : Type of the weighting potential model, either mesh or pad.
• file_name : Location of file containing the weighting potential in one of the

supported field file formats. Only used if the model parameter has the value mesh.
• field_mapping: Description of the mapping of the field onto the sensor or pixel
cell. Possible values are PIXEL_FULL, indicating that the map spans the full
2D plane and the field is centered around the pixel center, PIXEL_HALF_TOP or
PIXEL_HALF_BOTTOM indicating that the field only contains only one half-axis along
y, HALF_LEFT or HALF_RIGHT indicating that the field only contains only one half-
axis along x, or PIXEL_QUADRANT_I, PIXEL_QUADRANT_II, PIXEL_QUADRANT_III,
PIXEL_QUADRANT_IV stating that the field only covers the respective quadrant of
the 2D pixel plane. In addition, the PIXEL_FULL_INVERSE mode allows loading
full-plane field maps which are not centered around a pixel cell but the corner
between pixels. Only used if the model parameter has the value mesh.

• field_scale: Scaling factor of the weighting potential in x- and y-direction. By
default, the scaling factors are set to {1, 1} and the field is used with its physical
extent stated in the field data file.

• potential_depth : Thickness of the weighting potential region. The weighting
potential is set to zero in the region below the potential_depth. Defaults to the
full sensor thickness. Only used if the model parameter has the value mesh.

• ignore_field_dimensions: If set to true, a wrong dimensionality of the input
field is ignored, otherwise an exception is thrown. Defaults to false.

• output_plots: Determines if output plots should be generated. Disabled by
default.

• output_plots_steps : Number of bins along the z-direction for which the weighting
potential is evaluated. Defaults to 500 bins and is only used if output_plots is
enabled.

• output_plots_position: 2D Position in x and y at which the weighting potential
is evaluated along the z-axis. By default, the potential is plotted for the position in
the pixel center, i.e. (0, 0). This parameter only affects the 1D weighting potential
histogram. Only used if output_plots is enabled.
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• output_plots_zcut: Position along the sensor z axis at which the 2D x-y weighting
potential profile is evaluated. Defaults to 0um, i.e. the center plane of the sensor.

8.32.3 Usage

An example to add a weighting potential form a field data file to the detector called
“dut” is given below.

[WeightingPotentialReader]
name = "dut"
model = "mesh"
file_name = "example_weighting_field.apf"
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This section provides brief descriptions of the example configurations currently provided
in the Allpix Squared repository [13]. The examples are listed in alphabetical order.

9.1 ATLAS ITk Petal

This example simulates a double-sided arrangement of radial strip detectors called a
“petal”. It features a total of 18 detectors (9 on each side) of various types designated
as R0 to R5. Such a structure is planned to be deployed in the end-cap regions of the
ATLAS Inner Tracker (ITk). The entire petal structure can be viewed by enabling the
VisualizationGeant4 module.

In this simulation example, the detector is hit by a beam of 5.4 GeV electrons. A simple
linear electric field model is used. Deposited charge carriers are grouped during the
propagation stage by use of the charge_per_step parameter. Charge threshold during
the digitization phase is set to approximately three times the value of electronic noise.

The granularity parameter controls the number of bins for in-pixel histograms. As the
typical strip length of several centimeters would, by default, lead to exceedingly large
histograms, the granularity parameter is set to 80 4. This corresponds to a typical
strip pitch of 80 um in the x direction and to 4 strip rows (in the y direction) of the
radial strip detector.

9.2 Capacitive Coupling

This folder contains example files and configuration for the CapacitiveTransfer module.

The capacitive_coupling.conf configuration file, as it is, simulates 6 FE-I4b planes
(aligned as in a telescope) with a FE-I4b as a device-under-test (DUT) between the
3rd and 4th telescope planes. This geometry is defined in the ccpd_example_detector
.conf file. The SimpleTransfer module is used for the telescope planes while the
CapacitiveTransfer module is used for the DUT. The DUT is simulated with specific
angles, nominal and minimum gaps, obtained from real measurements. The simulation
results, regarding the DUT, should present a lower efficiency on the bottom left corner
of the DUT due to the increasing gap between the pixels, towards this direction, and
consequently a smaller coupling capacitance. The coupling capacitance for each gap
is retrieved from the gap_scan_coupling_sim.root ROOT file. More information are
provided in the CapacitiveTransfer module documentation.

The capacitance_matrix.txt file contains a generic relative coupling matrix (same
as in the configuration file) that can be used to simulate the cross-coupling effects
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in parallel CCPDs assemblies. More information on possible configurations of the
CapacitiveTransfer module are provided in its documentation.

9.3 Corryvreckan Output

This example demonstrates how to simulate a full telescope setup and how to store the
simulation in a format readable by the Corryvreckan reconstruction framework.

The setup used in this example is the reference simulation published in the Allpix Squared
paper [95]. It consists of six Timepix3 telescope planes [17] featuring planar silicon sensors
with a thickness of 300um. In addition, another Timepix3 detector is placed as device
under test (DUT) between the upstream arm (three planes) and downstream arm (three
planes) of the telescope, with a sensor thickness of 50um. Here, the thickness is directly
defined in the geometry file, overwriting the default value from the timepix model. All
planes are randomly mis-aligned at the beginning of the simulation using the alignment
precision keywords:

alignment_precision_position = 1mm 1mm 100um
alignment_precision_orientation = 0.2deg 0.2deg 0.2deg

The energy deposition module uses Geant4 to replicate the beam conditions found in the
CERN SPS North Area beam lines, i.e. a 120GeV Pion beam with a Gaussian width of
about 2mm.

The simulation uses different processing paths for the telescope planes and the DUT
in order to configure a different electric field, a different granularity for the charge
propagation and different settings for the digitization in the front-end. For this, the type
and name keywords are placed in the configuration file in order to assign the respective
modules to specific detectors instantiated in the geometry file.

The results for both the telescope planes and the DUT are written to a ROOT output file
in the format of the Corryvreckan reconstruction framework using the CorryvreckanWriter
module. Here, two additional keys have to be defined; The detector to be used as reference
plane in the reconstruction and the DUT as detector to be excluded from the track
fits. More information in these detector roles can be found in the Corryvreckan user
manual.

9.4 Cosmic Flux

This example illustrates how the DepositionCosmics module is used to model the flux
of cosmic muons in Allpix Squared. Python analysis code is included to calculate the
flux through the detector from the MCParticle objects.
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9.4.1 Usage

First change into the example directory. Run the simulation example from here:

allpix -c cosmic_flux.conf

To analyze the tracks of the MCParticles, issue

python analysis/analysis.py -l
PATH_TO_ALLPIX_INSTALL/lib/libAllpixObjects.so↪

The library flag is only required when your allpix-squared/lib path is not in
LD_LIBRARY_PATH. Notice that the analysis script relies on the python modules
uncertainties, tqdm, matplotlib and numpy.

9.5 EUDET Telescope

This example demonstrates the simulation of EUDET-type Beam Telescopes, making
use of the ProjectionPropagation module and approximated simulation and sensor
parameters tuned to measurements.

The simulation setup represents a beam telescope consisting of six Mimosa26 sensors,
MAPS sensors with a small depletion zone. The thickness used herein is 50 um.

The particle propagation and charge deposition are performed via the DepositionGeant4
module, using an electron beam with an energy of 5 GeV. A standard physics list is
chosen.

The electric field of the sensor is approximated with a depletion depth of 15 um and a
bias voltage of -4 V.

The charge collection in such sensors is heavily influenced by the charge carriers that
are not created in, but diffuse into the depleted volume, often with a strong lateral
component leading to cluster sizes larger than one. To approximate this behaviour and
obtain a realistic detector response, while simultaneously maintaining a low simulation
time, the diffuse_deposit parameter of the ProjectionPropagation module is used.
An integration time of 20 ns is used as an approximation, tuned to experimental data.

The digitization parameters correspond to information from the sensor developers.

9.6 EUDET with RD53a DUT

This example is similar to the EUDET-type telescope example but with extra DUTs
added to match the DESY testbeam setup with RD53a modules. The setup consists
of six telescope planes of MIMOSA26-type (EUDET beam telescope) and two RD53a
modules centered in between the telescope arms: DUT0 defined with 50x50um^2 pitch
and DUT1 defined with 20x100um^2 pitch. Furthermore, one FEI4 reference plane is
added as the last plane as in real testbeam setup.

The goal of this setup is to simulate the performance of RD53a modules with testbeam
setup and to study multiple scattering effects with passive and extra material. For this
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purpose, a box made of plexiglass is introduced in the geometry, but the user can also
try other materials within the same range of radiation length, such as polystyrene or
styrofoam.

A linear electric field is applied to all sensors, with the DUTs and the reference plane on a
higher bias voltage than the telescope planes. More complex electric fields can be added
by the user by altering the configuration of the respective ElectricFieldReader mod-
ules. The propagation of charge carriers is performed using the ProjectionPropagation
module for the MIMOSA26 sensors of the EUDET telescope planes, and using the
GenericPropagation module for the DUT and reference planes. This ensures mini-
mum computing requirements for the telescope planes while providing a more detailed
simulation for the detectors of interest.

The LCIOWriter module is placed at the end of the simulation chain in order to write the
results of the simulation to a file in the LCIO format that can be used as input for the
reconstruction software EUTelescope. Here, it is important to assign the name zsdata
to the respective data for EUTelescope to properly recognize it. In order to reconstruct
the simulation with the Corryvreckan framework, the user can replace this module with
the CorryvreckanWriter module.

9.7 Fast Simulation

This example is a simulation chain optimized for speed. A setup like this is well suited
for unirradiated standard planar silicon detectors, where a linear electric field is a good
approximation.

The setup consists of six Timepix-type detectors with a sensor thickness of 300um
arranged in a telescope-like structure. The charge deposition is performed by Geant4
using a standard physics list (with the EmStandard_opt3 option) suited for tracking
detectors. The Geant4 stepping length is chosen rather coarse with 10um.

The detector setup contains the position and orientation of the telescope planes, which
are divided into an upstream and downstream arm and are inclined in both X and Y to
increase charge sharing. In addition, the alignment precision in position and orientation
is specified in order to randomly misalign the setup and allow reconstruction without
tracking artifacts from pixel-perfect alignment.

The main speedup compared to other setups comes from the usage of the
ProjectionPropagation module to simulate the charge carrier propagation. A
setting of charge_per_step = 100 is chosen over the default of 10 charge carriers to
further reduce the CPU load. With a sensor thickness of 300um and an most probable
energy deposition of more than 20’000 charge carriers, no impact on the precision is to
be expected.

Also the exclusion of DepositedCharge and PropagatedCharge objects from the output
trees help in speeding up the simulation and in keeping the output file size low.
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9.8 GDML Passive Material

This example demonstrates how to load passive material structures defined in GDML files
into the simulation. Two separate GDML files are placed via the detector setup description
file and loaded at startup. All contained volumes are added to the simulation

The setup consists of two silicon detectors and the additional volumes from the GDML
files. Some of the volumes are placed between the particle beam origin and the detectors
in order to have the pions interact with the material.

9.9 Magnetic Field

This example demonstrates the charged particle propagation inside a sensor with a
magnetic field applied.

Two CMS Pixel Detector single chip modules are placed in a 3.8 T magnetic field, of
which the rear one is turned to 19 deg. This results in mostly 2 pixel clusters in the front
sensor due to the Lorentz drift, while the rotation of the second sensor cancels out the
Lorentz drift, resulting in mostly 1 pixel clusters.

For better performance, disable the output plots for the GenericPropagation module.

9.10 Passive Volume

This example showcases the definition of passive volumes in the geometry file.

The file example_detector_passive.conf contains a detector of the type test, as well
as several passive objects, identified via the key-parameter pair role = "passive". The
example shows the four basic objects implemented, while for the volume “sphere1” the
“box1” is defined as mother_volume. This implies that the sphere is integrated into
the box and that the given position (and orientation, if applicable) are interpreted as
specifications relative to the position and orientation of the box mother volume.

Optionally, the VisualizationGeant4 can be used to visualize these objects.

All other modules operate with standard parameters.

9.11 Precise DUT Simulation

This example combines features from the “Fast Simulation” and the “TCAD Field
Simulation” examples. The setup consists of six telescope planes of Timepix-type
detectors for reference tracks and a device under test (DUT), in this case a CLICpix2
detector, in the center of the telescope between the two arms. The goal of this setup is to
demonstrate how to perform a fast simulation on the telescope planes while maintaining
a high precision on the DUT.

For this propose, the telescope follows the example of the “fast simulation” and employs a
linear electric field and the ProjectionPropagation module for charge carrier transport.

185



9 Examples

To assign this module only to the telescope planes, the type keyword is used to restrict
the module to instances of Timepix detectors.

For the DUT the ElectricFieldReader module providing the TCAD field features
the name keyword assigning this module instance to the DUT detector only. This
named module instance takes precedence over the other instance with the linear electric
field. The GenericPropagation module also has to be assigned to the DUT because
it would otherwise also be instantiated for the Timepix telescope detectors. Here, the
charge_per_step setting has been reduced to 10 for the DUT since the CLICpix2
prototype features a sensor of 50um thickness and the additional precision might improve
the agreement with data.

All further modules in the simulation chain are again unnamed and without type specifi-
cation since they are supposed to be executed for all detectors likewise.

9.12 Radial Strip Detector

This example simulates a radial strip detector, which features a trapezoidal shape and
strips fanning out radially from a common focal point. Such detectors are planned to be
deployed in the end-cap regions of the ATLAS Inner Tracker (ITk). This example uses
the model of a specific ITk module, called the R0. You can see the radial detector used
in this simulation by enabling the VisualizationGeant4 module.

Detector models for radial strip detectors are implemented in the RadialStripDetectorModel
class. A radial strip detector model is defined using four parameters for each strip row.
In addition, its geometry has to be defined as radial_strip.

type = "monolithic"
geometry = "radial_strip"
number_of_strips = 1026, 1026, 1154, 1154
angular_pitch = 0.19309mrad, 0.19309mrad, 0.17169mrad, 0.17169mrad
inner_pitch = 74.4um, 78.1um, 73.6um, 78.5um
strip_length = 19mm, 24mm, 29mm, 32mm

In this simulation example, the detector is hit by a beam of 5.4 GeV electrons. A simple
linear electric field model is used. Deposited charge carriers are grouped during the
propagation stage by use of the charge_per_step parameter. The CapacitiveTransfer
module handles the simulation of cross-talk by transferring a portion of collected charge
to adjacent strips in the same row. Charge threshold during the digitization phase is set
to approximately three times the value of electronic noise.

The granularity parameter controls the number of bins for in-pixel histograms. As the
typical strip length of several centimeters would, by default, lead to exceedingly large
histograms, the granularity parameter is set to 80 4. This corresponds to a typical
strip pitch of 80 um in the x direction and to 4 strip rows (in the y direction) of the
radial strip detector.
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9.13 Replay Simulation

This example demonstrates the possibility of reading data files from previous simulation
runs and replaying the messages to the framework, dispatching them to modules with
altered parameters. In this case, the output of the fast simulation example is reprocessed
with a new charge threshold in the digitization step.

Since this example requires input data from another simulation, it has to be executed
using the following command:

allpix -c replay_simulation.conf -o
ROOTObjectReader.file_name=<input_file>↪

where <input_file> should be replaced with the absolute path of the data file generated
by the fast simulation example. Alternatively, this parameter can be set directly in the
configuration file of the example.

The main advantage of replaying a simulation is, that late stages of the simulation chain
can be repeatedly executed without having to regenerate the full event. In the present
case, only the PixelCharge objects, i.e. the charge collected at each amplifier input of
the pixel are read from the input file as indicated by the include keyword. These objects
are then dispatched for every event, and the subsequent modules listening to this object
type receive them just as if they have been generated from scratch.

The DefaultDigitizer module then performs the digitization of the charges, but this
time with a different threshold than in the original “fast simulation” example. Finally,
the ROOTObjectWriter stores the newly digitized PixelHit objects to a new data file.

A quick speed comparison of running the initial fast simulation and re-running the
digitization step of the simulation using the replay technique reveals event generation
frequencies of about 70 Hz versus 970 Hz, respectively, i.e. a speed-up factor larger than
10 on a single core of a standard Intel CPU.

9.14 Simple Diode

This example simulates an Am241 alpha source using a native Geant4 GPS macro.
The source is defined as a disk from which mono-energetic 5.4 MeV alphas are emitted.
This approximates the Am241 alpha spectrum. The source emits the alpha particles
isotropically.

A diode-type detector is placed below the source, shielded with an additional sheet of
paper of 200um thickness with a pinhole in it to let the alpha pass. The goal is to
reproduce the aperture effect seen with alpha particles, where the detected spectrum
shows a dependency on the pinhole size due to the different path lengths of the alpha
particles in the air as a function of the incident angle at the diode. Small pinhole
diameters restrict the incidence angles to be more or less vertical, while larger pinhole
diameters also allow alphas at larger angles to pass. The resulting longer path length of
these particles results in a larger energy loss before reaching the diode detector.

The charge deposition is performed by Geant4 using a standard physics list and a
stepping length of 10um. The ProjectionPropagation module with a setting of
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charge_per_step = 500 is used to simulate the charge carrier propagation and the
simulation result is stored to file. The model_paths parameter is set to add this directory
to the search path for detector models.

Optionally, the VisualizationGeant4 can be used to visualize these objects.

9.15 Source Measurement

This example simulates an Iron-55 source using Geant4’s radioactive decay simulation.
The particle type is set to Fe55 to use the isotope, the source energy configured as 0eV
for a decay in rest. A point-like particle source is used.

A Medipix-type detector is placed below the source, shielded with an additional sheet of
aluminum with a thickness of 8mm. No misalignment is added but the absolute position
and orientation of the detector is specified.

The setup of the simulation chain follows the ”fast simulation example: The charge
deposition is performed by Geant4 using a standard physics list and a stepping length of
10um. The ProjectionPropagation module with a setting of charge_per_step = 100
is used to simulate the charge carrier propagation and the simulation result is stored to
file excluding DepositedCharge and PropagatedCharge objects to keep the output file
size low.

9.16 TCAD Field Simulation

This example follows the “fast simulation” example but now replaces the simplified
linear electric field with an actual TCAD-simulated electric field. For this reason, the
ProjectionPropagation module is replaced by GenericPropagation as the former only
allows for linear fields owing to the simplifications made in the drift calculations.

The setup is unchanged compared to the “fast simulation example” and consists of six
Timepix-type detectors with a sensor thickness of 300um arranged in a telescope-like
structure, inclined planes for charge sharing, and a defined alignment precision. The
charge deposition is also performed by Geant4 with a stepping length of 10um.

Again, DepositedCharge and PropagatedCharge objects are not written to the output
file as information about these objects cannot be accessed in data and thus are rarely
used in the analysis of the simulation.
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This chapter provides a few brief recipes for developing new simulation modules and
detector models for the Allpix Squared framework. Before starting the development,
the “How to contribute” Section should be consulted for further information on the
development process and code contributions.

10.1 Coding and Naming Conventions

The code base of the Allpix Squared is well-documented and follows concise rules on
naming schemes and coding conventions. This enables maintaining a high quality of code
and ensures maintainability over a longer period of time. In the following, some of the
most important conventions are described. In case of doubt, existing code should be used
to infer the coding style from.

10.1.1 Naming Schemes

The following coding and naming conventions should be adhered to when writing code
which eventually should be merged into the main repository.

• Namespace: The allpix namespace is to be used for all classes which are part
of the framework, nested namespaces may be defined. It is encouraged to make
use of using namespace allpix; in implementation files only for this namespace.
Especially the namespace std should always be referred to directly at the function
to be called, e.g. std::string test. In a few other cases, such as ROOT::Math,
the using directive may be used to improve readability of the code.

• Class names: Class names are typeset in CamelCase, starting with a capital
letter, e.g. class ModuleManager. Every class should provide sensible Doxygen
documentation for the class itself as well as for all member functions.

• Member functions: Naming conventions are different for public and private
class members. Public member function names are typeset as camelCase
names without underscores, e.g. getElectricFieldType(). Private member
functions use lower-case names, separating individual words by an underscore,
e.g. create_detector_modules(...). This allows to visually distinguish between
public and restricted access when reading code.

In general, public member function names should follow the get/set convention,
i.e. functions which retrieve information and alter the state of an object should
be marked accordingly. Getter functions should be made const where possible to
allow usage of constant objects of the respective class.
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• Member variables: Member variables of classes should always be private and
accessed only via respective public member functions. This allows to change the class
implementation and its internal members without requiring to rewrite code which
accesses them. Member names should be typeset in lower-case letters, a trailing
underscore is used to mark them as member variables, e.g. bool terminate_. This
immediately sets them apart from local variables declared within a function.

10.1.2 Formatting

A set of formatting rules is applied to the code base in order to avoid unnecessary changes
from different editors and to maintain readable code. It is vital to follow these rules
during development in order to avoid additional changes to the code, just to adhere to the
formatting. There are several options to integrate this into the development workflow:

• Many popular editors feature direct integration either with clang-format or their
own formatting facilities.

• A build target called make format is provided if the clang-format tool is installed.
Running this command before committing code will ensure correct formatting.

• This can be further simplified by installing the pre-commit git hooks. A hook is a
script called by git before a certain action. This reprository uses the pre-commit
framework to manage, update and run these hooks. The pre-commit framework
can be activated by calling

pre-commit install

once. If the previous manual git hooks were installed, a -f should be appended to
force replacement of the old hooks.

The formatting rules are defined in the .clang-format file in the repository in machine-
readable form (for clang-format, that is) but can be summarized as follows:

• The column width should be 125 characters, with a line break afterwards.

• New scopes are indented by four whitespaces, no tab characters are to be used.

• Namespaces are indented just as other code is.

• No spaces should be introduced before parentheses ().

• Included header files should be sorted alphabetically.

• The pointer asterisk should be left-aligned, i.e. int* foo instead of int *foo.

The continuous integration automatically checks if the code adheres to the defined format
as described in Section 11.3.
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10.2 Building Modules Outside the Framework

Allpix Squared provides CMake modules which allow to build modules for the framework
outside the actual code repository. The macros required to build a module are provided
through the CMake modules and are automatically included when using the FIND_PACKAGE
(Allpix) CMake command. By this, modules can easily be moved into and out from the
module directory of the framework without requiring changes to its CMakeLists.txt.

A minimal CMake setup for compiling and linking external modules to the core and
object library of the Allpix Squared framework is the following:

CMAKE_MINIMUM_REQUIRED(VERSION 3.6.3 FATAL_ERROR)

FIND_PACKAGE(Allpix 2.2 REQUIRED)

ALLPIX_DETECTOR_MODULE(MODULE_NAME)
ALLPIX_MODULE_SOURCES(${MODULE_NAME} MySimulationModule.cpp)

All dependencies of the framework such as ROOT or Boost.Random are automat-
ically added as CMake targets and can be used by the module. The required
CMAKE_CXX_STANDARD is automatically inferred from the settings used to build the
framework. Additional libraries can be linked to the module using the standard CMake
command

TARGET_LINK_LIBRARIES(${MODULE_NAME} MyExternalLibrary)

A more complex CMake structure, suited to host multiple external modules, is provided
in a separate repository [96].

In order to load modules which have been compiled and installed in a different location
than the ones shipped with the framework itself, the respective search path has to be
configured properly in the Allpix Squared main configuration file:

[AllPix]
# Library search paths
library_directories = "~/allpix-modules/build", "/opt/apsq-modules"

The relevant parameter is described in detail in Section 3.4.

10.3 Implementing a New Module

Owing to its modular structure, the functionality of the Allpix Squared can easily be
extended by adding additional modules which can be placed in the simulation chain. Since
the framework serves a wide community, modules should be as generic as possible, i.e. not
only serve the simulation of a single detector prototype but implement the necessary
algorithms such that they are reusable for other applications. Furthermore, it may be
beneficial to split up modules to support the modular design of Allpix Squared.

Before starting the development of a new module, it is essential to carefully read the
documentation of the framework module manager which can be found in Section 5.3.

191



10 Module & Detector Development

The basic steps to implement a new module, hereafter referred to as ModuleName, are
the following:

1. Initialization of the code for the new module, using the script etc/scripts/
make_module.sh in the repository. The script will ask for the name of the model
and the type (unique or detector-specific). It creates the directory with a minimal
example to get started together with the rough outline of its documentation in
README.md.

2. Before starting to implement the actual module, it is recommended to update the
introductory documentation in README.md. No additional documentation has to
be provided, as this file is automatically included in the user manual. It should be
written in GitLab Flavored Markdown (GLFM) [97], so that formulae can also be
included (see the spec entry). The Doxygen documentation in <ModuleName>.hpp
should also be extended to provide a basic description of the module.

3. Finally, the constructor and init, run and/or finalize methods can be written,
depending on the requirements of the new module.

Additional sources of documentation which may be useful during the development of a
module include:

• The framework documentation in Chapter 4 for an introduction to the different
components of the framework.

• The module documentation in Chapter 8 for a description of the functionality of
other modules already implemented, and to look for similar modules which can
help during development.

• The Doxygen (core) reference documentation included in the framework [5].

• The latest version of the source code of all modules and the Allpix Squared core
itself.

Any module potentially useful for other users should be contributed back to the main
repository after is has been validated. It is strongly encouraged to send a merge request
through the mechanism provided by the software repository [13].

10.3.1 Files of a Module

Every module directory should at minimum contain the following documents (with
ModuleName replaced by the name of the module):

• CMakeLists.txt: The build script to load the dependencies and define the source
files of the library.

• README.md: Full documentation of the module.

• <ModuleName>Module.hpp: The header file of the module.

• <ModuleName>Module.cpp: The implementation file of the module.
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These files are discussed in more detail below. By default, all modules added to the
src/modules/ directory will be built automatically by CMake. If a module depends on
additional packages which not every user may have installed, one can consider adding
the following line to the top of the module’s CMakeLists.txt:

ALLPIX_ENABLE_DEFAULT(OFF)

General guidelines and instructions for implementing new modules are provided in Section
10.3.

CMakeLists.txt

Contains the build description of the module with the following components:

1. On the first line either ALLPIX_DETECTOR_MODULE(MODULE_NAME) or ALLPIX_UNIQUE_MODULE
(MODULE_NAME) depending on the type of module defined. The internal name
of the module is automatically saved in the variable ${MODULE_NAME} which
should be used as an argument to other functions. Another name can be used by
overwriting the variable content, but in the examples below, ${MODULE_NAME} is
used exclusively and is the preferred method of implementation.

2. The following lines should contain the logic to load possible dependencies of the
module (below is an example to load Geant4). Only ROOT is automatically
included and linked to the module.

3. A line with ALLPIX_MODULE_SOURCES(${MODULE_NAME} <sources>) defines the
module source files. Here, sources should be replaced by a list of all source files
relevant to this module.

4. Possible lines to include additional directories and to link libraries for dependencies
loaded earlier.

5. A line with ALLPIX_MODULE_REQUIRE_GEANT4_INTERFACE(${MODULE_NAME}) adds
the Geant4 interface library as explained in Section 14.1.

6. A line to register the directory with module tests, for example tests as in {
ALLPIX_MODULE_TESTS(${MODULE_NAME} "tests").

7. A line containing ALLPIX_MODULE_INSTALL(${MODULE_NAME}) to set up the re-
quired target for the module to be installed to.

A simple CMakeLists.txt for a module named Test which requires Geant4 is provided
below as an example.

# Define module and save name to MODULE_NAME
# Replace by ALLPIX_DETECTOR_MODULE(MODULE_NAME) to define a detector

module↪

ALLPIX_UNIQUE_MODULE(MODULE_NAME)

# Load Geant4
FIND_PACKAGE(Geant4 REQUIRED)

# Add the sources for this module
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ALLPIX_MODULE_SOURCES(${MODULE_NAME}
TestModule.cpp

)

# Add Geant4 to the include directories
TARGET_INCLUDE_DIRECTORIES(${MODULE_NAME} SYSTEM PRIVATE

${Geant4_INCLUDE_DIRS})↪

# Allpix Geant4 interface is required for this module
ALLPIX_MODULE_REQUIRE_GEANT4_INTERFACE(${MODULE_NAME})

# Link the Geant4 libraries to the module library
TARGET_LINK_LIBRARIES(${MODULE_NAME} ${Geant4_LIBRARIES})

# Register module tests
ALLPIX_MODULE_TESTS(${MODULE_NAME} "tests")

# Provide standard install target
ALLPIX_MODULE_INSTALL(${MODULE_NAME})

README.md

The README.md serves as the documentation for the module and should be written in
GitLab Flavored Markdown (GLFM) [97]. It is automatically included in the user manual
in Chapter 8.

The README.md should follow the structure indicated in the README.md file of the
DummyModule in src/modules/Dummy, and should contain at least the following sec-
tions:

• A YAML header with the name of the module (title), a short description
of the module (description) the status (module_status) and maintainers
(module_maintainers) of the module.

If the module is working and well-tested, the status of the module should be
Functional. By default, new modules are given the status Immature. The main-
tainer should mention the full name of the module maintainer, with their email
address in parentheses. A minimal header is therefore:

title: "ModuleName"
description: "Some short description"
module_status: "Functional"
module_maintainers: ["John Doe (<john.doe@example.com>)"]

In addition, the input (module_inputs) and output (module_outputs) objects of
the module should be given as well.

• An H2-size section named Description, containing a short description of the
module.
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• An H2-size section named Parameters, with all available configuration parameters
of the module. The parameters should be briefly explained in an itemised list with
the name of the parameter set as an inline code block.

• An H2-size section with the title Usage which should contain at least one simple
example of a valid configuration for the module.

For advances features in GLFM such as citations and formulae, see doc/README.md in
the project repository [13].

<ModuleName>Module.hpp and <ModuleName>Module.cpp

All modules should consist of both a header file and a source file. In the header file,
the module is defined together with all of its methods. Brief Doxygen documentation
should be added to explain what each method does. The source file should provide the
implementation of every method and also its more detailed Doxygen documentation.
Methods should only be declared in the header and defined in the source file in order to
keep the interface clean.

10.3.2 Module structure

All modules must inherit from the Module base class, which can be found in src/core
/module/Module.hpp. The module base class provides two base constructors, a few
convenient methods and several methods which the user is required to override. Each
module should provide a constructor using the fixed set of arguments defined by the
framework; this particular constructor is always called during by the module instantiation
logic. These arguments for the constructor differ for unique and detector modules.

For unique modules, the constructor for a TestModule should be:

TestModule(Configuration& config, Messenger* messenger, GeometryManager*
geo_manager)↪

: Module(config) {}

For detector modules, the first two arguments are the same, but the last argument is a
std::shared_ptr to the linked detector. It should always forward this detector to the
base class together with the configuration object. Thus, the constructor of a detector
module is:

TestModule(Configuration& config, Messenger* messenger,
std::shared_ptr<Detector> detector)↪

: Module(config, std::move(detector)) {}

The pointer to a Messenger can be used to bind variables to either receive or dispatch
messages as explained in Section 4.6. The constructor should be used to bind required
messages, set configuration defaults and to throw exceptions in case of failures. Unique
modules can access the GeometryManager to fetch all detector descriptions, while detector
modules directly receive a link to their respective detector.

In addition to the constructor, each module can override the following methods:
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• initialize(): Called once per module from the main thread after loading and
constructing all modules and before starting the event loop. This method can for
example be used to initialize histograms.

• initializeThread(): Called after global initialization but before event processing
and gives the possibility to initialize worker thread-specific members for modules.
If multithreading is used, this method is called by each worker thread separately; if
the simulation is run single-threaded, it is called once by the main thread.

• run(Event* event): Called for every event in the simulation, with a pointer to
the current event object as parameter. An exception should be thrown for serious
errors, otherwise a warning should be logged.

• finalizeThread(): Called for each worker thread after processing all events in
the run. If multithreading is used, this method is called by each worker thread
separately; if the simulation is run single-threaded, it is called once by the main
thread.

• finalize(): Called once per module from the main thread after processing all
events in the run and before destructing the module. Typically used to save the
output data (like histograms). Any exceptions should be thrown from here instead
of the destructor.

If necessary, modules can also access the ConfigurationManager directly in order to
obtain configuration information from other module instances or other modules in the
framework using the getConfigManager() call. This allows to retrieve and e.g. store the
configuration actually used for the simulation alongside the data.

If a module should be run using multithreading but requires to execute its run method in
the order of event numbers, for example a module that writes to an output file, then the
module can inherit from the SequentialModule class, without implementing additional
functionality. This will ensure that the run method will receive events one-by-one and in
the correct sequence.

10.4 Writing Thread-Safe Code

In Allpix Squared events are processed fully parallel on separate threads which requires
some consideration when writing module code. This section briefly lists the most
important aspects to take into account.

10.4.1 Member Variables

While the initialize() and finalize() of the module are guaranteed to be called
sequentially, the run() method will be called simultaneously from different threads and
for different events. Therefore, no module data members must be altered from within
the run() function, otherwise these changes will affect other events being processed in
parallel on other threads. Configuration parameters cached as member variables should
therefore be set only in the initialize() function.

For initialization and finalization of thread-local data members, i.e. structures which
have to be configured for each of the worker threads the module is executed on, the
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initializeThread() and finalizeThread() methods are available. They are called
once on each worker thread after the initialize() and before the finalize() methods,
respectively.

10.4.2 Histograms

Allpix Squared uses ROOT histograms for collecting and storing statistics and other
additional information about the simulation process. ROOT provides the template class
ROOT::TThreadedObject which allows to use histograms in multithreaded environments
but slightly alters the interface of the histogram objects. Furthermore, there have been
significant changes to the class between minor release version of ROOT and it doesn’t
scale well with a large number of predefined threads. Therefore, Allpix Squared provides
its own re-implementation of this class, allpix::ThreadedHistogram which also restores
the original interface of the histogram classes, i.e. it is possible to instantiate, fill and
store histograms the same way as in a single-threaded environment.

This class can be used as follows:

// Declaration of a new histogram of type "TH1D"
Histogram<TH1D> my_histogram;

// Creation of the histogram using the CreateHistogram helper method:
my_histogram = CreateHistogram<TH1D>("name", "title", 100, 0., 100.);

// Filling, setting bin contents and writing the histogram works as
before:↪

my_histogram->Fill(12.);
my_histogram->SetBinContent(15, 23.);
my_histogram->Write();

10.4.3 Declaring a Module Thread-Safe

If a module is thread-safe, i.e. its run() function can be called from different threads in
parallel without locking, it can be declared as thread-safe to the framework. In this case
the ModuleManager will allow multithreading of calls to this module.

This declaration is done by placing the following call in the constructor of the module:

MyParallelModule::MyParallelModule(Configuration& config, Messenger*
messenger, std::shared_ptr<Detector> detector)↪

: Module(std::move(config), std::move(detector)) {
// This module is thread-safe and can be called from different
threads simultaneously:↪

allow_multithreading();
}

By adding this statement, the module certifies to work correctly if its run() method
is executed multiple times in parallel, for different events. This means in particular
that the module will safely handle access to shared (for example static) variables as
described in Section 10.4 and that it will properly assign and bind ROOT histograms
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to their respective directories in the output ROOT file before the event processing
starts and the run() method is called the first time. Access to constant operations in
the GeometryManager, Detector and DetectorModel is always valid between various
threads. In addition, sending and receiving messages is thread-safe.

Since multithreading might be disabled by other modules in the chain or by the user via
the configuration file or command line, it might be required to check at runtime of the
module if it is currently running in a multithreaded environment. This can be achieved
with the following method:

MyParallelModule::run(Event* event) {
if(multithreadingEnabled()) {

// This module is currently running in a multithreaded
environment↪

} else {
// This module is running in a fully sequential environment

}
}

10.5 Adding a New Detector Model

Custom detector models based on the detector classes provided with Allpix Squared can
easily be added to the framework. In particular Section 5.2 explains all parameters of the
detector models currently available. The default models provided in the models directory
of the repository can serve as examples. To create a new detector model, the following
steps should be taken:

1. Create a new file with the name of the model followed by the .conf suffix (for
example your_model.conf).

2. Add a configuration parameter type with the type of the model, at the moment
either monolithic or hybrid for respectively monolithic sensors or hybrid models
with bump bonds and a separate readout chip.

3. Add all required parameters and possibly optional parameters as explained in
Section 5.2.

4. Include the detector model in the search path of the framework by adding the
model_paths parameter to the general setting of the main configuration (see Section
3.4), pointing either directly to the detector model file or the directory containing
it. It should be noted that files in this path will overwrite models with the same
name in the default model folder.

Models should be contributed to the main repository to make them available to other
users of the framework. To add the detector model to the framework the configuration
file should be moved to the folder models of the repository. The file should then be
added to the installation target in the CMakeLists.txt file of the models directory.
Afterwards, a merge request can be created via the mechanism provided by the software
repository [13].
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10.6 How to contribute

Thanks for considering to contribute to Allpix Squared. Any type of merge request,
ranging from small bugfixes, improvements to the documentation to entirely new func-
tionality, is much appreciated. We, the maintainers, will try to our best to look carefully
at every merge request.

If you only want to submit an issue, that is also welcome, please continue directly to the
issue tracker [6] to open a ticket.

The following is a set of guidelines that will help both you as submitter as well as us
maintainers to make it as easy as possible to contribute changes.

10.6.1 Core and modules

Allpix Squared is split up in a slim core, providing base functionality as configuration,
detector geometry, management of modules, messaging as well as various utilities. The
actual chain of simulation is developed in independent modules. Please try to separate
any merge request for improvements or changes to the core from the implementation and
updates of modules. Generally any kind of separable simulation functionality should be
implemented in its own module and submitted as a individual merge request. Also try
to submit individual merge request for independent changes to allow us to review them
separately.

If you have any doubt about the best way to implement new functionality or how to split
it up, please open an issue with the discussion tag on the issue tracker [6]. Also please
do open an incomplete merge request as soon as possible with the “Draft” label to allow
for early discussion.

10.6.2 Getting started

Please follow the next steps to setup your system for contributing. Note that these are
slightly different from the normal installation instructions.

1. Fork the repository by clicking on “Fork” on the main repository [13].
2. Clone your local fork using git clone https://gitlab.cern.ch/allpix-

squared/allpix-squared.git (when using HTTPS, this has to be changed
accordingly for SSH or KRB5)

3. Install the latest version of the clang package with the clang-format and clang-tidy
programs.

4. Follow the build instructions using CMake explained in the User’s manual.

If you don’t have an account for CERN’s GitLab instance (restricted to CERN associates),
you can fork the GitHub repository as well.
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10.6.3 Making changes

Now you can start making changes and adding new functionality to the code.

1. Run pre-commit install -f from the repository top folder to install the git hooks
that automatically update the format of the code to comply with the coding style.

2. Create a new branch from master with a description of the change using git
checkout -b my-new-branch-name.

3. Read the relevant sections in the User’s manual before starting to make changes.
4. Implement the new code and frequently commit using git commit -m 'my commit

message'. Please use descriptive messages explaining what changed.
5. Push the code to your local mirror using git push --set-upstream origin.
6. Retrieve the latest changes to the upstream master every now and then. To do

this add the upstream version to your remotes using git remote add upstream
https://gitlab.cern.ch/allpix-squared/allpix-squared.git (or the SSH or
KRB5 version if preferred). This only has to be done once, the first time after cloning
the repository. Afterwards you fetch the changes using git fetch upstream. Then
you can add the change preferably using rebase with git rebase upstream master.
If that causes problems you can use merge with git merge upstream master.

10.6.4 Submitting a merge request

As soon as there exists something in your branch, a merge request can be opened on
the main repository. Do not forget that it is not a problem to open a merge request for
incomplete implementations.

1. Retrieve the latest changes from the upstream version as explained above.
2. Optionally format the code if you did not add the git-hook from the beginning,

this can be done manually by running make format from the build directory.
3. Go to merge request and click on “New merge request”.
4. Follow the instructions. Do not forget to use the ‘Draft:’ prefix if your code is only

partially ready. Then submit the merge request.
5. Please wait for the maintainers to give you access to the continuous integration

(CI) runners that will check your code if you do not already have it.
6. Add all the specific runners on your local repository at https://gitlab.cern.ch/

your-username/allpix-squared/settings/ci_cd.
7. The pipeline can now be restarted and the CI will check your changes. If the CI

fails and gives an error please refer to the log containing a description about what
went wrong. It is likely that errors will appear because Allpix Squared enforces
a strict policy of compiler errors and requires full compliance of the clang-tidy
“linter” tool, which frequently complains about minor changes (it might help to
search for error: to find the actual error(s) in the output). This clang-tidy tool
can also be run locally on your pc by executing make check-lint from the build
directory. Easy changes can be fixed automatically by executing make lint.

8. The maintainers will look at your proposed changes and likely provide some
(constructive) feedback.

9. Please continue to update the code with the received comments until every reviewer
and the continuous integration is happy :)
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10. Your merge request can now be merged in. Congratulations and thank you so much,
you have contributed something new to the repository.
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The following chapter will introduce a few tools included in the framework to ease
development and help to maintain a high code quality. This comprises tools for the
developer to be used while coding, as well as a continuous integration (CI) and automated
test cases of various framework and module functionalities.

11.1 Additional Targets

A set of testing targets in addition to the standard compilation targets are automatically
created by CMake to enable additional code quality checks and testing. Some of these
targets are used by the project’s CI, others are intended for manual checks. Currently,
the following targets are provided:

• make format: Invokes the clang-format tool to apply the project’s coding style
convention to all files of the code base. The format is defined in the .clang-format
file in the root directory of the repository and mostly follows the suggestions defined
by the standard LLVM style with minor modifications. Most notably are the
consistent usage of four whitespace characters as indentation and the column limit
of 125 characters.

• make check-format: Also invokes the clang-format tool but does not apply the
required changes to the code. Instead, it returns an exit code 0 (pass) if no changes
are necessary and exit code 1 (fail) if changes are to be applied. This is used by
the CI.

• make lint: Invokes the clang-tidy tool to provide additional linting of the source
code. The tool tries to detect possible errors (and thus potential bugs), dangerous
constructs (such as uninitialized variables) as well as stylistic errors. In addition, it
ensures proper usage of modern C++ standards. The configuration used for the
clang-tidy command can be found in the .clang-tidy file in the root directory
of the repository.

• make check-lint: Also invokes the clang-tidy tool but does not report the issues
found while parsing the code. Instead, it returns an exit code 0 (pass) if no errors
have been produced and exit code 1 (fail) if issues are present. This is used by the
CI.

• make cppcheck: Runs the cppcheck command for additional static code analysis.
The output is stored in the file cppcheck_results.xml in XML 2.0 format. It
should be noted that some of the issues reported by the tool are to be considered
false positives.
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• make cppcheck-html: Compiles a HTML report from the defects list gathered
by make cppcheck. This target is only available if the cppcheck-htmlreport
executable is found in the PATH.

• make package: Creates a binary release tarball as described in Section 10.2.

11.2 Packaging

Allpix Squared comes with a basic configuration to generate tarballs from the compiled
binaries using the CPack command. In order to generate a working tarball from the
current Allpix Squared build, the RPATH of the executable should not be set, otherwise
the allpix binary will not be able to locate the dynamic libraries. If not set, the global
LD_LIBRARY_PATH is used to search for the required libraries:

mkdir build
cd build
cmake -DCMAKE_SKIP_RPATH=ON ..
make package

Since the CMake installation path defaults to the project’s source directory, certain
files are excluded from the default installation target created by CMake. This includes
the detector models in the models/ directory as well as the additional tools provided
in tools/root_analysis_macros/ folder. In order to include them in a release tarball
produced by CPack, the installation path should be set to a location different from the
project source folder, for example:

cmake -DCMAKE_INSTALL_PREFIX=/tmp ..

The content of the produced tarball can be extracted to any location of the file system,
but requires the ROOT6 and Geant4 libraries as well as possibly additional libraries
linked by individual at runtime.

For this purpose, a setup.sh shell script is automatically generated and added to the
tarball. By default, it contains the ROOT6 path used for the compilation of the binaries.
Additional dependencies, either library paths or shell scripts to be sourced, can be added
via CMake for individual modules using the CMake functions described below. The paths
stored correspond to the dependencies used at compile time, it might be necessary to
change them manually when deploying on a different computer.

11.2.1 ADD_RUNTIME_DEP(name)

This CMake command can be used to add a shell script to be sourced to the setup file.
The mandatory argument name can either be an absolute path to the corresponding file,
or only the file name when located in a search path known to CMake, for example:

# Add "geant4.sh" as runtime dependency for setup.sh file:
ADD_RUNTIME_DEP(geant4.sh)
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The command uses the GET_FILENAME_COMPONENT command of CMake with the PROGRAM
option. Duplicates are removed from the list automatically. Each file found will be
written to the setup file as

source <absolute path to the file>

11.2.2 ADD_RUNTIME_LIB(names)

This CMake command can be used to add additional libraries to the global search path.
The mandatory argument names should be the absolute path of a library or a list of
paths, such as:

# This module requires the LCIO library:
FIND_PACKAGE(LCIO REQUIRED)
# The FIND routine provides all libraries in the LCIO_LIBRARIES

variable:↪

ADD_RUNTIME_LIB(${LCIO_LIBRARIES})

The command uses the GET_FILENAME_COMPONENT command of CMake with the
DIRECTORY option to determine the directory of the corresponding shared library.
Duplicates are removed from the list automatically. Each directory found will be added
to the global library search path by adding the following line to the setup file:

export LD_LIBRARY_PATH="<library directory>:$LD_LIBRARY_PATH"

11.3 Continuous Integration

Quality and compatibility of the Allpix Squared framework is ensured by an elaborate
continuous integration (CI) which builds and tests the software on all supported platforms.
The Allpix Squared CI uses the GitLab Continuous Integration features and consists of
seven distinct stages as depicted in the figure below. It is configured via the .gitlab-ci.
yml file in the repository’s root directory, while additional setup scripts for the GitLab Ci
Runner machines and the Docker instances can be found in the .gitlab/ci directory.

Typical Allpix Squared continuous integration pipeline with 34 jobs distributed over seven
distinct stages. In this example, all jobs passed.
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The compilation stage builds the framework from the source on different platforms.
Currently, builds are performed on CentOS 7 and AlmaLinux 9/Red Hat Enterprise
Linux 9. On Linux type platforms, the framework is compiled with recent versions of
GCC and Clang. The build is always performed with the default compiler flags enabled
for the project:

-pedantic -Wall -Wextra -Wcast-align -Wcast-qual -Wconversion
-Wuseless-cast -Wctor-dtor-privacy -Wzero-as-null-pointer-constant
-Wdisabled-optimization -Wformat=2 -Winit-self -Wlogical-op
-Wmissing-declarations -Wmissing-include-dirs -Wnoexcept
-Wold-style-cast -Woverloaded-virtual -Wredundant-decls
-Wsign-conversion -Wsign-promo -Wstrict-null-sentinel
-Wstrict-overflow=5 -Wswitch-default -Wundef -Werror -Wshadow
-Wformat-security -Wdeprecated -fdiagnostics-color=auto
-Wheader-hygiene

The testing stage executes the framework system and unit tests described in the next
chapter. Different jobs are used to run different test types. This allows to optimize the
CI setup depending on the demands of the test to be executed. All tests are expected to
pass, and no code that fails to satisfy all tests will be merged into the repository.

The formatting stage ensures proper formatting of the source code using the clang-
format and following the coding conventions defined in the .clang-format file in the
repository. In addition, the clang-tidy tool is used for “linting” of the source code.
This means, the source code undergoes a static code analysis in order to identify possible
sources of bugs by flagging suspicious and non-portable constructs used. Tests are marked
as failed if either of the CMake targets make check-format or make check-lint fail.
No code that fails to satisfy the coding conventions and formatting tests will be merged
into the repository. Furthermore, also basic sanity checks are carried out on the CMake
build framework code using cmake-lint.

The performance stage runs a longer simulation with several thousand events and
measures the execution time. This facilitates monitoring of the simulation performance,
a failing job would indicate a degradation in speed. These CI jobs run on dedicated
machines with only one concurrent job. Performance tests are separated into their own
CI stage because their execution is time consuming and they should only be started once
proper formatting of the new code is established.

The documentation stage prepares this user manual as well as the Doxygen source
code documentation for publication. This also allows to identify e.g. failing compilation
of the LaTeX document.

The packaging stage wraps the compiled binaries up into distributable tarballs for
several platforms. This includes adding all libraries and executables to the tarball as well
as preparing the setup.sh script to prepare run-time dependencies using the information
provided to the build system. This procedure is described in more detail in Section
10.2.

Finally, the deployment stage is only executed for new tags in the repository. Whenever
a tag is pushed, this stages receives the build artifacts of previous stages and publishes
them to the Allpix Squared project website through the EOS file [98]. More detailed
information on deployments is provided in Section 10.4.
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11.4 Automatic Deployment

The CI is configured to automatically deploy new versions of Allpix Squared and its user
manual and code reference to different places to make them available to users. This
section briefly describes the different deployment end-points currently configured and
in use. The individual targets are triggered either by automatic nightly builds or by
publishing new tags. In order to prevent accidental publications, the creation of tags is
protected. Only users with Maintainer privileges can push new tags to the repository.
For new tagged versions, all deployment targets are executed.

Software deployment to CVMFS

The software is automatically deployed to CERN’s VM file system (CVMFS) [16] for every
new tag. In addition, the master branch is built and deployed every night. New versions
are published to the folder /cvmfs/clicdp.cern.ch/software/allpix-squared/ where
a new folder is created for every new tag, while updates via the master branch are always
stored in the latest folder.

The deployed version currently comprises all modules as well as the detector models
shipped with the framework. An additional setup.sh is placed in the root folder of the
respective release, which allows to set up all runtime dependencies necessary for executing
this version. Versions both for CentOS 7 and CentOS 8 are provided.

The deployment CI job runs on a dedicated computer with a GitLab SSH runner. Job
artifacts from the packaging stage of the CI are downloaded via their ID using the
script found in .gitlab/ci/download_artifacts.py, and are made available to the
cvclicdp user which has access to the CVMFS interface. The job checks for concurrent
deployments to CVMFS and then unpacks the tarball releases and publishes them to the
CLICdp experiment CVMFS space, the corresponding script for the deployment can be
found in .gitlab/ci/gitlab_deployment.sh. This job requires a private API token
to be set as secret project variable through the GitLab interface, currently this token
belongs to the service account user ap2.

Documentation deployment

The documentation is provided as an online version and a PDF. Both get generated from
the Markdown [97] documentation found in the project repository [13]. For the PDF
the plain Markdown documentation is converted via pandoc [99] and a Python script
adjusting to the LaTeX for the PDF.

The CI deploys the PDF on CERN’s EOS at /eos/project/a/allpix-squared/www
/usermanual/. The PDF documentation is published for new tagged versions of the
framework and for nightlies (version latest). The version number is attached to the file
name so that the website contains the usermanual for all versions.

The CI jobs uses the ci-web-deployer Docker image from the CERN GitLab CI tools to
access EOS, which requires a specific file structure of the artifact. All files in the artifact’s
public/ folder will be published to the www/ folder of the given project. This job requires
the secret project variables EOS_ACCOUNT_USERNAME and EOS_ACCOUNT_PASSWORD to be
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set via the GitLab web interface. Currently, this uses the credentials of the service
account user ap2.

The online version of the documentation is included in the project’s website, which
uses hugo [100] to generate HTML from Markdown. The project website is hosted in
its own repositroy [101] and deployed directly from the CI via GitLab Pages (see also
how-to.docs.cern.ch).

If a new tag is pushed to the project repository, the CI in the project repository triggers
a CI pipeline in the website repository. This pipeline clones the project repository to
get the Markdown documentation, generates the HTML with hugo and deploys it. This
setup allows to update information on the website without pushing a new tag to the
project repository.

For more information on the documentation, see doc/README.md in the project repository
[13].

11.5 Building Docker Images

New Allpix Squared Docker images are automatically created and deployed by the CI
for every new tag and as a nightly build from the master branch. New versions are
published to project Docker container registry [15]. Tagged versions can be found via
their respective tag name, while updates via the nightly build are always stored with the
latest tag attached.

The final Docker image is formed from two consecutive images with different layers
of software added. The deps image contains all build dependencies such as compilers,
CMake, and git as well as the two main dependencies of the framework are ROOT6 and
Geant4. It derives from the latest Ubuntu LTS Docker image and can be build using the
etc/docker/Dockerfile.deps file via the following commands:

docker build --file etc/docker/Dockerfile.deps \
--tag gitlab-registry.cern.ch/allpix-squared/\
allpix-squared/allpix-squared-deps:vX \
.

docker push gitlab-registry.cern.ch/allpix-squared/\
allpix-squared/allpix-squared-deps

This image is created manually and only updated when necessary, i.e. if major new version
of the underlying dependencies are available. The placeholder vX is a version number
which should be incremented when applying changes or updating software versions in
the deps Docker image. This version number should subsequently also be adjusted in
the CI pipeline (.gitlab-ci.yml) and the Allpix Squared Docker file (/etc/docker/
Dockerfile) so that the correct dependencies image is picked up.
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Important: The Docker image containing the dependencies should not be flattened
with commands like

docker export <container id> | docker import - <tag name>

because it strips any ENV variables set or used during the build process. They
are used to set up the ROOT6 and Geant4 environments. When flattening, their
executables and data paths cannot be found in the final Allpix Squared image.

Finally, the latest revision of Allpix Squared is built using the file etc/docker/
Dockerfile. This job is performed automatically by the continuous integration and the
created containers are directly uploaded to the project’s Docker registry:

docker build --file etc/docker/Dockerfile
\↪

--tag gitlab-registry.cern.ch/allpix-squared/allpix-squared
\↪

.

A short summary of potential use cases for Docker images is provided in Section 2.7.
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The build system of the framework provides a set of automated tests which are executed
by the CI to ensure proper functioning of the framework and its modules.

Note: Since different Geant4 versions may result in different events, a specific
Geant4 version needs to be chosen for the test suite. All tests in the repository are
written for Geant4 11.2 / LCG105.

The tests can also be manually invoked from the build directory of Allpix Squared with:

ctest

When executed by the CI, the results on passed and failed tests are automatically gathered
and prominently displayed in merge requests along with the overall CI pipeline status.
This allows a quick identification of issues without having to manually search through
the log of several CI jobs.

The different subcategories of tests described below can be executed or ignored using the
-E (exclude) and -R (run) switches of the ctest program:

ctest -R test_performance

12.1 Test Configurations

Test configuration files consist of regular Allpix Squared configuration files for a simulation,
invoking the desired behavior to be tested. In addition, test files can contain tags and
pass conditions as described in the subsequent section.

CMake automatically searches for Allpix Squared configuration files in the different
directories and passes them to the Allpix Squared executable (cf. Section 3.5). Adding
a new test is as simple as adding a new configuration file to the respective directories
and specifying the pass or fail conditions based on the tags described in the following
paragraphs.

Three different types of tests are distinguished:
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12.1.1 Framework Functionality Tests

The framework functionality tests validate the core framework components such as
seed distribution, multithreading capabilities, configuration parsing and coordinate
transformations. The configuration of the tests can be found in the etc/unittests/
test_core directory of the repository and are automatically discovered by CMake.

12.1.2 Module Functionality Tests

These tests are meant to ensure proper functioning of an individual module given a
defined input and thus protect the framework against accidental changes affecting the
physics simulation. Using a fixed seed (using the random_seed configuration keyword)
together with a specific version of Geant4 [1], if necessary, allows to reproduce the same
simulation event.

Typically, one single event is produced per test and the DEBUG-level logging output of
the respective module is checked against pre-defined expectation output using regular
expressions. Once modules are altered, their respective expectation output has to be
adapted after careful verification of the simulation result.

Module tests are located within the individual module source folders and are only enabled
if the respective module will be built. For new modules, the directory in which the test
files are located needs to be registered in the main CMake file of the module as described
in Section 10.3. Module test files have to start with a two-digit number and end with the
file extension .conf, e.g. 01-mytest.conf, to be detected.

12.1.3 Performance Tests

These tests run a set of simulations on a dedicated machine to catch any unexpected
prolongation of the simulation time, e.g. by an accidentally introduced heavy operation
in a hot loop. Performance tests use configurations prepared such, that one particular
module takes most of the load (dubbed the slowest instantiation by Allpix Squared), and
a few of thousand events are simulated starting from a fixed seed for the pseudo-random
number generator. The #TIMEOUT keyword in the configuration file will ask CTest to
abort the test after the given running time.

In the project CI, performance tests are limited to native runners, i.e. they are not
executed on docker hosts where the hypervisor decides on the number of parallel jobs.
Only one test is performed at a time.

Despite these countermeasures, fluctuations on the CI runners occur, arising from different
loads of the executing machines. Thus, all performance CI jobs are marked with the
allow_failure keyword which allows GitLab to continue processing the pipeline but will
mark the final pipeline result as passed with warnings indicating an issue in the pipeline.
These tests should be checked manually before merging the code under review.

The configuration of the tests can be found in the etc/unittests/test_performance
directory of the repository and are automatically discovered by CMake.
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12.2 Test Tags, Pass and Fail Conditions

Test tags allow to influence the execution condition of the given test configuration, or to
define a required condition for passing or failing the test. These expressions are simply
placed in the configuration file of the corresponding tests, a tag at the beginning of the
line indicates which test tag the line corresponds to. The following tags are available:

• Passing a test: The expression marked with the tag #PASS has to be found in the
output in order for the test to pass. If the expression is not found, the test fails.

• Failing a test: If the expression tagged with #FAIL is found in the output, the
test fails. If the expression is not found, the test passes.

• Depending on another test: The tag #DEPENDS can be used to indicate dependen-
cies between tests. For example, module test ROOTObjectReader/01-reading im-
plements such a dependency as it uses the output of module test ROOTObjectWriter
/01-write to read data from a previously produced Allpix Squared data file.

• Defining a timeout: For performance tests the runtime of the application is
monitored, and the test fails if it exceeds the number of seconds defined using the
#TIMEOUT tag.

• Adding additional CLI options: Additional module command line options can
be specified for the allpix executable using the #OPTION tag, following the format
found in Section 3.5. The -o flag will be added automatically. Multiple options
can be supplied by repeating the #OPTION tag in the configuration file, only one
option per tag is allowed. In exactly the same way options for the detectors can be
set as well using the #DETOPION tag, where -g will be added automatically. For all
other command line options to be passed to the executable, the #CLIOPTION can
be used. Here, the complete flag and possible value needs to be passed, e.g. -j9.

• Defining a test case label: Tests can be grouped and executed based on labels,
e.g. for code coverage reports. Labels can be assigned to individual tests using the
#LABEL tag.

• Describing the test: Every test should bear a short description of its goal. This
descriptive text can be provided via the #DESC tag and is required for every test.
CMake will print warnings for every test missing this tag.

• Running scripts: Some tests require additional input which needs to be generated
by a script. For this propose, commands to be executed before the tests starts can
be provided via the #BEFORE_SCRIPT tag, e.g.

#BEFORE_SCRIPT python
@PROJECT_SOURCE_DIR@/etc/scripts/create_deposition_file.py
--type a --detector mydetector --events 2 --steps 1 --seed 0

↪

↪

to run a Python script that generates an input file read by the test.

• Requiring external data: Some tests require external data which needs to
be downloaded before executing the test. For this purpose, the #DATA tag is
available, which can contain file paths which will be set as required files for the
test. If registered with CMake’s ExternalData module, they will be downloaded
automatically.
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12.3 Interpretation of Pass and Fail Conditions

Multiple pass or fail conditions can be separated by a semicolon or by adding multiple
#PASS or #FAIL expressions. It should however be noted that test passes or fails if any
of these conditions is met, i.e. the conditions are combined with a logical OR. At least
one pass or one fail conditions must be present in every test.

Pass and fail condition are not interpreted as regular expressions but relevant characters
are automatically escaped. This allows to directly copy corresponding lines form the log
into the respective condition without manually creating a matching regular expression. A
noteworthy exception to this are line breaks. To ease matching of multi-line expressions,
the newline escape sequence \n of any test expression is automatically expanded to [\r\
n\t ]* to match any new line, carriage return, tab and whitespace characters following
the line break.

12.4 Warning and Error Messages During Testing

If no explicit fail conditions are specified, the test will fail if any WARNING, ERROR or FATAL
appears in the output log unless it is already part of the pass condition. For example, if
a test is supposed to pass in case of an error provoked

(FATAL) [I:GeometryBuilderGeant4] Error during execution of run:
Could not find a detector model of

type 'missing_model'↪

Please check your configuration and
modules. Cannot continue.↪

The full error message including the FATAL has to be provided as pass condition:

#PASS (FATAL) [I:GeometryBuilderGeant4] Error during execution of
run:\nCould not find a detector model of type 'missing_model'↪

If a test is expected to create multiple error or warning messages which cannot be
matched with a single pass condition, the #FAIL parameter should be set explicitly to
avoid matching the respective flags:

# This test created multiple WARNING messages, we exclude WARNING from
the↪

# fail expression by explicitly defining it as FATAL only:
#PASS (ERROR) Multithreading disabled since the current module

configuration does not support it↪

#FAIL FATAL

12.5 Directory Variables in Tests

Sometimes it is necessary to pass directories or file names as test input. To facilitate this,
the test files can contain variables which are replaced with the respective paths before
being executed. All variable names have to be enclosed in @ symbols to be detected and

214



12.5 Directory Variables in Tests

parsed correctly. Variables can be used both in test files and the auxiliary configuration
files such as detector geometry definitions.

The following variables are available:

• @TEST_DIR@: Directory in which the current test is executed, i.e. where all output
files will be placed.

• @TEST_BASE_DIR@: Base directory under which all tests are being executed. This
can be used to reference the output files from another test. It should be noted that
the respective test has to be referenced using the #DEPENDS keyword to ensure that
it successfully ran before.

• @PROJECT_SOURCE_DIR@: The root directory of the project. This can for example
be used to call a script provided in the etc/scripts directory of the repository
[13].

The following example demonstrates the use of these variables. A script is called before
executing the test and an input file is expected:

[Allpix]
detectors_file = "detector.conf"

[DepositionReader]
file_name = "@TEST_DIRECTORY@/deposition.root"

#BEFORE_SCRIPT python
@PROJECT_SOURCE_DIR@/etc/scripts/create_deposition_file.py --type a
--detector mydetector

↪

↪

215





13 FAQ

This chapter provides answers to some of the most frequently asked questions concerning
usage, configuration and extension of the Allpix Squared framework.

13.1 Installation & Usage

What is the easiest way to use Allpix Squared on CERN’s LXPLUS? Central
installations of Allpix Squared on LXPLUS are provided via CVMFS for both supported
LXPLUS operating systems, CERN CentOS 7 and CentOS 8. Please refer to Section 2.8
for the details of how to access these installations.

What is the quickest way to get a local installation of Allpix Squared? The project
provides ready-to-use Docker containers which contain all dependencies such as Geant4
and ROOT. Please refer to Section 2.7 for more information on how to start and use
these containers.

13.2 Configuration

How do I run a module only for one detector? This is only possible for detector
modules (which are constructed to work on individual detectors). To run it on a single
detector, one should add a parameter name specifying the name of the detector (as defined
in the detector configuration file):

[ElectricFieldReader]
name = "dut"
model = "mesh"
file_name = "../example_electric_field.init"

How do I run a module only for a specific detector type? This is only possible for
detector modules (which are constructed to work on individual detectors). To run it for a
specific type of detector, one should add a parameter type with the type of the detector
model (as set in the detector configuration file by the model parameter):

[ElectricFieldReader]
type = "timepix"
model = "linear"
bias_voltage = -50V
depletion_voltage = -30V

Please refer to Section 4.3 for more information.
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How can I run the same type of module with different settings? This is possible by
using the input and output parameters of a module that specify the messages of the
module:

[DefaultDigitizer]
name = "dut0"
adc_resolution = 4
output = "low_adc_resolution"

[DefaultDigitizer]
name = "dut0"
adc_resolution = 12
output = "high_adc_resolution"

By default, both the input and the output of module are messages with an empty name.
In order to further process the data, subsequent modules require the input parameter to
not receive multiple messages:

[DetectorHistogrammer]
input = "low_adc_resolution"
name = "dut0"

[DetectorHistogrammer]
input = "high_adc_resolution"
name = "dut0"

Please refer to Section 4.6 for more information.

How can I temporarily ignore a module during development? The section header of a
particular module in the configuration file can be replaced by the string Ignore. The
section and all of its key/value pairs are then ignored. Modules can also be excluded
from the compilation process as explained in Section 2.5.

Can I get a high verbosity level only for a specific module? Yes, it is possible to
specify verbosity levels and log formats per module. This can be done by adding the
log_level and/or log_format key to a specific module to replace the parameter in the
global configuration sections.

Can I import an electric field from TCAD and use it for simulating propagation?
Yes, the framework includes a tool to convert DF-ISE files from TCAD to an internal
format which Allpix Squared can parse. More information about this tool can be found
in Section 14.2, instructions to import the generated field are provided in Section 3.7.

What parameters should I consider when writig a simulation for a non-silicon sensor?
While Allpix Squared implements several material-dependent default parameters, other
parameters and models default to values suitable for silicon sensors. It is in any case
advisable to check the following configuration parameters to ensure consistent results.
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• Sensor material: The parameter sensor_material, to be adjusted in the corre-
sponding detector model file, is crucial for the particle interaction simulated via
Geant4 and defines further default parameters.

• Charge creation energy: The parameter charge_creation_energy is available in
several modules for energy deposition and provides a material dependent default.
For default values refer to Section 6.1.

• Fano factor: The parameter fano_factor is available in several modules for energy
deposition and provides a material dependent default. For default values refer to
Section 6.1.

• Mobility Model: The parameter mobility_model needs to be adapted to the sensor
material by the user. Section 6.2 lists the available models.

• Recombination Model: The parameter recombination_model can be adapted by
the user. Section 6.3 lists the available models.

13.3 Detector Models

I want to use a detector model with one or several small changes, do I have to
create a whole new model for this? No, models can be specialized in the detector
configuration file. To specialize a detector model, the key that should be changed in the
standard detector model, e.g. like sensor_thickness, should be added as key to the
section of the detector configuration (which already contains the position, orientation
and the base model of the detector). Only parameters in the header of detector models
can be changed. If support layers should be changed, or new support layers are needed,
a new model should be created instead. Please refer to Section 5.2 for more information.

13.4 Data Analysis

How do I access the history of a particular object? Many objects can include an internal
link to related other objects (for example getPropagatedCharges in the PixelCharge
object), containing the history of the object (thus the objects that were used to construct
the current object). These referenced objects are stored as special ROOT pointers inside
the object, which can only be accessed if the referenced object is available in memory.
In Allpix Squared this requirement can be automatically fulfilled by also binding the
history object of interest in a module. During analysis, the tree holding the referenced
object should be loaded and pointing to the same event entry as the object that requests
the reference. If the referenced object can not be loaded, an exception is thrown by the
retrieving method. Please refer to Section 7.2 for more information.

How do I access the Monte Carlo truth of a specific PixelHit? The Monte Carlo
truth is part of the history of a PixelHit. This means that the Monte Carlo truth can be
retrieved as described in the question above. Because accessing the Monte Carlo truth
of a PixelHit is quite a common task, these references are stored directly for every new
object created. This allows to retain the information without the necessity to keep the
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full object history including all intermediate steps in memory. Please refer to Section 7.2
for more information.

How do I find out, which Monte Carlo particles are primary particles and which have
been generated in the sensor? The Monte Carlo truth information is stored per-sensor
as MCParticle objects. Each MCParticle stores, among other information, a reference to
its parent. Particles which have entered the sensor from the outside world do not have
parent MCParticles in the respective sensor and are thus primaries.

Using this approach it is possible, to e.g. treat a secondary particle produced in one
detector as primary in a following detector.

Below is some pseudo-code to filter a list of MCParticle objects for primaries based on
their parent relationship:

// Collect all primary particles of the event:
std::vector<const MCParticle*> primaries;

// Loop over all MCParticles available
for(auto& mc_particle : my_mc_particles) {

// Check for possible parents:
if(mc_particle.getParent() != nullptr) {

// Has a parent, thus was created inside this sensor.
continue;

}

// Has no parent particles in this sensor, add to primary list.
primaries.push_back(&mc_particle);

}

A similar function is used e.g. in the DetectorHistogrammer module to filter primary
particles and create position-resolved graphs. Furthermore, the PixelHit and Pix-
elCharge objects provide two member functions to access Monte Carlo particles, one
which returns all known particles, getMCParticles(), and a second function called
getPrimaryMCParticles() which already performs the above filtering and only returns
primary particle references.

How do I access data stored in a file produced with the ROOTObjectWriter from
an analysis script? Allpix Squared uses ROOT trees to directly store the relevant
C++ objects as binary data in the file. This retains all information present during the
simulation run, including relations between different objects such as assignment of Monte
Carlo particles. In order to read such a data file in an analysis script, the relevant library
as well as its header have to be loaded.

In ROOT this can be done interactively by loading a data file, the necessary shared
library objects and a macro for the analysis:

root -l data_file.root
root [1] .L ~/path/to/your/allpix-squared/lib/libAllpixObjects.so
root [2] .L analysisMacro.C+
root [3] readTree(_file0, "detector1")
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A simple macro for reading DepositedCharges from a file and displaying their position is
presented below:

#include <TFile.h>
#include <TTree.h>

// FIXME: adapt path to the include file of APSQ installation
#include "/path/to/your/allpix-squared/DepositedCharge.hpp"

// Read data from tree
void readTree(TFile* file, std::string detector) {

// Read tree of deposited charges:
TTree* dc_tree = static_cast<TTree*>(file->Get("DepositedCharge"));
if(!dc_tree) {

throw std::runtime_error("Could not read tree");
}

// Find branch for the detector requested:
TBranch* dc_branch = dc_tree->FindBranch(detector.c_str());
if(!dc_branch) {

throw std::runtime_error("Could not find detector branch");
}

// Allocate object vector and link to ROOT branch:
std::vector<allpix::DepositedCharge*> deposited_charges;
dc_branch->SetObject(&deposited_charges);

// Go through the tree event-by-event:
for(int i = 0; i < dc_tree->GetEntries(); ++i) {

dc_tree->GetEntry(i);
// Loop over all deposited charge objects
for(auto& charge : deposited_charges) {

std::cout << "Event " << i << ": "
<< "charge = " << charge->getCharge() << ", "
<< "position = " << charge->getGlobalPosition()
<< std::endl;

}
}

}

A more elaborate example for a data analysis script can be found in the tools directory
of the repository [13] and in Section 14.3. Scripts written in both C++ and in Python
are provided.

How can I convert data from the ROOTObject format to other formats? Since the
ROOTObject format is the native format of Allpix Squared, the stored data can be read
into the framework again. To convert it to another format, a simple pseudo-simulation
setup can be used, which reads in data with one module and stores it with another.
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In order to convert for example from ROOTObjects to the data format used by the
Corryvreckan reconstruction framework, the following configuration could be used:

[Allpix]
number_of_events = 999999999
detectors_file = "telescope.conf"
random_seed_core = 0

[ROOTObjectReader]
file_name = "input_data_rootobjects.root"

[CorryvreckanWriter]
file_name = "output_data_corryvreckan.root"
reference = "mydetector0"

13.5 Development

How do I write my own output module? An essential requirement of any output
module is its ability to receive any message of the framework. This can be implemented
by defining a private filter function for the module as described in Section 4.6. This
function will be called for every new message dispatched within the framework, and
should contain code to decide whether to discard or cache a message for processing.
Heavy-duty tasks such as handling data should not be performed in the filter routine,
but deferred to the run function of the respective output module. The filter function
should only decide whether to keep a message for processing or to discard it before the
run function.

How do I process data from multiple detectors? When developing a new Allpix
Squared module which processes data from multiple detectors, e.g. as the simulation of
a track trigger module, this module has to be of type unique as described in Section
4.4. As a detector module, it would always only have access to the information linked to
the specific detector is has been instantiated for. The module should then request all
messages of the desired type using the messenger call bindMulti as described in Section
4.6. For PixelHit messages, an example code would be:

TrackTriggerModule(Configuration&, Messenger* messenger,
GeometryManager* geo_manager) {↪

messenger->bindMulti<MCTrackMessage>(this, MsgFlags::NONE);
}
std::vector<std::shared_ptr<PixelHitMessage>> messages;

The correct detectors have then to be selected in the run function of the module
implementation.
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How do I calculate an efficiency in a module? Calculating efficiencies always requires
a reference. For hit detection efficiencies in Allpix Squared, this could be the Monte
Carlo truth information available via the MCParticle objects. Since the framework only
runs modules, if all input message requirements are satisfied, the message flags described
in Section 4.6 have to be set up accordingly. For the hit efficiency example, two different
message types are required, and the Monte Carlo truth should always be required (using
MsgFlags::REQUIRED) while the PixelHit message should be optional:

MyModule::MyModule(Configuration& config, Messenger* messenger,
std::shared_ptr<Detector> detector)↪

: Module(config, detector), detector_(std::move(detector)) {

// Bind messages
messenger->bindSingle<PixelHitMessage>(this);
messenger->bindSingle<MCParticleMessage>(this, MsgFlags::REQUIRED);

}

How do I add a new sensor material? When adding a new sensor material, additions
at several positions in the code are necessary:

• Add material to list of available sensor materials in src/core/geometry/
DetectorModel.hpp.

• If not available yet, add material to the Geant4 material manager (src/modules
/GeometryBuilderGeant4/MaterialManager.cpp). See examples of either using
a material known to Geant4 or defining compositions in the code. It should be
noted that the key of the materials_ map needs to match the name of the sensor
material defined in the previous step, transformed to lower case letters.

• Define default values for the material properties listed in src/physics/
MaterialProperties.hpp.

• Add the list of material properties to the corresponding section of the user manual
(doc/usermanual/chapters/06_models/01_material_properties.md).

Any contribution to the framework in terms of new sensor material definitions is welcome
and can be added via a dedicated merge request in the repository [13].

13.6 Debugging

What should I include in a bug report? In all bug reports, the output of allpix --
version should always be provided as it provides vital information about the build and
the system it is running on.

Ideally, you provide a minimum working example (MWE) of a config that produces the
bug. To create an MWE, try to remove as much possible from your configuration files
that does not change the appearance of the bug. This helps developers to understand the
bug more quickly. Please provide all files to reproduce the simulation (main configuration,
geometry configuration and if applicable fields and detector model configuration).
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If the bug occurs only in a specific event, use the skip_events parameter to fast-
forward to this event, fix the random seed using the random_seed parameter and set
number_of_events = 1. The parameters are explained in Section 3.4.

If the bug is a crash or an unexpected error, please also provide a backtrace (see “How
do I debug Allpix Squared?”).

How do I debug Allpix Squared? A good first step to debugging is to increase the
logging level in Allpix Squared. Start by setting the logging level to DEBUG in the module
where you expect the bug to happen. For maximum information, you can set the logging
level to TRACE. See Section 3.8 for details on logging.

If you encounter a bug with Geant4, see “How can I see the output of Geant4?” and
“How can I enable tracking verbosity for Geant4?”.

To inspect a crash or an unexpected error in detail, a debugger like gdb is a useful tool
to find out where exactly the program crashed or why the error was thrown.

Assuming config.conf crashes Allpix Squared, a full backtrace is created like this:

gdb --args allpix -c config.conf
run
thread apply all backtrace full

If you want to create a backtrace when Allpix Squared explicitly throws an error, you
can use:

gdb --args allpix -c config.conf
catch throw
run
backtrace

How can I see the output of Geant4? Geant4’s output stream is configured in
the GeometryBuilderGeant4 module. The output stream for Geant4’s error stream
is logged with logging level WARNING, the standard stream with logging level TRACE
. These values can be adjusted via log_level_g4cerr and log_level_g4cout (see
module documentation).

How can I enable tracking verbosity for Geant4? By setting geant4_tracking_verbosity
= 1 in the DepositionGeant4 module. For details check the parameter entry in the

module documentation. Note that you also need the appropriate logging level to get the
Geant4 output (see “How can I see the output of Geant4?”).
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13.7 Miscellaneous

How can I produce nicely looking drift-diffusion line graphs? The GenericPropagation
module offers the possibility to produce line graphs depicting the path each of the charge
carrier groups have taken during the simulation. This is a useful way to visualize the
drift and diffusion along field lines.

An optional parameter allows to reduce the lines drawn to those charge carrier groups
which have reached the sensor surface to provide some insight into where from the
collected charge carriers originate and how they reached the implants. One graph is
written per event simulated, usually this option should thus only be used when simulating
one or a few events but not during a production run.

In order to produce a precise enough line graph, the integration time steps have to be
chosen carefully - usually finer than necessary for the actual simulation. Below is a set of
settings used to simulate the drift and diffusion in a high resistivity CMOS silicon sensor.
Settings of the module irrelevant for the line graph production have been omitted.

[GenericPropagation]
charge_per_step = 5
timestep_min = 1ps
timestep_max = 5ps
timestep_start = 1ps
spatial_precision = 0.1nm

output_linegraphs = true
output_plots_step = 100ps
output_plots_align_pixels = true
output_plots_use_pixel_units = true

# Optional to only draw charge carrier groups which reached the implant
side:↪

# output_plots_lines_at_implants = true

With these settings, a graph of similar precision to the one presented in the figure below
can be produced. The required time stepping size and number of output plot steps varies
greatly with the sensor and its applied electric field. The number of charge carriers per
group can be used to vary the density of lines drawn. Larger groups result in fewer
lines.
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Drift and diffusion visualization of charge carrier groups being transported through a
high-resistivity CMOS silicon sensor. The plot shows the situation after an integration
time of 20 nanoseconds, only charge carrier groups which reached the implant side of the
sensor are drawn.

Why does GeometryBuilderGeant4 warn me about reduced performance with disabled
multithreading? You might have see this log message:

Using Geant4 modules without multithreading might reduce performance
when using complex geometries, please check the documentation for
details

↪

↪

You might want to set multithreading=true and workers=1 instead of instead of
multithreading=false if this is allowed by the module configuration.

The reason behind message this is explained more detailed in Section 14.1.
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This chapter briefly describes tools provided with the Allpix Squared framework, which
might be reused in new modules or in standalone code.

14.1 Framework Tools

The following tools are part of the Allpix Squared framework and are located in the
src/tools directory. They are intended as centralized components which can be shared
between different modules rather than independent tools.

14.1.1 ROOT and Geant4 utilities

The framework provides a set of methods to ease the integration of ROOT and Geant4 in
the framework. An important part is the extension of the custom conversion to_string
and from_string methods from the internal string utilities (see Section 4.8) to support
internal ROOT and Geant4 classes. This allows to directly read configuration parameters
to these types, making the code in the modules both shorter and cleaner. In addition,
more conversions functions are provided together with other useful utilities such as the
possibility to display a ROOT vector with units and a thin wrapper for thread-safe
ROOT histograms.

14.1.2 Geant4 Interface

The framework provides an interfacing library with Geant4 that provides alternative run
managers to be used by modules interested in using Geant4 as follows:

1. MTRunManager: A run manager for multithreaded event processing. Internally, it
creates thread-local managers to handle operations for each calling thread indepen-
dently. It also maintains a stable seed distribution mechanism to ensure results are
the same regardless of the number of threads that use the manager in parallel.

2. RunManager: A run manager for sequential event processing. It uses the same
seeding mechanism as the multithreaded version so they can be used interchangeably
depending on whether multithreading is enabled or not, while ensuring identical
results.

The DepositionGeant4 module uses MTRunManager to be able to call the BeamOn method
in parallel on multiple threads thus benefiting from the multithreading feature while
the VisualizationGeant4 module uses RunManager to be able to visualize the particles
passage through the detectors.
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Note: The MTRunManager significantly reduces Geant4’s run initialization time (this
happens before every event in Allpix Squared) compared to Geant4’s stock run
managers (see Bugzilla/Geant4 2527 for details).
It is not feasible to implement this improvement in the single-threaded RunManager
since it directly inherits from Geant4’s stock G4RunManager. With this run manager,
the run initialization time scales with the complexity of the geometry and can - in
the worst case scenario - take significantly more time than the actual simulation
itself.
Thus it is recommended to use multithreading when using Geant4 in Allpix Squared
if allowed by the module configuration. Allpix Squared allows to use multithreading
with only one worker as alternative to multithreading=false, though it is suggested
to benchmark the performance for both cases to find the optimal setting for the
given geometry.

14.1.3 Runge-Kutta integrator

A fast Eigen-powered [9] Runge-Kutta integrator is provided as a tool to numerically
solve differential equations [22]. The Runge-Kutta integrator is designed in a generic
way and supports multiple methods using different tableaus. It allows to integrate a
system of equations in several steps with customizable step size. The step size can also
be updated during the integration depending on the error of the Runge-Kutta method
(if a tableau with error estimation is used).

The GenericPropagation module uses Runge-Kutta integrator with the Runge-Kutta-
Fehlberg method (RK5 tableau). After the integrator has been created with the initial
position of the charge carrier to be transported, the step() function allows to advance
the simulation to the next step.

// Define lambda functions to compute the charge carrier velocity at
each step↪

std::function<Eigen::Vector3d(double, Eigen::Vector3d)> carrier_velocity
=↪

[&](double, Eigen::Vector3d cur_pos) -> Eigen::Vector3d {...};

// Create the Runge-Kutta solver with a RK5 tableau, the carrier
velocity function to be used↪

// as well as the initial timestep and position of the charge carrier
auto runge_kutta = make_runge_kutta(tableau::RK5, carrier_velocity,

initial_timestep, position);↪

// Advance one step with the solver:
auto step = runge_kutta.step();

The getValue() and setValue()methods allow to retrieve, alter and update the position,
e.g. to include additional displacements from diffusion processes.
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Furthermore, the advanceTime() method can be used to advance the time of the Runge-
Kutta solver by the given amount. This is used for example in situations where the
motion is temporarily halted by trapping, and continued when released from the trap.

Tableaus

The following Butcher tableaus are implemented and available. In order to make use of
adaptive step size changes, a tableau with error estimation should be chosen.

Third-Order Kutta Method (RK3) This tableau implements a simple and fast third-
order Kutta integration which only requires the calculation of three terms.

0
1/2 1/2
1 −1 2

1/6 2/3 1/6

Fourth-Order Runge-Kutta Method (RK4) This tableau implements the classical
fourth-order Runge-Kutta integration.

0
1/2 1/2
1/2 0 1/2
1 0 0 1

1/6 1/3 1/3 1/6

Fourth-Order Runge-Kutta-Fehlberg Method with Error Estimation (RK5) This
tableau implements a fourth-order RKF method with fifth-order error estimation [22,
89].

0
1/4 1/4
3/8 3/32 9/32

12/13 1932/2197 −7200/2197 7296/2197
1 439/216 −8 3680/513 −845/4104

1/2 −8/27 2 −3544/2565 1859/4104 −11/40
16/135 0 6656/12825 28561/56430 −9/50 2/55
25/216 0 1408/2565 2197/4104 −1/5 0
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Fourth-Order Runge-Kutta-Cash-Karp Method with Error Estimation (RKCK) This
tableau implements a fourth-order Cash-Karp method with fifth-order error estimation
[102].

0
1/5 1/5
3/10 3/40 9/40
3/5 3/10 −9/10 6/5
1 −11/54 5/2 −70/27 35/27

7/8 1631/55296 175/512 575/13824 44275/110592 253/4096
37/378 0 250/621 125/594 0 512/1771

2825/27648 0 18575/48384 13525/55296 277/14336 1/4

14.1.4 Field Data Parser

A field parser tool is provided, which parses files stored in the INIT or APF file formats
and returns field data on a three-dimensional grid. The number of field components per
grid point is configurable via the constructor argument, e.g. FieldQuantity::VECTOR for
a vector field or FieldQuantity::SCALAR for a scalar field map. The parsed field data
is cached internally by the class, and if a file is requested a second time, the cached field
is returned. In conjunction with a static instance of the field parser class in a module,
this allows to share field data across multiple module instances.

class MyVectorFieldModule(...) : Module(...) {
private:

void some_function(std::string canonical_path);
// Define static field parser instance
static FieldParser<double> field_parser_;

}

// Create static instance of field parser in the translation unit:
FieldParser<double>

MyVectorFieldModule::field_parser_(FieldQuantity::VECTOR);↪

void MyVectorFieldModule::some_function(std::string canonical_path) {
// Get vector field from file:
auto field_data = field_parser_.getByFileName(canonical_path,
"V/cm");↪

}

For the INIT format, the getByFileName() function of the parser takes the units in
which the field data should be interpreted, and they are automatically converted to the
framework base units described in Section 3.1. Fields in the APF format are always
stored in framework base units and do not require conversion. The file path provided to
the field parser should always be canonical, if the file is not found or cannot be parsed, a
std::runtime_error exception is thrown.
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The type of field data to be parsed is automatically deduced from the file content by
checking for binary or ASCII text The field parser determines whether a file is text or
binary by checking the first few bytes in the file. If every byte in that part of the file is
non-null, the parser considers the file to be text and reads it as INIT file; otherwise it
considers the file to be binary and parses the field as APF data.

14.2 Mesh Converter

This code takes adaptive meshes from finite-element simulations and transforms them
into a regularly spaced grid for faster field value lookup as required by Monte Carlo
simulations tools such as Allpix Squared. The input consists of two files, one containing
the vertex coordinates of each input mesh node, the other providing the relevant field
values associated to each of these vertices. One output file containing the regular mesh
is produced. This tool can work in two different modes, the closest-neighbor mode and
interpolation mode:

Simple Closest-Neighbor Search

In this mode, selected by setting the parameter interpolate = false, no interpolation
of field values is performed, but for every output mesh point, the values from the closest
neighbor of the input mesh are taken. In most cases this approach should produces
reasonably precise results with a granularity similar to the respective adaptive mesh
granularity in the respective region. The tool uses the Octree findNeighbor algorithm
[103] to find the closest neighbor to the query point.

Barycentric Interpolation Method

In this mode, the regular mesh is created by scanning the model volume in regular X,
Y and Z steps and using a barycentric interpolation method to calculate the respective
electric field vector on the new point. The interpolation uses the four closest, no-coplanar,
neighbor vertex nodes such, that the respective tetrahedron encloses the query point.
For the neighbors search, the tool uses the Octree radiusNeighbors neighbor search
algorithm [103].

14.2.1 File Formats

Input Data

Currently, this tool supports the TCAD DF-ISE data format as well as output generated
from Silvaco TCAD. The respective parser has to be chosen using the parser configuration
parameter.

For the DF-ISE format, the mesh converter requires the .grd and .dat files as input
alongside the parameter parser = df-ise. Here, the .grd file contains the vertex
coordinates (3D or 2D) of each mesh node and the .dat file contains the value of each
electric field vector component for each mesh node, grouped by model regions (such as
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silicon bulk or metal contacts). The regions are defined in the .grd file by grouping
vertices into edges, faces and, consecutively, volumes or elements.

For Silvaco TCAD, the data has to be extracted from the TCAD data, and parser =
silvaco has to be selected. The required input files are a .grd file containing the list of
mesh points and .dat file holding the corresponding values.

Output Data

This tools can produce output in two different formats, with the file extensions .init
and .apf. Both file formats can be imported into Allpix Squared.

The APF (Allpix Squared Field) data format contains the field data in binary form and
is therefore a bit more compact and can be read much faster. Whenever possible, this
format should be preferred.

The INIT file is an ASCII text file with a format used by other tools such as PixelAV.
Its header therefore contains several fields which are not used by Allpix Squared but need
to be present nevertheless. The following example shows such a file header, important
variables are marked with <...> while other fields are not interpreted and can be left
untouched:

<first line: some descriptive text to identify the field or field
source>↪

##SEED## ##EVENTS##
##TURN## ##TILT## 1.0
0.00 0.0 0.00
<thickness in um> <size x in um> <size y in um> 0 0
0 0 <number of bins x> <number of bins y> <number of bins z> 0

After the header part, the data follows as list of individual nodes with three indices
for x, y, and z coordinates at the beginning and the scalar or vector field components
afterwards. For a vector field, this looks like:

<node.x> <node.y> <node.z> <observable.x> <observable.y> <observable.z>

whereas for a scalar field such as a weighting potential, only one field component is
present:

<node.x> <node.y> <node.z> <observable>

14.2.2 Compilation

When compiling the Allpix Squared framework, the Mesh Converter is automatically
compiled and installed in the Allpix Squared installation directory.

It is also possible to compile the converter separately as stand-alone tool within this
directory:
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mkdir build
cd build
cmake ..
make

It should be noted that the Mesh Converter depends on the core utilities of the Allpix
Squared framework found in the directory src/core/utils. Thus, it is discouraged to
move the converter code outside the repository as this directory would have to be copied
and included in the code as well. Furthermore, updates are only distributed through the
repository and new release versions of the Allpix Squared framework.

14.2.3 Features

• TCAD DF-ISE file format parser.
• Automatic determination of the input mesh dimensionality (2D/3D).
• Fast radius neighbor search for three-dimensional point clouds.
• Barycentric interpolation between non-regular mesh points.
• Several cuts available on the interpolation algorithm variables.
• Interpolated data visualization tool.

Parameters

• model: Field file format to use, can be INIT or APF, defaults to APF (binary
format).

• parser: Parser class to interpret input data in. Supported values are DF-ISE
(default) and Silvaco.

• region: Region name or list of region names to be meshed, such as bulk or
"bulk","epi" (No default value; required parameter).

• observable: Observable to be interpolated, such as ElectricField (No default
value; required parameter).

• observable_units: Units in which the observable is stored in the input file (No
default value; required parameter).

• interpolate: Boolean switch to select either the barycentric interpolation method
or the closest-neighbor method. Defaults to true, i.e. using the interpolation
method.

• initial_radius: Initial node neighbors search radius in micro meters. Defaults
to the minimal cell dimension of the final interpolated mesh.

• radius_step: Radius step if no neighbor is found (defaults to 0.5um). Only used
for barycentric interpolation.

• max_radius: Maximum search radius (default is 50um). Only used for barycentric
interpolation.

• allow_coplanar_interpolation: Allow the interpolation to use coplanar/colinear
vertices if no full interpolation volume can be found after increasing the search
radius and if more than 100 neighbors are found. Defaults to false. It should be
noted that this feature is experimental and that it can produce NaN results for the
interpolated field.
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• allow_failure: Allow the interpolation of a single mesh point to fail, i.e. when
no neighbors could be found. If set to true, the respective mesh element will be
set to zero and the interpolation will continue, if false the interpolation will be
aborted. Defaults to false. Only used for barycentric interpolation.

• volume_cut: Minimum volume for tetrahedron for non-coplanar vertices (defaults
to minimum double value). Only used for barycentric interpolation.

• divisions: Number of divisions of the new regular mesh for each dimension, 2D
or 3D vector depending on the dimension setting. Defaults to 100 bins in each
dimension.

• xyz: Array to replace the system coordinates of the mesh. A detailed description
of how to use this parameter is given below.

• workers: Number of worker threads to be used for the interpolation. Defaults to
the available number of cores on the machine (hardware concurrency).

• vector_field: Select if the observable is a vector field or scalar field (Defaults to
true matching the default observable ElectricField).

• log_level: Specifies the lowest log level which should be reported. Possible values
are the same as for the Allpix Squared framework.

Usage

To run the program, the following command should be executed from the installation
folder:

mesh_converter -f <file_prefix> [<options>] [<arguments>]

The converter will look for a configuration file with <file_prefix> and .conf extension.
This default configuration file name can be replaced with the -c option. The list with
options can be accessed using the -h option. Possible options and their default values
are:

-f <file_prefix> common prefix of DF-ISE grid (.grd) and data
(.dat) files↪

-c <config_file> configuration file setting mesh conversion
parameters↪

-h display this help text
-l <file> file to log to besides standard output (disabled

by default)↪

-o <init_file_prefix> output file prefix without .init (defaults to
file name of <file_prefix>)↪

-v <level> verbosity level (default reporting level is INFO)

Observables currently implemented for interpolation are: ElectrostaticPotential,
ElectricField, DopingConcentration, DonorConcentration and AcceptorConcentration
. The output INIT/APF file will be saved with the same file_prefix as the .grd and .dat
files and the additional name suffix _<observable>_interpolated and the appropriate
file extension, where <observable> is replaced with the selected quantity.

The new coordinate system of the mesh can be changed by providing an array for the
xyz keyword in the configuration file. The first entry of the array, representing the new
mesh x coordinate, should indicate the TCAD original mesh coordinate (x, y or z), and
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so on for the second (y) and third (z) array entry. For example, if one wants to have
the TCAD x, y and z mesh coordinates mapped into the y, z and x coordinates of the
new mesh, respectively, the configuration file should have xyz = z x y. If one wants
to flip one of the coordinates, the minus symbol (-) can be used in front of one of the
coordinates (such as xyz = z x -y).

The program can be used to convert 3D and 2D TCAD mesh files. Note that when
converting 2D meshes, the x coordinate will be fixed to 1 and the interpolation will
happen over the yz plane. The keyword mesh_tree can be used as a switch to enable
or disable the creation of a root file with the original TCAD mesh points stored as a
ROOT::TTree for later, fast, inspection.

14.2.4 Mesh Plotter

In addition to the Mesh Converter, the mesh_plotter tool can be used to visualize the
new mesh interpolation results, from the installation folder as follows:

mesh_plotter -f <file_name> [<options>] [<arguments>]

The following command-line options are supported:

-f <file_name> name of the interpolated file in APF or INIT
format↪

-c <cut> projection height index (default is mesh_pitch /
2)↪

-h display this help text
-l plot with logarithmic scale if set
-o <output_file_name> name of the file to output (default is

efield.png)↪

-p <plane> plane to be plotted. xy, yz or zx (default is yz)
-u <units> units to interpret the field data in
-s parsed observable is a scalar field

The list with options and defaults is displayed with the -h option. In a 3D mesh, the
plane to be plotted must be identified by using the option -p with argument xy, yz or zx,
defaulting to yz. By default, the data is interpreted as a vector field, where graphs for all
three components are created. Using the option -s enables the interpretation of a scalar
field. The units for the field to interpreted in can be defined via the option -u. The
number of mesh divisions in each dimension is automatically read from the init/apf
file, by default the cut in the third dimension is done in the center but can be shifted
using the -c option described above.

14.3 ROOT Analysis & Helper Macros

Collection of macros demonstrating how to analyze data generated by the framework.
Currently contains a C++ macro to convert the TTree of objects to a tree containing
standard data written by the framework. This is useful for analysis and comparisons
with other frameworks. A simple example of how to read the output objects TTree using
a Python macro is also included.
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14.3.1 Comparison tree

Reads all required trees from the given file and binds their content to the objects defined
by the framework. Then creates an output tree and binds every branch to a simple
arithmetic type. Continues to loop over all events in the tree and converting the stored
data from the various trees to the output tree. The final output tree contains branches
for the cluster sizes, aspect ratios, accumulated charge per event, the track position from
the Monte Carlo truth and the reconstructed track obtained from a center of gravity
calculation using the charge values without additional corrections.

To construct a comparison tree using this macro, follow these steps:

• Open root with the data file attached like root -l /path/to/data.root
• Load the current library of objects with .L path/to/libAllpixObjects.so
• Build the macro with .L path/to/constructComparisonTree.C++
• Open a new file with auto file = new TFile("output.root", "RECREATE")
• Run the macro with auto tree = constructComparisonTree(_file0, "
name_of_dut")

• Write the tree with tree->Write()

14.3.2 Analysis example

Analysis example demonstrating how to read data from ROOT TTrees, access attributes
and access object history. The macro for this reads TTrees of PixelHit and MCParticle
objects from an Allpix Squared data file created using the ROOTObjectWriter. Iterating
over individual events, the position of every PixelHit is compared to the center of gravity
position of all MCParticles and then only to those that are retrieved from the history of
the PixelHit. Produces graphs for a 2D hitmap, the mentioned residuals and the signal
spectrum. As this macro does not perform a clustering, it is only a starting point for a
data analysis.

Usage:

• Open root with the data file attached like root -l /path/to/data.root
• Load the current library of objects with .L path/to/libAllpixObjects.so
• Build the macro with .L path/to/analysisExample.C++
• Run the macro with analysisExample(_file0, "name_of_detector")

14.3.3 Eta correction of residuals example

Analysis example demonstrating how to perform an “eta correction” for rectangular pixels.
Builds on from Analysis example above. This macro performs clustering using the
method implemented in the DetectorHistogrammer module, and loops over all events
twice; once to generate and fit the eta function (a fifth-order polynomial is used in this
case), and once to apply the correction given by the fit. Produces graph of residuals
before and after application of the correction. The pixel size used should be edited to
match the simulated pixel size in the data to be analysed.

Usage:
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• Open root with the data file attached like root -l /path/to/data.root
• Load the current library of objects with .L path/to/libAllpixObjects.so
• Load the Cluster object definition from the DetectorHistogrammer module with
.L path/to/libAllpixModuleDetectorHistogrammer.so

• Build the macro with .L path/to/etaCorrectionResiduals.C++
• Run the macro with etaCorrectionResiduals(_file0, "name_of_detector")

14.3.4 Remake project

Simple macro to show the possibility to recreate source files for legacy objects stored in
ROOT data files from older versions of the framework. Can be used if the corresponding
dynamic library for that particular version is not accessible anymore. It is however not
possible to recreate methods of the objects and it is therefore not easily possible to
reconstruct the stored history.

To recreate the project source files, the following commands should be executed:

• Open root with the data file attached like root -l /path/to/data.root
• Build the macro with .L path/to/remakeProject.C++
• Recreate the source files using remakeProject(_file0, "output_dir")

14.3.5 Recover Configuration Files

This macro allows to recover the full configuration of a simulation from a data file written
by the ROOTObjectWriter module. It retrieves the stored key-value pairs and writes
them into new files, including the framework and module configuration, the detector
setup and the individual detector models with possibly overwritten parameters.

The simulation configuration can be recreated using the following command:

root -x 'recoverConfiguration.C("path/to/output/data.root",
"configuration.conf")'

Here, the first argument is the input data file produced by the ROOTObjectWriter, while
the second argument is the output file name and path for the framework configuration.
The detector setup and model files will be named as defined in the main configuration
and are placed in the same folder.

14.3.6 Display Monte Carlo hits (Python)

Simple macro that reads the required trees to plot Monte Carlo hits in pixel versus
the pixel charge. Loops over all events of the root file. A few relevant histograms are
displayed at the end of the event loop. Requires PyROOT, numpy, matplotlib. To
execute the script, run:

python3 display_mc_hits.py -l path/to/libAllpixObjects.so -f
path/to/data.root -d <detector_name>↪
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The appendix contains supplementary information to the user manual.
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15.2 List of Tests

15.2.1 Framework Functionality Tests

Currently implemented framework functionality tests comprise:
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15.2 List of Tests

• core/test_01-10_globalconfig_log_prng: tests the possibility of logging indi-
vidual random numbers used during the simulation

• core/test_01-1_globalconfig_detectors: test the framework behavior in case
of a non-existent detector setup description file

• core/test_01-2_globalconfig_modelpaths: tests the correct parsing of addi-
tional model paths and the loading of the detector model.

• core/test_01-3_globalconfig_log_format: switches the logging format.
• core/test_01-4_globalconfig_log_level: sets a different logging verbosity

level.
• core/test_01-5_globalconfig_log_file: configures the framework to write log

messages into a file.
• core/test_01-6_globalconfig_missing_model: tests the behavior of the frame-
work in case of a missing detector model file.

• core/test_01-7_globalconfig_random_seed: sets a defined random seed to start
the simulation with.

• core/test_01-8_globalconfig_random_seed_core: sets a defined seed for the
core component seed generator, e.g. used for misalignment.

• core/test_01-9_globalconfig_librarydirectory: tests the correct parsing and
usage of additional library loading paths.

• core/test_02-1_specialization_unique_name: tests the framework behavior
for an invalid module configuration: attempt to specialize a unique module for one
detector instance.

• core/test_02-2_specialization_unique_type: tests the framework behavior
for an invalid module configuration: attempt to specialize a unique module for one
detector type.

• core/test_02-3_specialization_name: tests module instance specialization by
name

• core/test_02-4_specialization_type: tests module instance specialization by
type

• core/test_03-10-geometry_unique_detectors: tests if the case of multiple de-
tectors with the same name is correctly caught

• core/test_03-11-geometry_unique_passive: tests if the case of multiple passive
volumes with the same name is correctly caught

• core/test_03-12_geometry_invalid_name: tests if invalid detector names are
correctly caught

• core/test_03-1_geometry_g4_coordinate_system: ensures that the Allpix
Squared and Geant4 coordinate systems and transformations are identical.

• core/test_03-2_geometry_rotations: tests the correct interpretation of rotation
angles in the detector setup file.

• core/test_03-3_geometry_misaligned: tests the correct calculation of misalign-
ments from alignment precisions given in the detector setup file.

• core/test_03-4_geometry_overwrite: checks that detector model parameters
are overwritten correctly

• core/test_03-6_geometry_overlap: checks for correct detection of volume over-
laps in the geometry

• core/test_03-7_geometry_wrapper: checks for correct treatment of geometry
wrappers and overlap calculations

• core/test_03-8_geometry_noposition: test the framework behavior with a de-
tector with no position provided in the geometry
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• core/test_03-9_geometry_nodetector: tests if missing detectors requested in
individual module instances are correctly detected

• core/test_04-10_configuration_invalid_combination: tests if invalid config-
uration key combinations are correctly detected and reported

• core/test_04-11_configuration_missing_key: tests if missing mandatory con-
figuration keys are correctly detected and reported

• core/test_04-12_configuration_matrix: tests if matrix values in configuration
files are correctly parsed and interpreted

• core/test_04-13_configuration_matrix_brackets: tests if invalid or missing
brackets of matrix values in configurations files are detected and reported

• core/test_04-1_module_config_cli_change: tests whether single configuration
values can be overwritten by options supplied via the command line.

• core/test_04-2_module_config_cli_nochange: tests whether command line op-
tions are correctly assigned to module instances and do not alter other values.

• core/test_04-3_configuration_imbalanced_brackets: tests whether imbal-
anced brackets in configuration values are properly detected.

• core/test_04-4_detector_config_cli_change: tests whether detector options
can be overwritten from the command line.

• core/test_04-5_module_config_cli_detectors: tests whether framework pa-
rameters are properly parsed from the command line.

• core/test_04-6_module_config_double_unique: tests whether a double defini-
tion of a unique module is detected.

• core/test_04-7_module_config_empty_filter: tests the framework behavior
with an empty filter.

• core/test_04-8_configuration_unused_key: tests the detection of unused con-
figuration keys in the global configuration section.

• core/test_04-9_configuration_unused_key_module: tests the detection of un-
used configuration keys in a module configuration section.

• core/test_05-1_overwrite_same_denied: tests whether two modules writing to
the same file is disallowed if overwriting is denied.

• core/test_05-2_overwrite_module_allowed: tests whether two modules writing
to the same file is allowed if the last one re-enables overwriting locally.

• core/test_05-3_overwrite_detector_module: tests whether two detector mod-
ules with different priorities are handled correctly.

• core/test_05-4_overwrite_detector_module_reverse: tests whether two de-
tector modules with different priorities are handled correctly (reverse order).

• core/test_05-5_overwrite_module_allow_io: tests different input / output con-
figurations with module overwriting.

• core/test_06-10_multithreading_physics_singlethr: tests the reproducibil-
ity in case of multithreading disabled.

• core/test_06-11_multithreading_oneworkers: tests the framework response in
case too few workers are enabled.

• core/test_06-1_multithreading: checks if multithreading can be enabled.
• core/test_06-2_multithreading_cli: checks if multithreading can be enabled

from the command line.
• core/test_06-3_multithreading_concurrency: tests if the number of workers

can be configured.
• core/test_06-4_multithreading_zeroworkers: tests the framework response in

case too few workers are enabled.
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• core/test_06-5_multithreading_buffers: tests if the module buffer depth can
be configured properly.

• core/test_06-6_multithreading_impossible: tests the framework response in
case a module without multithreading capabilities has been enabled.

• core/test_06-7_multithreading_disabled: tests the framework response to
explicitly disabling multithreading.

• core/test_06-8_multithreading_buffered: tests the reproducibility in case of
a sequential module.

• core/test_06-9_multithreading_physics: tests the reproducibility in case of
multithreading enabled.

• core/test_07-1_catch_exception: checks the correct propagation of exceptions
with multithreading enabled.

• core/test_07-2_catch_exception_nomt: checks the correct propagation of ex-
ceptions with multithreading disabled.

• core/test_08-10_physics_recombination_srh: tests selection of recombination
model “srh”

• core/test_08-11_physics_recombination_auger: tests selection of recombina-
tion model “auger”

• core/test_08-12_physics_recombination_combined: tests selection of recombi-
nation model “combined”

• core/test_08-13_physics_mobility_custom: tests selection of a custom mobil-
ity model

• core/test_08-14_physics_mobility_canali_fast: tests selection of mobility
model “canali”

• core/test_08-1_physics_mobility_canali: tests selection of mobility model
“canali”

• core/test_08-2_physics_mobility_hamburg: tests selection of mobility model
“hamburg”

• core/test_08-3_physics_mobility_hamburg_highfield: tests selection of mo-
bility model “hamburg_highfield”

• core/test_08-4_physics_mobility_masetti: tests selection of mobility model
“masetti”

• core/test_08-5_physics_mobility_masetti_canali: tests selection of mobility
model “masetti_canali”

• core/test_08-6_physics_mobility_arora: tests selection of mobility model
“arora”

• core/test_08-7_physics_mobility_invalid: tests if a selection of an invalid or
non-existing mobility model is correctly detected and reported

• core/test_08-8_physics_mobility_doping: tests if the requirement of a doping
profile for some mobility models is correctly detected and reported as error

• core/test_08-9_physics_mobility_jacoboni: tests selection of mobility model
“jacoboni”

• core/test_9-1_executable_version: tests if the allpix executable correctly re-
ports its version if requested

• core/test_9-2_executable_help: tests if the allpix executable correctly prints
the help if requested

• core/test_9-3_executable_loglevel_invalid: tests if the allpix executable
correctly reports invalid log levels set from the command line

• core/test_9-4_executable_unrecognized_argument: tests if the allpix
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executable correctly reports unrecognized command line arguments

15.2.2 Module Functionality Tests

The following module functionality tests are currently performed:

• modules/CSADigitizer/01-pseudopulse: checks the outcome of a digitization by
the CSA of a pseudo-pulse generated from arrival times.

• modules/CSADigitizer/02-tot_pseudopulse: checks the outcome of a digitiza-
tion by the CSA of a pseudo-pulse generated from arrival times and conversion to
time-over-threshold units.

• modules/CSADigitizer/03-custom: tests initialization of a custom response func-
tion and its parameters

• modules/CSADigitizer/04-custom_mupix: tests the digitization with a custom
response function

• modules/CapacitiveTransfer/01-transfer: tests the coupling of charge into
neighbor pixels using a coupling matrix

• modules/CapacitiveTransfer/02-implant: tests the transfer of charges from
sensor implants to readout chip in case sensor implants have been defined in the
detector model.

• modules/CorryvreckanWriter/01-corry: ensures proper functionality of the Cor-
ryvreckan file writer module. The monitored output comprises the coordinates of
the pixel produced in the simulation.

• modules/CorryvreckanWriter/02-mc: ensures the correct storage of Monte Carlo
truth particle information in the Corryvreckan file writer module by monitoring
the local coordinates of the MC particle associated to the pixel hit.

• modules/DefaultDigitizer/01-charge: digitizes the transferred charges to sim-
ulate the front-end electronics. The monitored output of this test comprises the
total charge for one pixel including noise contributions and the smeared threshold
it is compared to.

• modules/DefaultDigitizer/02-qdc: digitizes the transferred charges and tests
the conversion into QDC units. The monitored output comprises the converted
charge value in units of QDC counts.

• modules/DefaultDigitizer/03-gain: digitizes the transferred charges and tests
the amplification process by monitoring the total charge after signal amplification
and smearing.

• modules/DefaultDigitizer/04-toa: digitizes the signal and calculates the time-
of-arrival of the particle by checking when the threshold was crossed.

• modules/DefaultDigitizer/05-tdc: digitizes the signal and test the conversion
of time-of-arrival to TDC units.

• modules/DefaultDigitizer/06-saturation: tests the front-end saturation func-
tionality

• modules/DefaultDigitizer/07-gainfunction: digitizes the transferred charges
and tests the amplification process using a custom (surrogate) gain function.

• modules/DefaultDigitizer/08-gain-gainfunction: tests the correct detection
of a simultaneous configuration of a default gain and a custom gain function.

• modules/DefaultDigitizer/09-gainfunction-param: tests the correct detection
of an incorrect number of parameters provided for a custom gain function.
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• modules/DepositionCosmics/01-sealevel: run basic simulation of cosmics
shower

• modules/DepositionCosmics/02-altitude: check if the target simulation alti-
tude can be configured

• modules/DepositionCosmics/03-subbox: test if the correct subbox letngth for
the simulated shower is calculated from the detector model and world volume

• modules/DepositionCosmics/04-noneutrons: check if the emission of neutrons
can be switched off effectively

• modules/DepositionCosmics/05-latitude: check if the latitude can be changed
effectively

• modules/DepositionCosmics/06-date: check if the simulated date of the shower
observation can be changed effectively

• modules/DepositionCosmics/07-resettime: test if the particle emission time
can correctly be reset to zero when configured

• modules/DepositionCosmics/08-maxparticles: test if the maximum number of
shower particles can be limited correctly

• modules/DepositionGeant4/01-deposit: executes the charge carrier deposition
module. This will invoke Geant4 to deposit energy in the sensitive volume. The
monitored output comprises the exact number of charge carriers deposited in the
detector.

• modules/DepositionGeant4/02-mc: executes the charge carrier deposition module
as the previous tests, but monitors the type, entry and exit point of the Monte
Carlo particle associated to the deposited charge carriers.

• modules/DepositionGeant4/03-track: executes the charge carrier deposition
module as the previous tests, but monitors the start and end point of one of the
Monte Carlo tracks in the event.

• modules/DepositionGeant4/04-source_point: tests the point source in the
charge carrier deposition module by monitoring the deposited charges.

• modules/DepositionGeant4/05-source_square: tests the square source in the
charge carrier deposition module by monitoring the deposited charges.

• modules/DepositionGeant4/06-source_sphere: tests the sphere source in the
charge carrier deposition module by monitoring the deposited charges.

• modules/DepositionGeant4/07-source_macro: tests the G4 macro source in the
charge carrier deposition module using the macro file source_macro_test.txt,
monitoring the deposited charges.

• modules/DepositionGeant4/08-fano: tests the simulation of fluctuations in
charge carrier generation by monitoring the total number of generated carrier pairs
when altering the Fano factor.

• modules/DepositionGeant4/09-ions: tests if custom ions can be fored to decay
immediately

• modules/DepositionGeant4/10-all_tracks: runs a single Geant4 event and re-
trieves all tracks from the event, including those without connection to the sensor
volume.

• modules/DepositionGeant4/11-tracking_verbosity: executes the charge car-
rier deposition module with high tracking verbosity level. The individual tracking
steps are observed as output.

• modules/DepositionGenerator/01-hepmcascii: tests reading in a HepMC3
ASCII file generated using the HepMC3 Python tools

• modules/DepositionGenerator/02-hepmcttree: tests reading in a HepMC3
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ROOTIO TTree file generated using the HepMC3 Python tools
• modules/DepositionLaser/01_data_read: tests reading of physical constants

from the datafile
• modules/DepositionLaser/02_multi_detectors: tests deposition in multiple

detectors
• modules/DepositionLaser/03_passive: tests termination of tracks in passive

objects
• modules/DepositionLaser/04_1_refraction: tests refraction on silicon-air in-

terface
• modules/DepositionLaser/04_2_refraction: tests refraction on silicon-air in-

terface
• modules/DepositionLaser/04_3_refraction: tests refraction on silicon-air in-

terface
• modules/DepositionLaser/04_4_refraction: tests refraction on silicon-air in-

terface
• modules/DepositionLaser/04_5_refraction: tests refraction on silicon-air in-

terface
• modules/DepositionLaser/04_6_refraction: tests refraction on silicon-air in-

terface
• modules/DepositionLaser/05_user_optics: tests reading of physical constants

from the datafile
• modules/DepositionLaser/06_groups: tests bucketing of photons
• modules/DepositionPointCharge/01-point: tests the deposition of a point

charge at a specified position, checks the position of the deposited charge carrier in
global coordinates.

• modules/DepositionPointCharge/02-scan: tests the scan of a pixel volume by
depositing charges for a given number of events, check for the calculated voxel size.

• modules/DepositionPointCharge/03-scan_cube: tests the calculation of the
scanning points by monitoring the warning of the number of events is not a
perfect cube.

• modules/DepositionPointCharge/04-mip: tests the deposition of charges along a
line by monitoring the calculated step size and number of charge carriers deposited
per step.

• modules/DepositionPointCharge/05-mip_position: tests the generation of the
Monte Carlo particle when depositing charges along a line by monitoring the start
and end positions of the particle.

• modules/DepositionPointCharge/06-spot: tests the deposition of charge carriers
around a fixed position with a Gaussian distribution.

• modules/DepositionPointCharge/07-scan_1D: tests the scan of a pixel volume
in only the x-direcction, checks for the calculated voxel size.

• modules/DepositionPointCharge/08-scan_2D: tests the scan of a pixel volume
in the x and z-directions, checks for the calculated voxel size.

• modules/DepositionPointCharge/09-scan_2D: tests the calculation of the scan-
ning points by monitoring the warning of the number of events is not a perfect
square.

• modules/DepositionPointCharge/10-scan_3D: tests the selected scan coordi-
nates for disallowed entries.

• modules/DepositionPointCharge/11-mip_direction: tests the deposition of
charges along a slanted line by monitoring the calculated step size and number of
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charge carriers deposited per step.
• modules/DepositionReader/01-csv: tests reading in a CSV file generated accord-

ing to the specifications
• modules/DepositionReader/02-root: tests reading in a ROOT file generated

according to the specifications
• modules/DepositionReader/03-no_time_csv: tests reading in a CSV file gener-

ated according to the specifications and without timing information
• modules/DepositionReader/04-no_time_root: tests reading in a ROOT file gen-

erated according to the specifications and without timing information
• modules/DepositionReader/05-no_mcp_csv: tests reading in a CSV file gener-

ated according to the specifications and without Monte Carlo particle information
• modules/DepositionReader/06-no_mcp_root: tests reading in a ROOT file gen-

erated according to the specifications and without Monte Carlo particle information
• modules/DepositionReader/07-root_notree: tests if a missing ROOT tree is

detected correctly
• modules/DepositionReader/08-root_branches: tests if the number of branch

names configured is correctly calculated
• modules/DepositionReader/09-root_branch_wrong: tests if missing or wrongly

named branches are properly detected and reported
• modules/DepositionReader/10-wrong_detector: tests if depositions from a de-

tector not present in the current simulation are ignored correctly
• modules/DepositionReader/11-outside_sensor: tests if deposited energies out-

side the active sensor volume of the detector are ignored correctly
• modules/DepositionReader/12-end_of_file: tests if a premature end of the

CSV input file is correctly reported and the simulation terminated properly
• modules/DepositionReader/13-end_of_tree: tests if a premature end of the

input ROOT tree is correctly reported and the simulation terminated pr
• modules/DepositionReader/14-truncate_csv: tests if detector name truncation
works as expected in CSV files

• modules/DepositionReader/15-truncate_root: tests if detector name trunca-
tion works as expected in ROOT trees

• modules/DepositionReader/16-mcp_ordered: tests if parent relations of Monte
Carlo particles are correctly determined and recorded

• modules/DepositionReader/17-mcp_unordered: tests if parent relations of
Monte Carlo particles are correctly determined and recorded even if they appear
unordered in the input data

• modules/DetectorHistogrammer/01-histogramming: tests the detector his-
togramming module and its clustering algorithm. The monitored output comprises
the total number of clusters.

• modules/DopingProfileReader/01-regions: tests if a doping profile can be con-
figured by means of different concentration regions in depth

• modules/DopingProfileReader/02-constant: tests if a constant doping profile
can be configured

• modules/ElectricFieldReader/01-linear: creates a linear electric field in the
constructed detector by specifying the bias and depletion voltages. The monitored
output comprises the calculated effective thickness of the depleted detector volume.

• modules/ElectricFieldReader/02-mesh: loads an INIT file containing a TCAD-
simulated electric field and applies the field to the detector model. The monitored
output comprises the number of field cells for each pixel as read and parsed from
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the input file.
• modules/ElectricFieldReader/03-linear_depth: creates a linear electric field

in the constructed detector by specifying the applied bias voltage and a depletion
depth. The monitored output comprises the calculated effective thickness of the
depleted detector volume.

• modules/ElectricFieldReader/04-linear_depletion_side: checks that deplet-
ing from the sensor backside is possible.

• modules/ElectricFieldReader/05-constant: tests the possibility of setting a
constant electric field

• modules/ElectricFieldReader/06-mutually_exclusive: tests that the mutu-
ally exclusive parameters depletion_depth and depletion_voltage cannot be used
together

• modules/ElectricFieldReader/07-sensor_thickness: tests that the depltion
thickness cannot be larger than the sensor thickness

• modules/ElectricFieldReader/08-mesh_mapping_quadrant: tests the possibil-
ity of configuring an offset for the mesh

• modules/ElectricFieldReader/09-mesh_mapping_half: tests mapping of a half-
field onto the pixel plane

• modules/ElectricFieldReader/10-mesh_mapping_inverse: tests mapping of a
field entered around a pixel corner onto the pixel plane

• modules/ElectricFieldReader/11-mesh_scale: tests the possibility to scale the
mesh in x and y

• modules/ElectricFieldReader/12-parabolic: tests the parabolic electric field
• modules/ElectricFieldReader/13-parabolic_minimum_pos: tests if the mini-

mum position is required to be within the defined electric field region
• modules/ElectricFieldReader/14-custom_1d: tests the possibility of setting a

one-dimensional custom electric field function
• modules/ElectricFieldReader/15-custom_3d: tests the possibility of setting a

three-dimensional custom electric field function
• modules/ElectricFieldReader/16-custom_functions: tests that the custom

function either requires one or three components
• modules/ElectricFieldReader/17-custom_parameters_1d: tests that the num-
ber of parameters provided to custom one-dimensional field functions needs to
match

• modules/ElectricFieldReader/18-custom_parameters_3d: tests that the num-
ber of parameters provided to custom three-dimensional field functions needs to
match

• modules/ElectricFieldReader/19-linear-largefield: tests if very high bias
voltages are correctly detected and reported as warning

• modules/ElectricFieldReader/20-mesh_offset_negative: tests that the mesh
offset cannot be negative

• modules/ElectricFieldReader/21-mesh_offset_large: tests that the mesh off-
set cannot be larger than one pixel pitch

• modules/GenericPropagation/01-propagation: uses the Runge-Kutta-Fehlberg
integration of the equations of motion implemented in the drift-diffusion model to
propagate the charge carriers to the implants. The monitored output comprises
the total number of charges moved, the number of integration steps taken and the
simulated propagation time.

• modules/GenericPropagation/02-magnetic: uses the Runge-Kutta-Fehlberg in-
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tegration of the equations of motion implemented in the drift-diffusion model to
propagate the charge carriers to the implants under the influence of a constant
magnetic field. The monitored output comprises the total number of charges moved,
the number of integration steps taken and the simulated propagation time.

• modules/GenericPropagation/03-lifetime: test recombination of charge carri-
ers during drift

• modules/GenericPropagation/04-mobility_unsuitable: tests if the selection
of doping-dependent mobility models without doping information is caught correctly

• modules/GenericPropagation/05-mobility_nomodel: tests if non-existing mo-
bility models selected in the configuration file are detected

• modules/GenericPropagation/06-no_lifetime: tests the fallback of infinite
charge carrier lifetime in case no recombination model is chosen

• modules/GenericPropagation/07-lifetime_unsuitable: tests if the selection
of doping-dependent recombination models without doping information is caught
correctly

• modules/GenericPropagation/08-lifetime_nomodel: tests if non-existing re-
combination models selected in the configuration file are detected

• modules/GenericPropagation/09-no_trapping: tests the fallback of infinite
charge carrier lifetime in case no trapping model is chosen

• modules/GenericPropagation/10-trapping_nomodel: tests if non-existing trap-
ping models selected in the configuration file are detected

• modules/GenericPropagation/11-trapping_custom: tests functionality of cus-
tom trapping model

• modules/GenericPropagation/12-max_charge_groups: test the automatic scal-
ing of charge per step when transport of a deposit would exceed the set max charge
groups

• modules/GenericPropagation/13-impact-ionization: tests functionality of im-
pact ionizations in high-field regions

• modules/GenericPropagation/14-impact-missing-holes: checks that a warn-
ing is printed in cases not all impact ionization carriers would be propagated

• modules/GenericPropagation/15-impact-secondary: tests generation of impact
ionization charge carriers of opposite type

• modules/GenericPropagation/16-lifetime-custom: tests if custom recombina-
tion models work properly

• modules/GeometryBuilderGeant4/01-build: takes the provided detector setup
and builds the Geant4 geometry from the internal detector description. The
monitored output comprises the calculated wrapper dimensions of the detector
model.

• modules/GeometryBuilderGeant4/02-addpoint: ensures the module adds corner
points of the passive material in a correct way.

• modules/GeometryBuilderGeant4/03-addpoint_rotate: ensures proper rotation
of the position of the corner points of the passive material.

• modules/GeometryBuilderGeant4/05-worldvolume: ensures the added corner
points of the passive material increase the world volume accordingly.

• modules/GeometryBuilderGeant4/06-same_materials: tests if a warning will be
thrown if the material of the passive material is the same as the material of the
world volume.

• modules/GeometryBuilderGeant4/07-radial_build: builds the Geant4 geome-
try of a radial strip detector. The monitored output is the world size based on the
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wrapper dimensions and rotation
• modules/GeometryBuilderGeant4/08-build_sensor: takes the provided detector

setup and builds the Geant4 geometry from the internal detector description. The
monitored output comprises the calculated sensor position.

• modules/GeometryBuilderGeant4/09-build_support: takes the provided detec-
tor setup and builds the Geant4 geometry from the internal detector description.
The monitored output comprises the calculated position of the support layer.

• modules/GeometryBuilderGeant4/10-build_bumps: takes the provided detector
setup and builds the Geant4 geometry from the internal detector description. The
monitored output comprises the calculated position of the bump bonding layer.

• modules/GeometryBuilderGeant4/11-build_chip: takes the provided detector
setup and builds the Geant4 geometry from the internal detector description. The
monitored output comprises the calculated position of the ASIC.

• modules/GeometryBuilderGeant4/12-multithreading-oneworker: tests the
use the MTRunManager with workers=1

• modules/GeometryBuilderGeant4/13-material_sensor: ensures that the sensor
material can be chosen from the supported list of materials.

• modules/GeometryBuilderGeant4/14-material_support: ensures that support
layers can load materials from the G4 NistManager database.

• modules/GeometryBuilderGeant4/15-material_passive: ensures that passive
models can load materials from the G4 NistManager database.

• modules/LCIOWriter/01-lcio: ensures proper functionality of the LCIO file writer
module. Similar to the above test, the correct conversion of PixelHits (coordinates
and charge) is monitored.

• modules/LCIOWriter/02-detector_assignment: exercises the assignment of de-
tector IDs to Allpix Squared detectors in the LCIO output file. A fixed ID and
collection name is assigned to the simulated detector.

• modules/LCIOWriter/03-no_mc_truth: ensures that simulation results are prop-
erly converted to LCIO and stored even without the Monte Carlo truth information
available.

• modules/MagneticFieldReader/01-constant: creates a constant magnetic field
for the full volume and applies it to the geometryManager. The monitored output
comprises the message for successful application of the magnetic field.

• modules/MagneticFieldReader/02-local: checks that the local magnetic field
including the detector rotation is correct.

• modules/ProjectionPropagation/01-project: projects deposited charges to the
implant side of the sensor. The monitored output comprises the total number of
charge carriers propagated to the sensor implants.

• modules/ProjectionPropagation/02-lifetime: projects deposited charges to
the implant side of the sensor with a reduced integration time to ignore some charge
carriers. The monitored output comprises the total number of charge carriers
propagated to the sensor implants.

• modules/PulseTransfer/01-pseudopulse: tests the calculation of induced signals
based on the arrival time of charge carriers at the sensor surface.

• modules/PulseTransfer/02-pseudopulse-ancestors: tests the calculation of
induced signals based on the arrival time of charge carriers at the sensor surface.

• modules/PulseTransfer/03-skiptype: tests the calculation of induced signals
based on the arrival time of charge carriers at the sensor surface.

• modules/RCEWriter/02-write: ensures proper functionality of the RCE file writer
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module. The correct conversion of the PixelHit position and value is monitored by
the test’s regular expressions.

• modules/ROOTObjectReader/01-reading: tests the capability of the framework
to read data back in and to dispatch messages for all objects found in the input
tree. The monitored output comprises the total number of objects read from all
branches.

• modules/ROOTObjectReader/02-seed_mismatch: tests the capability of the frame-
work to detect different random seeds for misalignment set in a data file to be
read back in. The monitored output comprises the error message including the two
different random seed values.

• modules/ROOTObjectReader/03-seed_ignore: tests if core random seeds are prop-
erly ignored by the ROOTObjectReader module if requested by the configuration.
The monitored output comprises the warning message emitted if a difference in
seed values is discovered.

• modules/ROOTObjectWriter/01-write: ensures proper functionality of the ROOT
file writer module. It monitors the total number of objects and branches written to
the output ROOT trees.

• modules/ROOTObjectWriter/02-write-warn: ensures proper functionality of the
ROOT file writer module. It monitors the total number of objects and branches
written to the output ROOT trees.

• modules/ROOTObjectWriter/03-write-include: ensures proper functionality of
the ROOT file writer module. It monitors the total number of objects and branches
written to the output ROOT trees.

• modules/ROOTObjectWriter/04-write-include-warn: ensures proper function-
ality of the ROOT file writer module. It monitors the total number of objects and
branches written to the output ROOT trees.

• modules/ROOTObjectWriter/05-write-exclude: ensures proper functionality of
the ROOT file writer module. It monitors the total number of objects and branches
written to the output ROOT trees.

• modules/ROOTObjectWriter/06-write-exclude-warn: ensures proper function-
ality of the ROOT file writer module. It monitors the total number of objects and
branches written to the output ROOT trees.

• modules/SimpleTransfer/01-transfer: tests the transfer of charges from sensor
implants to readout chip. The monitored output comprises the total number of
charges transferred and the coordinates of the pixels the charges have been assigned
to.

• modules/SimpleTransfer/02-implant: tests the transfer of charges from sensor
implants to readout chip in case sensor implants have been defined in the detector
model.

• modules/SimpleTransfer/03-radial_transfer: tests the transfer of charges
from sensor implants to readout chip in a radial strip detector. The monitored
output comprises the total number of charges transferred and the coordinates of
the pixels the charges have been assigned to.

• modules/TextWriter/01-write: ensures proper functionality of the ASCII text
writer module by monitoring the total number of objects and messages written to
the text file.

• modules/TransientPropagation/01-propagation: uses the Runge-Kutta-
Fehlberg integration of the equations of motion implemented in the drift-diffusion
model to propagate the charge carriers to the implants. The total induced charge
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is monitored.
• modules/TransientPropagation/02-magnetic: uses the Runge-Kutta-Fehlberg
integration of the equations of motion implemented in the drift-diffusion model
to propagate the charge carriers to the implants under the influence of a constant
magnetic field. The monitored output comprises the total number of charges moved,
the number of integration steps taken and the simulated propagation time.

• modules/TransientPropagation/03-lifetime: test recombination of charge car-
riers during drift

• modules/TransientPropagation/04-mobility_unsuitable: tests if the selection
of doping-dependent mobility models without doping information is caught correctly

• modules/TransientPropagation/05-mobility_nomodel: tests if non-existing
mobility models selected in the configuration file are detected

• modules/TransientPropagation/06-no_lifetime: tests the fallback of infinite
charge carrier lifetime in case no recombination model is chosen

• modules/TransientPropagation/07-lifetime_unsuitable: tests if the selection
of doping-dependent recombination models without doping information is caught
correctly

• modules/TransientPropagation/08-lifetime_nomodel: tests if non-existing re-
combination models selected in the configuration file are detected

• modules/TransientPropagation/09-no_trapping: tests the fallback of infinite
charge carrier lifetime in case no trapping model is chosen

• modules/TransientPropagation/10-trapping_nomodel: tests if non-existing
trapping models selected in the configuration file are detected

• modules/TransientPropagation/11-trapping_custom: tests functionality of
custom trapping model

• modules/TransientPropagation/12-max_charge_groups: test the automatic
scaling of charge per step when transport of a deposit would exceed the set max
charge groups

• modules/TransientPropagation/13-impact-ionization: tests functionality of
impact ionizations in high-field regions

• modules/TransientPropagation/14-impact-timestep: checks that a warning is
printed in cases the timestep is too coarse for impact ionization

• modules/TransientPropagation/15-impact-secondary: tests generation of im-
pact ionization charge carriers of opposite type

• modules/TransientPropagation/16-impact-gain: tests final gain of single event
• modules/TransientPropagation/17-linear_field: checks that an error is

printed if the module is sued with a linear electric field.
• modules/TransientPropagation/18-no_weighting_potential: uses the Runge-
Kutta-Fehlberg integration of the equations of motion implemented in the drift-
diffusion model to propagate the charge carriers to the implants. The monitored
output comprises the total number of charges moved, the number of integration
steps taken and the simulated propagation time.

• modules/TransientPropagation/19-mt_linegraphs: uses the Runge-Kutta-
Fehlberg integration of the equations of motion implemented in the drift-diffusion
model to propagate the charge carriers to the implants. The total induced charge
is monitored.

• modules/WeightingPotentialReader/01-pad: tests the on-the-fly generation of
the weighting potential following the plane condenser with “pad over infinite plane”
approach.
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15.2.3 Performance Tests

Current performance tests comprise:

• performance/test_01_deposition: tests the performance of charge carrier depo-
sition in the sensitive sensor volume using Geant4. A stepping length of 1.0 um
is chosen, and 10000 events are simulated. The addition of an electric field and
the subsequent projection of the charges are necessary since Allpix Squared would
otherwise detect that there are no recipients for the deposited charge carriers and
skip the deposition entirely.

• performance/test_02-1_propagation_generic: tests the very critical perfor-
mance of the drift-diffusion propagation of charge carriers, as this is the most
computing-intense module of the framework. Charge carriers are deposited and
a propagation with 10 charge carriers per step and a fine spatial and temporal
resolution is performed. The simulation comprises 500 events.

• performance/test_02-2_propagation_project: tests the projection of charge
carriers onto the implants, taking into account the diffusion only. Since this module
is less computing-intense, a total of 5000 events are simulated, and charge carriers
are propagated one-by-one.

• performance/test_02-3_propagation_generic_multithread: tests the perfor-
mance of multithreaded simulation. It utilizes the very same configuration as
performance test 02-1 but in addition enables multithreading with four worker
threads.

• performance/test_03_multithreading: tests the performance of the framework
when using multithreading with 4 workers to simulate 500 events. It uses a similar
configuration as the example configuration.
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